Crystal-Chemical Studies of Fine-Grained Materials Using Powder-Diffraction Methods and Computer Simulation

By

Jian-Jie Liang

A Thesis Submitted to the Faculty of Graduate Studies . in Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department of Geological Sciences University of Manitoba Winnipeg, Manitoba

© September 18, 1996

National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario) K1A 0N4

Your file Votre référence

Our file Notre référence

The author has granted an irrevocable non-exclusive licence allowing the National Library of reproduce, loan, to Canada distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission. L'auteur a accordé une licence irrévocable et non exclusive Bibliothèque permettant à la Canada de nationale du reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette disposition des thèse à la personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-612-16194-3

Name

JIANJIG LIANG

Dissertation Abstracts International and Masters Abstracts International are arranged by broad, general subject categories. Please select the one subject which most nearly describes the content of your dissertation or thesis. Enter the corresponding four-digit code in the spaces provided. JIANSIE LIANG

Mineralogy

Psychology

SUBJECT TERM

UMI 0 SUBJECT CODE

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND TH	E ARTS
Architecture	0729
Art History	0377
Cinema	
Danca	0378
Fine Arts	0357
Normation Science	0723
lounglism	0391
ibrary Science	
Mars Communications	0708
Mueio	0413
Speech Communication	0459
Thanker	

EDUCATION

100 0011011	
General	.0515
Administration	.0514
Adult and Continuing	.0516
Aariaultural	0517
	0273
Not an I and the later of the second	.0200
Rindag and whitehinter	.0202
Business	.0000
Community College	.0275
Curriculum and Instruction	.0727
Farty Childhood	.0518
Flomentany	0524
	0277
	. A 61 0
Guidance and Counseang	.0317
Health	.0080
Higher	.0745
History of	.0520
Home Economics	.0278
lockustrial	0521
I want wat and I then have	0270
Language and Literature	
Mainemailes	.0200
Music,	.0522
Philosophy of	.0998
Physical	.0523

Reading Religious 0527 0714 0533 000 Social Sciences Sociology of 0340 0529 Vocational0747 LANGUAGE, LITERATURE AND LINGUISTICS

Longuage	
Gonoral	0479
Collectul	
Andeni	0289
linguistics	0290
Madom	0291
ulerature	
General	0401
Clausian	0294
Comparative	
Medieval	0297
Madam	0298
	0214
Altican	
American	0591
Asian	0305
C F. /CE.L	0252
Canadian (English)	
Canadian (French)	0355
Fnalish	0593
	0211
Germanic	
Latin American	0312
Middle Fastern	0315
	0212
Komance	
Slavic and East European	0314

THEOLOGY	
Philosophy	0.422
Rolizion	
	0210
	0318
Siblical Studies	0321
Gergy	0319
History of	0320
Philosophy of	0322
Theology	0469
0 /	
SOCIAL SCIENCES	
American Studies	0323
Anthropology	
Andressland	0224
Archaeology	
	0320
nysical	032/
Business Administration	
General	0310
Accounting	0272
Banking	0770
Management	0454
Manketina	0338
Canadian Studies	0385
Economics	
General	0501
Agricultural	0503
Commence Punisses	0505
Commerce-dusiness	
history	
<u>L</u> abor	0510
Theory	0511
Folkore	0358
Geography	0366
- · · · ·	

PHILOSOPHY, RELIGION AND

AUCIER	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Medieval	.0581
Modern	.0582
Black	.0328
African	.0331
Asia, Australia and Oceania	0332
Canadian	0334
European	0335
Latin American	0336
Middle Fastern	0333
I lipited States	0337
History of Science	0595
	0300
Dalitiant Science	.0370
Conord	0415
	.0015
International Law and	A414
Reignons	0010
Public Administration	.0017
Kecreanon	0014
Social Work	.0452
sociology '	
General	.0626
Criminology and Penology	.0627
Demography	.0938
Ethnic and Racial Studies	.0631
Individual and Family	
Studies	.0628
Industrial and Labor	
Relations	.0629
Public and Social Welfare	0630
Social Structure and	
Development	0700
Theory and Methods	0344
Transportation	0709
Istran and Pagional Planning	10000
Women's Studios	0452
TTUINELS OIVUIDS	

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES

Agnoulture	
General	.0473
Agronomy	.0285
Animal Culture and	
Nutrition	.0475
Animal Pathology	0476
Food Science and	
Technology	0350
E	0478
Porestry one vylicate	0470
Nani Culture	.04/7
riani ramoiogy	.0460
Plant Physiology	.0817
Range Management	.0777
Wood Technology	.0746
Biology	
General	.0306
Ángiomy.	0287
Riodatistics	0308
Defense	0200
Call	0370
	.0377
Ecology	.0327
thiomology	0355
Genetics	.0369
Limnology	.0793
Microbiology	.0410
Molecular	.0307
Neuroscience	.0317
Oceanography	.0416
Physiology	0433
Participo	0821
Valaria and Salanaa	0778
Telennery Science	0.772
probulation -	0707
General	.0/60
Medical	.0760
EARTH SCIENCES	

RTH SCIEN	(B)	
paeochemis	ity	0425
ochemistry		0996
,		

Bi

Geodesy	0370
Casheri	0372
Geology	0072
Geophysics	03/3
Hydrology	0388
	0411
Mineralogy	0411
Palaobotany	0345
Palanamhan	0426
	0410
raisoniology	V410
Paleozoology	0985
Palmalam	0427
	0220
Physical Geography	0300
Physical Oceanography	0415
HERE WILL A MIN PAIL TO ALL SPALE	
MEALIN AND ENVIKONMENTAL	
Criturte	
SULLIVES	
En improved Selencer	A740
C CWEITEN WITH AN INCH MY	v/ 00
Environmental Sciences	V/ 00
Health Sciences	0/00
Health Sciences General	0566
Health Sciences General	0566
Health Sciences General Audiology	0566
Health Sciences General Audiology Chemotherapy	0566 0300 0992
Health Sciences General Audiology Chemotherapy Denistry	0566 0300 0992 0567
Health Sciences General Audiology Chemotherapy Dentistry	0566 0300 0992 0567 0350
Health Sciences General Audiology Chemotherapy Denistry Education	0566 0300 0992 0567 0350
Health Sciences General Audiology Chemotherapy Dentistry Education Hospital Manogement	0566 0300 0992 0567 0350 0769
Health Sciences General Audiology Chemotherapy Education Hospital Management	0566 0300 0992 0567 0350 0769 0758
Health Sciences General Audiology Dentistry Education Hospital Management Human Development	0566 0300 0992 0567 0350 0769 0758 0982
Health Sciences General Audiology Chemotherapy Denistry Education Hospital Management Human Development	0566 0300 0992 0567 0350 0769 0758 0982
Health Sciences General Audiology Chemotherapy Dentistry Education Hospital Management Human Development Immunology Medicine and Surgery	0566 0300 0992 0567 0350 0769 0758 0982 0564
Health Sciences General Audiology Chemotherapy Dentistry Education Hospital Management Homan Development Immunology Medicine and Surgery Medicine and Surgery	0566 0300 0992 0567 0350 0769 0758 0982 0564 0347
Health Sciences General Audiology Chemotherapy Denistry Education Hospital Management Human Development Immunology Medicine and Surgery Medicine	0566 0300 0992 0567 0350 0769 0758 0982 0564 0347 0569
Health Sciences General Audiology Chemotherapy Dentistry Education Hospital Management Human Development Immunology Medicine and Surgery Mental Health Nursing	0566 0300 0992 0567 0350 0769 0758 0982 0564 0347 0569
Health Sciences General Audiology Chemotherapy Denisitry Education Hospital Management Human Development Immunology Medicine and Surgery Montal Health Nutring Nutring	0566 0300 0992 0567 0350 0769 0758 0982 0564 0347 0569 0570
Health Sciences General	0566 0300 0992 0567 0350 0769 0758 0982 0564 0564 0569 0569 05570 0380
Headth Sciences General Audiology Chemotherapy Dentistry Education Hospital Management Human Development Immunology Medicine and Surgery Mental Health Nutring Nutrifion Obstetrics and Cyneoclogy	0566 0300 03992 0567 0350 0769 0758 0982 0564 0347 0569 0570 0380

riconmental sciences	
alth Sciences	
General	0566
Audiology	0300
Chemotherapy	. 0992
Dentistry	0567
Education	0350
Hounital Management	0769
Human Davidonment	0758
immunology	
Medicine and surgery	
Mental Health	
Nursing	
Nutrition	0570
Obstetrics and Gynecology	0380
Occupational Health and	
Therapy	0354
Ophthalmalary	0381
Pethology	0571
ok ann and an	0410
Phormocology	0572
inaiinach	
Physical Inerapy	
Public Health	05/3
Radiology	0574
Recreation	0575

Speech Pathology	0460
Toxicology	.0383
Home Economics	0386

.0351

0578

PHYSICAL SCIENCES

Pure Sciences

Gerontology

History General

nemistry
General
Agricultural
Analytical 0486
Biochemistry 0487
Inoragaic 0488
Nuclear 0738
Organic 0400
Phormacoutical 0491
Diversel 0404
Palanan 0405
Polymer
Kadiation
Valhematics
Thysics
General
Acoustics
Astronomy and
Astrophysics
Almospheric Science
Atomic
Electronics and Electricity 0607
Elementary Particles and
High Energy 0798
Fluid and Plasma 0759
Molecular 0409
Nuclear 0410
Option 0752
Padiation 0754
Calld State 0411
NGRISHCS
Applied Sciences
Applied Mechanics 0346
Computer Science 0984
anihalal analasa muutumuuma ayora
Manual and a star of the second

Engineering	
General	0537
Aerospace	.0538
Agricultural	0539
Automotive	.0540
Biomedical	.0541
Chemical	.0542
Gvil	.0543
Electronics and Electrical	.0544
Heat and thermodynamics	.0348
Hydroulic	
	.0340
Manne	
Materials Science	
Mechanicai	.0340
Mining	0551
Nucloar	0552
Packaging	0549
Patroloum	0765
Sanitary and Municipal	0554
System Science	0790
Geotechnology	0428
Operations Research	.0796
Plastics Technology	.0795
Textile Technology	0994

PSYCHOLOGY

General	
Behavioral	
Cinical	
Developmental	
Experimental	
Industrial	
Personality	
Physiological	
Psychobiology	
Psychometrics	
Social	

化化工作 化气管化器

Nom

Dissertation Abstracts International est organisé en catégories de sujets. Veuillez s.v.p. choisir le sujet qui décrit le mieux votre thèse et inscrivez le code numérique approprié dans l'espace réservé ci-dessous.

SUJET

Catégories par sujets

HUMANITÉS ET SCIENCES SOCIALES

COMMUNICATIONS ET LES ARTS

Architecture	
Beaux-arts	
Bibliothéconomie	
Cinéma	
Communication verbale	
Communications	
Danse	0378
Histoire de l'art	
Journalisme	
Musique	0413
Sciences de l'information	0723
Théôtre	0465

ÉDIICATION

Généralités	515
Administration	0514
Art	0273
Collèges communautaires	0275
Commerce	0688
Économie domestique	0278
Education permanente	0516
Education préscolaire	0518
Education sanitaire	0680
Enseignement agricole	0517
Enseignement bilingue et	
multiculturel	0282
Enseignement industriel	0521
Enseignement primaire	0524
Enseignement professionnel	0747
Enseignement religieux	0527
Enseignement secondaire	0533
Enseignement spécial	0529
Enseignement supérieur	0745
Evaluation	0288
Finances	0277
Formation des enseignants	0530
Histoire de l'éducation	0520
Lanaues et littérature	0279

Programmes a erudes er enseignement 0727 Psychologie 0525 Sciences 0714 Sciences sociales 0534 Sociologie de l'éclucation 0340 Technologie 0710

LANGUE, LITTÉRATURE ET LINGUISTIQUE

LINUULJINGUL	
Langues	
Généralités	067
Anciennes	028
Linguistique	0290
Modernes	029
Littérature	
Généralités	040
Anciennes	0294
Comparée	029:
Mediévale	0292
Moderne	0298
Africaine	0316
Américaine	059
Anglaise	0593
Asiatique	0303
Canadienne (Analaise)	0352
Canadienne (Francaise)	0355
Germanique	031
Latino-oméricaine	0312
Moven-orientale	0313
Romone	0313
Slave et est-européenne	0314

PHILOSOPHIE, RELIGION ET

hilosophie	0422
Religion	
Généralités	0318
Çlergé	0319
Etudes bibliques	0321
Histoire des religions	0320
Philosophie de la religion	0322
héologie	0469
T	

SCIENCES SOCIALES

Anthropologie	
Archéologie	0324
Culturelle	0326
Physique	0327
Droit	0398
Économie	
Généralités	0501
Commerce-Affaires	0505
Économie garicole	0503
Économie du travail	0510
Finances	0.508
Histoire	0509
Théorie	0511
Études américaines	0323
Etudes canadiennes	0385
Etudes féministes	0453
oklore	0358
Géoaraphie	0366
Gérontologie	0351
Gestion des affaires	
Générolités	.0310
Administration	0454
Banaves	0770
Comptabilité	0272
Marketina	0338
tistoire	
Histoire générale	0578

Médiévale0581 Africaine 0331 Canadienne 0334 Étals-Unis0337 Droit et relations internationales0616 pénitentiaires 0627 pénitentiaires 0627 Pémographie 0938 Etudes de l'individu et de la famille 0628 Études des relations interethniques et des relations raciales0631 Structure et développement

Ancienne

CODE DE SUJET

re ge

SCIENCES PHYSIQUES

Sciences Pures

Chimie	
Genérolités	0485
Biochimie	487
Chimie goricole	0749
Chimie analytique	0486
Chimie minérole	0488
Chimie nucléaire	0738
Chimie organique	0490
Chimie pharmaceutique	0491
Physique	0494
PolymCres	0495
Radiation	0754
Mathématiques	0405
Physique	. 0400
Généralités	0605
Acoustique	0986
Astronomie et	
astrophysique	0606
Electronique et électricité	0607
Fluides et plasma	0759
Météorologie	0608
Optique	0752
Porticules (Physique	
nuclégire)	.0798
Physique atomique	0748
Physique de l'état solide	.0611
Physique moléculaire	0609
Physique nucléoire	0610
Radiation	0756
Statistiques	.0463
Sciences Appliqués Et	

Se Te

Technologie	
Informatique	0984
Ingénierie	
Généralités	0537
Agricole	0539
Automobile	0540

Biomédicale	.0541
Chaleur et ther	
modynamique	.0348
Conditionnement	
(Emballage)	0549
Génie gérospatial	0538
Génie chimique	0542
Gónio civil	0542
Cánia álastranious at	.0545
denie electronique er	0511
electrique	.0544
Genie industriel	.0546
Génie mécanique	.0548
Génie nucléaire	.0552
Ingénierie des systömes	.0790
Mécanique navale	.0547
Métallurgie	.0743
Science des matériaux	.0794
Technique du pétrole	0765
Technique minière	0551
Techniques sanitaires et	
municipales	0554
Tochnologia hydraulique	0545
Mécanique appliquée	0343
Céatacha al a sia	0.40
Geolecinologie	.0420
malleres plastiques	0705
(lechnologie)	.0795
Recherche operationnelle	.0796
Textiles et tissus (Technologie)	.0794
PSYCHOLOGIE	
Généralités	0421
Porconnolité	0621
Development in the second seco	.0023

P

621
625
349
622
384
620
623
624
989
451
632

SCIENCES ET INGÉNIERIE

SCIENCES BIOLOGIQUES

Aduconoie	
Généralités	. 0473
Aaronomie.	0285
Alimentation et technologie	
alimentaire	0250
Culture	0337
Culture	.0479
Elevage et alimentation	.04/5
Exploitation des péturages	.0777
Pathologie animale	.0476
Pathologie végétale	.0480
Physiologie végétale	0817
Sulviculture et laune	0479
Toshnologio du hais	0714
a. I contrologie du bois	.0/40
BIOLOGIE	
Généralités	.0306
Anatomie	.0287
Biologie (Statistiques)	.0308
Biologie moléculaire	.0307
Botanique	0309
Cellue	0379
Ecologia	0220
Enternalente	0327
chiomologie	.0333
Genetique	.0369
Limnologie	.0793
Microbiologie	.0410
Neurologie	.0317
Océanoaraphie	.0416
Physiologie	0433
Radiation	0821
Science vétéringire	0779
Zealasia	0472
D'	.0472
biophysique	0704
Generalités	.0786
Medicale	. 0760
CORNERS OF LA STODE	
SCIENCES DE LA TERRE	
Biogéochimie	.0425
Géochimie	.0996
Géodésie	.0370
Géographie physique	0368

Géologie Géophysique Hydrologie Océanographie physique Paléobotanique Paléocologie Paléocologie Paléontologie Paléozologie Paléozologie Palynologie	.0372 .0373 .0388 .0411 .0415 .0345 .0426 .0418 .0985 .0427
SCIENCES DE LA SANTÉ ET DE L'ENVIRONNEMENT Économie domestique Sciences de la sonté	.0386 .0768

conomic domestique	.0500
ciences de l'environnement	.0768
ciences de la santé	
Généralités	.0566
Administration des hipitaux	.0769
Alimentation et nutrition	. 0570
Audiologie	.0300
Chimiothéropie	.0992
Dentisterie	.0567
Développement humain	.0758
Enseignement	.0350
Immunologie	.0982
Loisirs	.0575
Médecine du travail et	
thérapie	0354
Médecine et chiruraie	0564
Obstétrique et avnécologie	0380
Ophtalmologie	0381
Orthophonie	0460
Pathologie	0571
Pharmacie	0572
Pharmacologie	0419
Physiothéropie	0382
Radiologie	0574
Santé mentale	0347
Santé publique	0573
Soins infirmiers	0569
Toxicologie	0383

0756 0463	
0984	

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

COPYRIGHT PERMISSION

CRYSTAL-CHEMICAL STUDIES OF FINE-GRAINED

MATERIALS USING POWDER-DIFFRACTION METHODS AND COMPUTER SIMULATION

BY

JIAN-JIE LIANG

A Thesis/Practicum submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Jian-Jie Liang © 1996

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or sell copies of this thesis/practicum, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis/practicum and to lend or sell copies of the film, and to UNIVERSITY MICROFILMS INC. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner.

ACKNOWLEDGEMENT

I thank Dr. Matti Raudsepp who first introduced me into the field of studies using Rietveld method. It's my advisor, Frank C. Hawthorne, who, however, guided me into the intriguing world of crystal-chemical studies of minerals and materials. It's also Frank who defined the word, "confidence", for me. I would also like to thank Professor Norman M. Halden for his patience with sporadic, but endless, requests during Frank's leaves.

It is not always straight forward in dealing with X-ray instrumental problems. I was fortunate to have Neil Ball, Ron Chapman, and Surgil Mejia always ready to help whenever there was a demand.

Perhaps the most cherished friendship I got in my Ph.D. years was that from Mark Cooper. He not only helped me with single crystal work, but also helped me adopting the wonderful, although sometimes harsh, Winnipeg life. Friendship from other members of the group, Peter Burns, Bob Finch, Dan Macdonald, and Julie Salway, was also very important to me.

Many colleagues collaborated with the research projects. I would like, in particular, to thank Milan Novak, Luisa Ottolini, Mike Sowa, and Ian Swainson for providing me expertise that are out of my specialization.

I thank Natural Science and Engineering Council of Canada (NSERC) and The University of Manitoba for granting me post graduate fellowships. I also thank Trans-Canada Pipeline and Gordon P. Osler foundation for their financial supports.

I'm Honoured to have Professors Petr Cerny, Robert R. Wallace, and Dr. David L. Bish to be my thesis examiner. They not only corrected errors in my thesis, but also brought new developments in related areas of researches.

Above all, I want to thank my family, the extended family, for their moral support. It's their, especially my parents', constant encouragement that sustained me through these fruitful, but long years of studies.

ABSTRACT

Many geologically and technologically important materials occur only as finegrained powders. Comprehensive crystal-chemistry of these materials needs to be characterized by powder-diffraction methods. The reliability of the Rietveld method, one of the most important powder methods, was assessed by simultaneous Rietveld and singlecrystal studies of a number of minerals representative of major (alumino-)silicate mineral groups. For moderately complex and anhydrous minerals, structure refinements comparable to those of single-crystal methods can be achieved, even when the mineral is in a powder mixture but the content is greater than 10 wt%. Preferred orientation in micaceous materials can be minimized during sample preparation, and residual preferred orientation can be corrected semi-empirically during data processing. Rietveld refinement of framework atomic positions in zeolites are comparable with single-crystal refinement, whereas those of the extraframework species were more difficult. Rietveld refinements of cation site-occupancies were reliable, independent of the complexities of the crystal structure.

Computer-based theoretical studies can supplement experimental observation and assist data interpretation. Static structure-energy minimization, in which electrostatic interactions, bond-bending and polarizations were considered explicitly, was used to calculate H positions in a number of phyllosilicates. Experimentally determined Hpositions in well-studied phyllosilicates were reproduced. H-positions in muscovite and certain H-positions in dickite were calculated split, and confirmed by variable-temperature neutron diffraction and FTIR experiments.

Coupling Rietveld refinement with theoretical calculations can greatly increase the capability and reliability of the Rietveld method. An algorithm of the Coupled Rietveld---Static Structure-Energy Minimization (CRSSEM) was developed, in which Rietveld refinement is dynamically regulated by the structure-energy calculation. The method had been successfully applied to a number of materials whose structures are so complex that false-convergence was reported in their unaided Rietveld refinements. The method had also been shown effective to refine layer structures when two very similar polytypes coexist.

Table of Content

Acknowledg	ements		Ι	
Abstract			II	
List of Figures				
List of Tables				
List of Abbr	reviatio	ons	XXIV	
Chapter 1.	Intro	duction	1	
	1.1.	History of Rietveld Method and Its		
		Current State of Development	2	
	1.2.	The Nature of Computer Simulation of		
		Crystal Structures	3	
	1.3.	Overview of the Thesis	5	
Chapter 2.	Powd	ler Diffraction and the Rietveld Method	7	
	2.1.	Powder-Diffraction Intensity-Data Collection	7	
	2.2.	Background Correction	9	
	2.3.	Modelling the Peak Shape	10	
	2.4.	Structure Refinement	17	
	2.5.	Convergence and Least-squares Error Criteria	17	
	2.6.	Convergence and Least-squares Error Criteria	18	
	2.7.	Examples of Rietveld Refinement	21	
		2.7.1. Single-phase Rietveld Study of Simple		

			Mineral Structures using X-ray	
			Diffraction Data	21
		2.7.2.	Characterizing mineral-synthesis products	22
		2.7.3.	Natural Zeolite and Clay Minerals	24
	2.8.	Multi-	phase Rietveld Refinement	25
		2.8.1.	Structure Refinement of Powder Mixtures	25
		2.8.2.	Determination of Modal Amounts of	
			Phases in Mixtures	26
	2.9.	Summ	nary	27
Chapter 3.	Relia	bility S	tudy of the Rietveld Method	28
	3.1.	Olivir	e, Pyroxene and Their Binary Mixtures	29
		3.1.1.	Experimental	30
		3.1.2.	Results	37
		3.1.3.	Discussion	48
	3.2.	The N	Auscovite Example	58
		3.2.1.	Experimental	58
		3.2.2.	Result and Discussion	64
	3.3.	Phlog	opite	77
		3.3.1.	Experimental	78
		3.3.2.	Result and Discussion	84
	3.4.	Zeolit	tes	90
		3.4.1.	Experimental	90

100 C 400

		3.4.2. Result and Discussion	93
	3.5.	Summary	101
Chapter 4.	The S	Static Structure-Energy Minimization Method	104
	4.1.	Interatomic Interactions	105
	4.2.	Static Structure-Energy Minimization	109
	4.3.	Parameterization of the Interatomic Potentials	111
		4.3.1. Empirical Parameterization	112
		4.3.2. Parameterization Using MEG Theory	113
		4.3.3. Parameterization Through	
		Quantum-Mechanical Calculation	114
	4.4.	Application of Static Structure-Energy Minimization:	
		Examples	115
	4.5.	Summary	120
Chapter 5.	Calcu	ulating H-atom Positions in Mica and Clay Structures	121
	5.1.	Crystal Structures of Micas and Clay Minerals	126
	5.2.	The Calculation	129
	5.3.	Results and Discussion	135
		5.3.1. Phlogopite, Chlorite and Kaolinite	136
		5.3.2. Margarite	140
		5.3.3. Muscovite	148
		5.3.4. Dickite	153
	5.4.	Summary	161

VI

Chapter 6.	The Split H-atom Position Model in Muscovite:			
	Experimental Verification 1			
	6.1.	Experi	mental	164
		6.1.1.	Single-Crystal Neutron-Diffraction Study at	
			Room Temperature	164
		6.1.2.	Neutron Diffraction at 12 K	165
		6.1.3.	Fourier-Transform Infrared Photo-Acoustic	
			Spectroscopy (FT-IR PAS)	167
		6.1.4.	Precession Photography	168
		6.1.5.	Peak-profiling of Very Weak Reflections	
			Using Single-Crystal Diffractometer	168
	6.2.	Result	S	169
		6.2.1.	Neutron-Diffraction Study at Room Temperature	169
		6.2.2.	Neutron-Diffraction Study at 12 K	172
		6.2.3.	Precession Photos and Profiles of the	
			Weak Reflections	172
		6.2.4.	The IR-spectra	172
	6.3.	Discus	ssion	176
		6.3.1.	H-atom Positions at Room Temperature	176
		6.3.2.	H-atom Position at 12 K	176
		6.3.3.	Infrared Spectroscopy	183
		6.3.4.	Possibility of Symmetry Lower Than C2/c	184

	6.4.	Discussion and Interpretation	185
	6.5.	Summary	186
Chapter 7.	Coup	led RietveldStatic Structure-Energy	
	Minin	nization Method	187
	7.1.	Rietveld and SSEM Programs:	
		Modification in the Present Study	190
	7.2.	Coupling Rietveld Refinement with Static-	
		Structure Energy	190
	7.3.	Examples of Structure Refinement Using the	
		CRSSEM Method	195
		7.3.1. Minor Phases in Binary Mixtures	195
		7.3.2. Structure Refinement of Synthetic	
		Zeolite ZSM-23	199
	7 <i>.</i> 4.	Summary	205
Chapter 8.	Refir	ning Crystal Structures of Boromuscovite Polytypes	
	Using	g the CRSSEM Method	206
	8.1.	Boromuscovite: a New Mineral	206
	8.2.	Experimental	207
		8.2.1. Chemical Analysis	207
		8.2.2. Powder-Diffraction Data Collection	208
	8.3.	Structure Refinement of Two Polytypes of	
		Boromuscovite	208

	8.4	4.	Results	211
	8.	5.	Discussion	219
	8.	6.	Summary	219
Chapte	r 9. Co	onclu	sions and Potential Development	222
Referen	ices			225
Append	lix			A1
1	Appendix	P-1:	step-intensity data of pure diopside	A1
1	Appendix	: P-2:	step-intensity data of the 10 wt% olivine	
	m	ixture	e of Ol+Py	A4
1	Appendix	: P-3:	step-intensity data of the 20 wt% olivine	
	m	ixture	e of Ol+Py	A9
	Appendix	: P-4:	step-intensity data of the 30 wt% olivine	
	m	ixture	e of Ol+Py	A13
L	Appendix	: P-5:	step-intensity data of the 40 wt% olivine	
	m	ixture	e of Ol+Py	A17
L	Appendix	x P-6:	step-intensity data of the 50 wt% olivine	
	m	ixture	e of Ol+Py	A21
	Appendi	(P-7)	s step-intensity data of the 60 wt% olivine	
	m	ixtur	e of Ol+Py	A25
	Appendi	(P-8)	step-intensity data of the 70 wt% olivine	
	m	ixtur	e of Ol+Py	A29

Appendix P-9: step-intensity data of the 80 wt% olivine

mixture of Ol+Py	A33
Appendix P-10: step-intensity data of the 90 wt% olivine	
mixture of Ol+Py	A37
Appendix P-11: step-intensity data of pure olivine	A41
Appendix P-12: step-intensity data of the 50 wt% olivine	
mixture of Ol+Py, step size 0.01° 20	A43
Appendix P-13: step-intensity data of the 50 wt% olivine	
mixture of Ol+Py, step size 0.02° 20	A61
Appendix P-14: step-intensity data of the 50 wt% olivine	
mixture of Ol+Py, step size 0.03° 20	A70
Appendix P-15: step-intensity data of the 50 wt% olivine	
mixture of Ol+Py, step size 0.04° 20	A76
Appendix P-16: step-intensity data of the 50 wt% olivine	
mixture of Ol+Py, step size 0.05° 20	A81
Appendix P-17: step-intensity data of the 50 wt% olivine	
mixture of Ol+Py, step size 0.06° 20	A85
Appendix P-18: step-intensity data of the 50 wt% olivine	
mixture of Ol+Py, step size 0.07° 20	A88
Appendix P-19: step-intensity data of the 50 wt% olivine	
mixture of Ol+Py, step size 0.08° 20	A91
Appendix P-20: step-intensity data of the 50 wt% olivine	
mixture of Ol+Py, step size $0.09^{\circ} 2\theta$	A94

Appendix P-21: step-intensity data of the 50 wt% olivine	
mixture of Ol+Py, step size 0.10° 20	A97
Appendix P-22: step-intensity data of pure muscovite,	
transmission geometry	A99
Appendix P-23: step-intensity data of pure muscovite,	
reflection geometry	A107
Appendix P-24: step-intensity data of fluoro-phlogopite	A117
Appendix P-25: step-intensity data of chabazite	A126
Appendix P-26: step-intensity (of neutron diffraction)	
data of muscovite	A145
Appendix P-27: step-intensity data of B-muscovite	A149
Appendix S-1: Observed and calculated structure factors	
for olivine	A148
Appendix S-2: Observed and calculated structure factors	
for diopside	A149
Appendix S-3: Observed and calculated structure factors	
for muscovite	A151
Appendix S-4: Observed and calculated structure factors	
for phlogopite	A154
Appendix S-5: Observed and calculated structure factors	
for chabazite	A156

XI

List of Figures

Fig. 3-1-1.	Observed, calculated and difference X-ray powder-diffraction	
	patterns from each single-phase refinement of olivine and	
	pyroxene	45
Fig. 3-1-2.	Typical observed, calculated and difference X-ray powder-	
	diffraction patterns for a multi-phase refinement of the	
	50:50 olivine:pyroxene mixture	46
Fig. 3-1-3.	Modal proportion of olivine derived from Rietveld structure	
	refinement compared with the known modal proportions, and	
	values for the 1:1 mixture as a function of step width	50
Fig. 3-1-4.	Half-normal probability plots for the atomic positions derived	
	from single-crystal and single-phase Rietveld refinements:	
	(a) olivine	55
Fig. 3-1-4.	(continue) (b) pyroxene	56
Fig. 3-2-1.	Observed, Rietveld calculated and difference X-ray powder-	
	diffraction patterns of muscovite- $2M_1$ (a) transmission mode	69
Fig. 3-2-1.	(continue) (b) reflection mode	70
Fig. 3-2-2.	Observed, calculated from refined single-crystal structure	
	and difference X-ray powder-diffraction patterns of	
	muscovite- $2M_1$; (a) transmission mode	72
Fig. 3-2-2.	(continue) (b) reflection mode	73

Fig. 3-2-3.	Half-normal probability plots for refined positional	
	coordinates of muscovite- $2M_1$; (a) single-crystal and	
	transmission-mode Rietveld refinements	75
Fig. 3-2-3.	(continue) (b) single-crystal and reflection-mode	
	Rietveld refinements	76
Fig. 3-3-1.	Half-normal probability plot comparing structural	
	parameters of the $1M$ polytype from single-crystal	
	and the Rietveld refinements.	88
Fig. 3-3-2.	FTIR PAS spectra of fluorophlogopite at the O-H	
	stretching region.	90
Fig. 3-3-3.	Observed, calculated and difference X-ray	
	diffraction patterns of the fluorophlogopite.	92
Fig. 3-4-1.	Observed, calculated and difference X-ray diffraction	
	patterns of chabazite	97
Fig. 3-4-2.	Half-normal probability analysis of chabazite	102
Fig. 5-1.	X-ray scattering power of H-atom, in comparison with	
	those of the other atoms commonly found in clay minerals	124
Fig. 5-2.	Structure model of a 2:1 mica (phlogopite)	127
Fig. 5-3.	Structure model of a 1:1 clay mineral (kaolinite)	128
Fig. 5-4.	Stick-and-ball representation of the 1:1 clay mineral	
	(kaolinite example)	130
Fig. 5-5.	The six common polytypes of micas	131

Fig. 5-6.	Hydroxyl-orientation in margarite (a) as compared to	
	O-H orientations in dioctahedral mica (muscovite, b)	
	and trioctahedral mica (phlogopite, c)	142
Fig. 5-6	(continue)	143
Fig. 5-7.	Variable-temperature FT-IR spectra of dickite	159
Fig. 6-1.	Observed and calculated neutron-diffraction patterns of	
	muscovite at 12 K	174
Fig. 6-2.	Difference-Fourier maps projected down [100] showing the	
	nuclear density distribution in muscovite at A: room	
	temperature and B: at 12 K	175
Fig. 6-3.	Precession photos of muscovite with $\mu = 25$ and 30°,	
	respectively	177
Fig. 6-4.	Partial indexing of the precession photos of muscovite	
	in Figure 6-3	178
Fig. 6-5.	Peak-profiles of selected $h0l$ ($l=odd$) reflections in	
	muscovite	179
Fig. 6-6.	Peak-profiles of 201 of muscovite with different	
	Psi-angles	180
Fig. 6-7.	FT-IR PAS of muscovite at room temperature	181
Fig. 6-8.	FT-IR PAS spectra of the OH-stretching region of	
	muscovite at room temperature	182
Fig. 6-9.	Spatial relationship between the OH orientation and	

.

	the nominally vacant M1 site in the muscovite structure	187
Fig. 7-1.	Schematic representation of the coupled Rietveld	
	static-structure energy minimization refinement method	194
Fig. 7-2.	Observed, calculated and the difference powder	
	diffraction patterns of ZSM-23	204
Fig. 8-1.	Observed, calculated and the difference powder-	
	diffraction patterns of boromuscovite	218
Fig. 8-2.	The relationship between $< T$ -O> distances and B content	220

List of Tables

Table 3-1-1.	Chemical analyses (wt%) and unit formulae of	
	olivine and pyroxene	32
Table 3-1-2.	Details of structure refinement with powder	34
Table 3-1-3.	Single-crystal X-ray diffraction data	
	collection and refinement information	36
Table 3-1-4.	Refined cell-dimensions for olivine and	
	pyroxene for olivine and diopside	38
Table 3-1-5.	Atomic positions for olivine and diopside	39
Table 3-1-5.	(continue)	40
Table 3-1-6.	Refined M-site populations for olivine and	
	pyroxene	41
Table 3-1-7.	Selected atomic distances (a) in olivine and	
	pyroxene	42
Table 3-1-7.	(continue)	43
Table 3-1-8.	Modal amount of olivine (wt%) in the olivine-	
	pyroxene mixtures by Rietveld refinement	49
Table 3-1-9.	Modal amount of olivine (wt%) in the 1:1	
	olivine-pyroxene mixture by the Rietveld	
	refinement for different step widths.	51
Table 3-2-1.	Chemical composition and unit formula of	

XVI

	muscovite	60
Table 3-2-2.	Single-crystal X-ray diffraction data-	
	collection and refinement information for	
	muscovite- $2M_1$	61
Table 3-2-3.	Details of powder-diffraction intensity-data	
	collection and Rietveld refinement for	
	muscovite- $2M_1$	63
Table 3-2-4.	Final atomic coordinates of muscovite- $2M_1$	65
Table 3-2-4.	(continue)	66
Table 3-2-5.	Interatomic distances (å) and angles (°)	
	for muscovite	67
Table 3-2-5.	(continue)	68
Table 3-3-1.	Details of powder-diffraction intensity-data	
	collection and rietveld refinement for	
	fluorophlogopite	80
Table 3-3-2.	Chemical composition and unit formula of	
	phlogopite	82
Table 3-3-3.	Single-crystal x-ray diffraction data-	
	collection and refinement information for	
	phlogopite 1m	83
Table 3-3-4.	Final atomic coordinates of	
	fluorophlogopite-1M	85

XVII

Table 3-3-5.	Interatomic distances (å) and angles (°)	
	in fluorophlogopite	86
Table 3-3-5.	(continue)	87
Table 3-4-1.	Electron microprobe analyses (wt%) and	
	unit formulae of chabazite	94
Table 3-4-2.	Single-crystal X-ray diffraction data	
	collection and refinement information for	
	chabazite	96
Table 3-4-3.	Powder intensity data collection and	
	details of Rietveld structure refinement	97
Table 3-4-4.	Final atomic coordinates of chabazite	98
Table 3-4-5.	Interatomic distances (å) and angles (°)	
	for chabazite	99
Table 5-2-1.	Micas and clay minerals selected for study	133
Table 5-2-2.	Potential parameters used in the structure-	
	energy calculation	134
Table 5-3-1.	Calculated H-positions in phlogopite,	
	chlorite and kaolinite with symmetry	
	constraints, compared to those	
	determined experimentally	137
Table 5-3-2.	H-atom positions in phlogopite, chlorite,	
	and kaolinite projected back into the	

XVIII

	asymmetric units after ssem without	
	symmetry constraints	138
Table 5-3-2.	(continue)	139
Table 5-3-3.	H-atom positions in margarite calculated	
	with symmetry constraint Cc and assuming	
	non-split H-atoms	141
Table 5-3-4.	Comparison of crystal structures of	
	margarite and muscovite	144
Table 5-3-5.	H-atom positions in margarite calculated	
	without symmetry constraints	146
Table 5-3-6.	Split H-atom positions in margarite as	
	compared to muscovite	149
Table 5-3-7.	H-atom coordinates in muscovite in the	
	space group C2/c	150
Table 5-3-8.	The eight H-atom positions projected	
	back into the asymmetric unit of the	
	C2/c muscovite cell	151
Table 5-3-9.	Calculated and experimentally determined	
	H-positions in dickite	154
Table 5-3-10.	H-positions in dickite calculated with	
	P1 symmetry	155
Table 5-3-10.	(continued)	156

XIX

- 1

Table 5-3-11.	Hydrogen bonds in dickite	160
Table 6-1.	Powder-diffraction intensity-data	
	collection and details of rietveld	
	refinement of muscovite at 12 K	166
Table 6-2.	H-positions determined from neutron-	
	diffraction data at room temperature	
	with the non-H atoms fixed	170
Table 6-3.	Atomic coordinates of the final refined	
	structure of muscovite	171
Table 6-4.	Selected interatomic distances and	
	angles of muscovite at room	
	temperature and 12 K	173
Table 7-1.	Potential parameters used in the structure	
	energy calculation of olivine and pyroxene	197
Table 7-2.	Comparison of crystal-structure refinements	
	by the Rietveld method and by the coupled	
	Rietveldstatic-structure energy	
	minimization method	198
Table 7-3.	Refinement details of the ZSM-23 structure	201
Table 7-4.	The final atomic coordinates of the ZSM-23	
	structure	202
Table 7-5.	Ranges of distances and bond-angles of	

	ZSM-23	203
Table 8-1.	Intensity data collection and details of	
	structure refinement	209
Table 8-2.	Chemical analysis (wt%) and unit formula of	
	boromuscovite	212
Table 8-2.	(continue)	213
Table 8-3.	Final atomic coordinates of boromuscovite	
	polytypes	214
Table 8-4.	Interatomic distances and angles in	
	boromuscovite	215
Table 8-4.	(continue)	216
Table 8-5.	Refined site-occupancies and assigned	
	species in boromuscovite polytypes	217

XXI

List of Abbreviations

CRSSEM: Coupled Rietveld--Static Structure-Energy Minimization

- EPMA: Electron Microprobe Analysis
- FTIR: Fourier-Transform InfraRed spectroscopy
- FTIR PAS: Photo-Acoustic Fourier-Transform InfraRed Spectroscopy

MD: Molecular Dynamics

- SREF: Single-crystal site-scattering REFinement
- SSEM: Static-Structure Energy Minimization
- XRD: X-Ray Diffraction

CHAPTER 1.

INTRODUCTION

Powder-diffraction methods and computer simulation play important roles in the study of the crystal-chemistry of fine-grained materials. Many naturally occurring crystalline materials and most synthetic products occur, or can only be prepared, as fine-grained powders. Their characterization, which is essential to the understanding of their physical-chemical properties, cannot be done with conventional single-crystal diffraction methods. There is also a large number of technologically important materials, such as industrial ceramics and superconductors, which are deliberately prepared in sub-micrometer ranges of individual grain size. The physical-chemical properties of these materials are necessarily different from their coarse-grained counterparts due to the different histories of crystal growth. With the development of the Rietveld method, the powder-diffraction techniques have recently emerged as powerful tools in providing crystalchemical information for powdered materials. However, powder-diffraction methods suffer from difficulties in resolving overlapping information, reducing the reliability of results derived from powder-diffraction studies. Systematic assessment of powder characterization is necessary to establish confidence in utilizing and further improving the methods.

Powder-diffraction studies of crystal chemistry of fine-grained materials can be assisted by computer simulation of the crystal structure of the same material in that difficult crystal structure refinement can be constrained by the simulation. Computer simulation of crystal structures has its roots in quantitative models of crystal chemistry obtained either directly through experimental observation or from quantum-mechanical calculations. Computer simulation models the behaviour of individual atoms in a given structural configuration, and relates such behaviour to material properties. Development of the method hinges not only on the development of computing power, but also on increased understanding of atomic interactions.

1.1. History of Rietveld Method and Its Current State of Development

The pioneering experiments on powder X-ray diffraction (Friedrick 1913; Keene 1913), neutron diffraction (Elsasser 1936; Mitchell & Power 1936) and synchrotron X-ray diffraction (Bathow *et al.* 1966) established the technique as an important tool for identification and characterization of crystalline materials. However, until recently most of our detailed understanding of crystalline materials resulted from *single-crystal* X-ray or neutron diffraction. Development of the Rietveld method (Rietveld 1967, 1969) allowed crystal structure refinement using powder-diffraction data. The method was initially proposed for neutron diffraction data, taking advantage of the relatively simple peak-profile in the diffractogram that can be modeled using simple Gaussian profile function. The accessibility of laboratory X-ray sources was the driving force to adapt the Rietveld method for use with X-ray data (Malmros & Thomas 1977; Young *et al.* 1977). Modelling the more complex peak-profiles in X-ray diffraction was, and still is, a major difficulty for the method. Despite this difficulty, a large number of successful Rietveld refinements of crystal structures has been reported (Jenkins & Hawthorne 1995; Bish & Post 1989, and references in these articles). With the advent of high-resolution laboratory X-ray sources that use $K\alpha_1$ radiation only, and super-high-resolution synchrotron X-ray radiation, the Rietveld technique has developed from a refinement method toward an *ab initio* crystal structure solution method (although pioneer work had also been done with instruments that use $K\alpha_2$ as well, see Cheetham & Wilkinson 1993 and references therein).

The Rietveld method is still under active development. In structure refinement, apart from profile shape, other effects such as absorption (especially micro-absorption) and extinction, also need to be better understood and modelled. Inadequate modelling of these effects, complicated by uncertainties in structural parameters, may cause convergence to false minima (Suitch & Young 1983; Young & Hewat 1988). Soft constraints in the form of prescribed bond-distances (Cartlidges & Meier 1984; McCusker *et al.* 1985; Bish & Von Dreele 1989) and angles (Marler *et al.* 1993) can be used to bring about convergence to reasonable bond lengths and angles in the refined structure.

1.2. The Nature of Computer Simulation of Crystal Structures

Computer simulation depends on an initial configuration, the starting model, of the system to be simulated. Such configuration can be constructed from understanding of similar materials, or from partial experimental observation (*e.g.*, crystal-structure obtained from diffraction experiments that lacks light-atom positions). The simulation process is governed by a set of rules, the interaction model, that dictates how individual units (atoms) in the system behave. Such behaviour is simulated using certain numerical technique, with a computer, such that an equilibrium of the interactions among the individual units (atoms) be achieved.

Computer simulation of crystal structures is a topic in between empirical and *ab initio* studies of crystal structures. Therefore we can find traces of computer simulation in the earliest empirical studies of crystal structures, which can best be summarized into the Pauling's rules (Pauling 1929, 1960). In Pauling's first rule, crystal structures are considered to consist of positively charged cations, surrounded by negatively charged anions, with the number of anions surrounding the cations and the cation-anion separation determined by the ionic radii and the ratio of the radii. Early computer simulations of mineral structures (Giese 1971) built almost entirely on this first rule. The second rule proposed the concept of bond-strength that relates the stability of a structure to the formal charges of the ions and their corresponding coordination numbers. The second rule became the basis of the powerful bond-valence theory (Brown & Shannon 1973; Brown 1981; Brown & Altermatt 1985; Brese & O'Keeffe 1991) that gives experimental crystallographic studies the ability of prediction. The other Pauling's rules are more phenomenal in nature. Hawthorne (1992) refined these rules into three new, more general rules that include (1) the electro-neutrality; (2) prediction of coordination number from ionic-radius ratio and (3) prediction of mean bond length from the sum of the ionic radii of the bonded atoms. These rules

are used, consciously or unconsciously, in modern theoretical and experimental crystallographic studies.

Computer simulation also has its root in modern physics and chemistry. Crystal structures are believed to be a manifestation of a balance of the interatomic interactions that are represented by the first-order, electrostatic interaction model (ionic model, Born & Landé 1918; Born & Mayer 1932). Individual atoms are assigned formal charges, and are treated in the ionic model as point charges. Contemporary computer simulation adds to the first-order interaction certain higher-order terms to account for interatomic repulsion, polarization and covalency. Such addition basically recognizes the electron density distribution around individual atoms, and their distortion in the crystalline environment. While this improved interaction model had proven a very good approximation of total energy model in a structure, the additive nature of the interaction terms had never been theoretically justified. Correlation between individual energy terms are totally neglected. In the quantum-mechanical derivation of multi-body interaction (Hehre et al. 1985), individual interaction terms in computer simulation can be readily identified in the total Hamiltonian of the Schrödinger equation. It was clearly demonstrated that the Hamiltonian is not separatable in terms of these individual interaction terms. In another words, these interaction terms do correlate with each other. Therefore, until such correlation is adequately approximated, computer simulation will remain semi-quantitative in theoretical crystal structure study.

1.3. Overview of the Thesis

The thesis falls into three distinct parts:

(1) The reliability of Rietveld refinement of silicate minerals. Both Rietveld and single-crystal studies have been done on the same minerals, and the reliability of Rietveld determination of atomic positions and their corresponding standard deviations is assessed. Rietveld determination of cation-site occupancies is also evaluated with individual displacement factors fixed at reasonable values.

(2) Prediction of H-atom positions in micas and clay minerals using one of the two common computer simulation methods, the Static Structure-Energy Minimization (SSEM) method. Clay minerals usually occur in fine-grained state. Locating H-atom positions in clay minerals using powder diffraction method has been difficult. The micas are minerals that closely resemble clay minerals but are much better understood due to the fact that they usually occur in good, large crystals. Applicability of computer simulation in reproducing H-atom positions in micas will serve as a basis of predicting H-atom position in clay minerals.

Neutron-diffraction experiments or infrared (IR) spectroscopy were used to assess the computationally predicted H-positions.

(3) Development of the Coupled Rietveld--Static Structure Energy-Minimization (CRSSEM) method in which the Rietveld method and the SSEM method were dynamically coupled together. The Rietveld part represents the interpretation of the powder diffraction experiment data, and the SSEM part represents constraints from our theoretical understanding of crystal chemistry. Coupling Rietveld refinement with structure-energy calculation ensures the crystal-chemical validity of the final refined structure. The CRSSEM method had been successfully applied to the structure refinements of minor phases in binary mixtures, crystal structures of two polytypes of a new mica species, and the complex structure of a new synthetic zeolite.

Chapter 2.

Powder Diffraction and the Rietveld Method

Good Rietveld refinement depends on (1) accurate powder-diffraction intensity data; (2) a good model for the Bragg peak-shape; (3) a starting model which is reasonably close to the correct structure. In addition, certain corrections with regard to displacement of Bragg peak positions (due to poor instrument alignment, sample surface displacement from the focusing circle, *etc.*) and instrument-related intensity distortions (*e.g.* microabsorption) are also essential.

2.1. Powder-Diffraction Intensity-Data Collection

The intensity data are normally collected on a diffractometer in the step-scan mode

over a range of Bragg angles (2Θ angles). Data should be collected to as high a 2Θ angle as possible, because the high-angle data are critical to the refinement of accurate atomic positions and displacement factors (Post & Bish 1989). It has been shown (Hill & Madsen 1984, 1986) that it is necessary to collect the intensity data at individual step-widths of one-fifth to one-half (usually 0.0n ° 2Θ) of the half-width of the resolved peaks in the pattern with a counting time that accumulates no more than a few thousand counts for the strongest peak. Finer step-widths may improve the *apparent* precision of the data, but the assigned standard deviations are wrong due to serial correlation, which is the correlation between neighbouring step-intensity data that may be too closely sampled from each other to be independent observations. Bérar & Lelann (1991) explicitly showed the effects of serial correlation in the underestimation of the standard deviations in Rietveld analysis, and proposed a correction procedure to give true standard deviations.

Rietveld refinement requires a random powder mount in the data collection. Different methods have been described. With side- or back-loading methods (Klug & Alexander 1974), the powder sample is loaded into a volume of about $20 \times 15 \times 2 \text{ mm}^3$ in a sample holder from the side or back of the holder. The sample can also be prepared (Post & Bish 1989) by sieving the powder onto a Whatman glass micro-fibre filter. Other sample-preparation methods include dilution with a second phase, dusting the sample onto glass-fibre filters (Davis 1986), and spray drying (Smith *et al.* 1979). However, none of the existing methods produced randomly oriented powder, and some suffer from transparency effects (Klug & Alexander 1974).

8
2.2. Background Correction

The raw intensity data need to be corrected for background. The background arises from many sources (Klug & Alexander 1974), including fluorescence from the sample, detector noise, thermal-diffuse scattering from the sample, disordered or amorphous impurities, incoherent scattering, and scattering of X-rays from air, sample holder and diffractometer slits. With relatively simple patterns (in which Bragg peaks are well separated and the background intensities can be measured between these peaks), the background intensity can be removed by interpolating between the measured points. However, this is not possible for most complex diffraction patterns. In Rietveld work, the background is usually modelled by a polynomial function (Wiles & Young 1981):

$$Y_{ib}(c) = B_0 + B_1 T T_i + B_2 T T_i^2 + B_3 T T_i^3 + B_4 T T_i^4 + B_5 T T_i^5$$
²⁻¹

in which $TT_i = 2\Theta_i - 90^\circ$, $B_0...B_5$ are refinable parameters determined by least squares along with the structural parameters. The background can also be modelled by a cosine Fourier-series (Larson & Von Dreele 1988):

$$Y_{ib}(c) = B_1 + \sum_{j=2}^{12} B_j \cos(2\theta_j - 1)$$
 2-2

The success in refining the background depends on how well the peak shape is known (Prince 1981; Albinati & Williams 1982). If the diffraction pattern is poorly resolved, the background parameters tend to correlate with the peak shape and structural parameters

(especially the displacement factors).

2.3. Modelling the Peak Shape

The peak shape in an X-ray powder-diffraction pattern depends on the type of sample and the data-collection procedure (Klug & Alexander 1974). The sample-related properties, including crystallite-size distribution and crystal-structure distortions, determine the natural peak-shape (which is usually non-Gaussian). The natural peak-shape is modified by instrumental factors, including (1) the geometry of the X-ray source; (2) the displacement of the flat sample-surface from the focusing circle (flat-specimen error); (3) axial divergence of the X-ray beam; (4) specimen transparency; (5) effects of slits; (6) misalignment of the diffractometer. The resultant XRD peak-shape is therefore very complex (rather than a simple Gaussian as in neutron diffraction). The peak shape can be modelled by combined Gaussian and Lorentzian functions (Young & Wiles 1982) such as the widely used pseudo-Voigt function (Wertheim *et al.* 1974):

$$I_{ik} = \eta L_{ik} + (1 - \eta)G_{ik}$$
 2-3

in which I_{ik} is the intensity of the i^{ih} point in the pattern due to the k^{ih} line; η is the mixing parameter (which can be refined); L_{ik} and G_{ik} are the Lorentzian and Gaussian components at the i^{ih} point due to the k^{ih} reflection:

$$L_{ik} = \frac{\sqrt{4}}{\pi H_k} \left[1 + \frac{4(\sqrt{2}-1)}{H_k^2} (2\theta_i - 2\theta_k)^2 \right]^{-1}$$
 2-4

$$G_{ik} = \frac{2\sqrt{\ln 2}}{H_k} \exp[\frac{-4\ln 2}{H_K^2} (2\theta_i - 2\theta_k)^2]$$
 2-5

where H_k is the Full-Width at Half-Maximum peak-height (FWHM) of the k^{th} reflection. The refinable constant can be interpreted as the degree of Lorentzian versus Gaussian character. The sample-related effects (*e.g.*, particle-size broadening) can be described by the Lorentzian part of equation 2-3, and the instrument-related effects can be described by the Gaussian part of the equation. The half-width function, H_k can vary independently for the Lorentzian and Gaussian components (David 1986), and information on particlesize can be extracted (Keijser *et al.* 1983; David & Matthewman 1985; Larson & Von Dreele 1988; Madsen & Hill 1988). Further improvement in modelling peak-shape can be achieved by varying the mixing coefficient, η , in equation 2-3 as a function of diffraction angle, 2 Θ (Hill 1984; Hill & Howard 1985; Toraya 1986). Other peak-shape functions in use are the Pearson VII (Brown & Edmonds 1980) and pure Voigt (Langford 1978), which are similar or analytically more complicated.

Peak-shapes in an XRD pattern are usually asymmetric (Klug & Alexander 1974) due to a variety of sample- and instrument-related effects (*e.g.*, axial divergence, disorder, etc.). It can be corrected using a refinable semi-empirical asymmetry factor by multiplying the terms in the profile function (equation 2-3) by

$$[1 - P(2\theta_i - 2\theta_k)^2 \frac{s}{\tan \theta_k}]$$
 2-6

where P and s are refinable parameters.

The peak width (expressed as FWHM) can be modelled as a function of $\tan\Theta$ (Caglioti *et al.* 1958) by

$$H^2 = u \tan^2 \theta + v \tan \theta + w$$
 2-7

in which u, v and w are refinable parameters. These parameters are specific to a given instrumental configuration and the peak-shape function used.

There had been many approaches (Howard 1982, Thompson *et al.* 1987, Howard & Snyder 1989, Yau & Howard 1989) to describing profile shape with respect to the analytical functions in modelling the profile shape and to the corresponding functions modelling the half-width of the diffraction peaks. In an attempt to approximate asymmetry, Howard (1982), in the study using high-resolution neutron diffraction instrumentation, proposed a profile function consisting sums of Gaussians in place of a simple Gaussian multiplied by Rietveld's semi-empirical asymmetry factor (equation 2-6). The profile function has the form

$$G_{ik}(\theta_i - \theta_k) = \frac{1}{6} [G(\theta_i - \theta_k) + 4G(\theta_i - \theta_k + \frac{1}{4}P\cot 2\theta_k + G(\theta_i - \theta_k + P\cot 2\theta_k)]$$
2-8

in which P is related to FWHM and the volume of the sample. Other symbols are the same as above. Thompson *et al.* (1987) modified the pseudo-Voigt function (equation 2-3) such that, instead of refining the mixing parameter η and H (equations 2-3,7), the variation of the Gaussian and Lorentzian half widths (H_G and H_L) were refined directly. H_G and H_L can be approximated closely by the functions Vtan θ and X/cos θ , in which V and X are

refinable parameters. The advantage of using this modification is that the refined values of V and X can be directly related to instrumental broadening and particle-size effects. Howard and Snyder's approach to the modelling of profile shape is similar to that of Thompson *et al.* (1987) in that the sample-related broadening and asymmetry was treated separately from the instrumental effects. The former were represented by a Lorentzian-type function, whereas the latter by a pair of split-Pearson VII functions in which profile parameters were refined for each of the two sides of a Bragg peak. Such a split-profile treatment was found to be effective in modelling instrument-related asymmetry over a wide two-theta range. Berar and Baldinozzi (1993) considered explicitly individual effects that produce asymmetry, including axial divergence, equatorial divergence and specimen transparency, in their derivation of an approximate function for the correction of asymmetry. The proposed functions have the form

$$g(d\theta) = g_0(d\theta)[1 + A(\theta)F_0(d\theta/H) + B(\theta)F_0(d\theta)/H)]$$
²⁻⁹

$$A(\theta) = A_0/\tan(\theta) + A_1/\tan(2\theta)$$
 2-10

$$B(\theta) = B_0/\tan(\theta) + B_1/\tan(2\theta)$$
²⁻¹¹

$$F_{-}(z) = 2 z \exp(-z^2)$$
 2-12

$$F_{t}(z) = (8z^{3} - 12z) \exp(-z^{2})$$
 2-13

in which $d\theta = \theta_i - \theta_k$ and $z = d\theta/H$. Significant improvement was attained in the refinement of the standard PbSO₄ data recorded for the IUCr Commission on Powder Diffraction Round Robin on Rietveld Refinement; R_{wp} decreased from 10.2% to 7.9% and the Durbin-Watson d-value rose from 0.72 to 0.92.

A lot of attention has also been directed recently to the correction of diffraction intensity for extinction (Sabine 1988, Sabine *et al.* 1988) and absorption (Hermann & Ermrich 1987, Ottani *et al.* 1993, Pitschke *et al.* 1993, and Pitschke *et al.* 1993). Extinction (primary) is caused by multiple scattering of the diffracted beam (Stout and Jensen 1968) such that the intensity of the diffracted beam is proportional to |F|, rather than $|F|^2$. In powder diffraction, extinction can be corrected by the factor

$$E = E_{I} \cos^{2}\theta + E_{R} \sin^{2}\theta \qquad 2-14$$

$$E_L = 1 - x/2 + X^2 - 5X^2/48 + 7x^4/192 \quad (x \le 1)$$

$$E_L = (2/\pi x)^{1/2} \left[1 - 1/8x - 3/128x^2 - 15/1024x^2\right] \quad (x>1)$$

$$F_{z}(z) = 2 \ z \ \exp(-z^{2})$$
 2-13

$$E_{p} = (1 + x)^{-1/2}$$
 2-18

$$x = (KN_c\lambda FD)^2$$
²⁻¹⁹

in which N_c is the number of unit cells per unit volume, and λ is the wavelength. K is the shape factor whose value is unity for a cube of edge D, 3/4 for a sphere of diameter D, and $8/3\pi$ for a cylinder of diameter D. In an actual refinement, x is the variable refined.

Both bulk porosity and surface roughness (intensity data collected in reflection geometry) of the sample can contribute to absorption of the diffracted beam (Hermann & Ermrich 1987). Absorption by the bulk porosity is referred to as "macro-absorption", whereas that by rough surface is "micro-absorption" (Ottani 1993). Pitschke *et al.* (1992) gave expressions that are rather easy to implement in a Rietveld program. However, the scope was limited to the modelling of micro-absorption of surface roughness in Bragg-Brentano geometry. Ottani *et al.* (1993) gave a complete set of factors for absorption correction in X-ray powder diffraction, covering both macro- and micro-absorption and intensity data collection in both reflection and transmission geometry. For reflection geometry, depending on different boundary conditions, the absorption-correction factor, ABS, can be expressed as

(i) $0 < T \le R(\beta - \alpha)/2 \cos \theta$

$$(ABS)^{-1} = (1 - e^{-2\mu T/\sin\theta})$$
 2-20

(ii) $R(\beta - \alpha)/2 \cos \theta < T \le R(\beta + \alpha)/2 \cos \theta$

$$(ABS)^{-1} = [1 + (\frac{2T\cos\theta - R(\beta - \alpha)}{2R\alpha} + \frac{1}{A})e^{-2\mu T/\sin\theta} - \frac{1}{A}e^{-(B - A)/2}]$$
2-21

(iii) $T \ge R(\beta - \alpha)/2 \cos \theta$

$$(ABS)^{-1} = \left[1 - \frac{1}{A} \left(e^{-(B-A)/2} - e^{-(B+A)/2}\right)\right]$$
 2-22

in which R is the radius of the diffraction circle, T is the specimen thickness, α is the equatorial angle on the specimen of the divergence slit, β is the equatorial angle on the specimen of the receiving slit, and μ is the sample linear absorption coefficient. The values of A and B are defined as

$$A = \frac{2\mu 2R\alpha}{\sin 2\theta}; \quad B = \frac{2\mu 2R\beta}{\sin 2\theta}$$
 2-23

For transmission geometry, ABS is also dependent on the boundary conditions: (i) $0 < T \le R(\beta - \alpha)/2 \sin \theta$

$$(ABS)^{-1} = \frac{\sec\theta}{e^{-\mu T(1-\sec\theta)}}$$
 2-24

(ii) $R(\beta - \alpha)/2 \sin \theta < T \le R(\beta + \alpha)/2 \sin \theta$

$$(ABS)^{-1} = \frac{1}{e^{-\mu T(1-\sec\theta)}} (\sec\theta - \frac{(R\beta - R\alpha - 2T\sin\theta)^2}{2R\alpha 2T\sin 2\theta})$$
 2-25

(iii) $T \ge R(\beta - \alpha)/2 \sin \theta$

$$(ABS)^{-1} = \frac{R\beta}{T \sin 2\theta \ e^{-\mu T(1 - \sec \theta)}}$$
 2-26

Implementation of an absorption correction had been shown to help to refine displacement factors to obtain results that makes physical sense (Pitschke 1993).

2.4. Preferred Orientation Correction

Preferred orientation of samples (especially those having good cleavage or strong non-spherical growth habit) can cause systematic distortions of intensity distribution in the diffraction patterns. Such distortion can be modelled with analytical functions. One of the most commonly used is the so called March-function (Dollase 1986):

$$P_{\kappa} = (G_1^2 \cos^2 \alpha + (1/G_1) \sin^2 \alpha)^{-3/2})$$
 2-27

in which, G_1 is a refinable parameter, and α is the angle between the diffraction vector and the presumed cylindrical-symmetry axis of the texture (e.g. the normal of a cleavage surface).

2.5. Structure Refinement

Establishing a good starting model is essential in Rietveld structure-refinement. The starting model can be obtained from the known structure of other members in a solid solution (McCusker *et al.* 1985; Post & Bish 1989). In a few cases, it can be derived from high-resolution transmission electron-microscopy (Post & Bish 1988). The structure parameters (cell dimensions, atomic positions, site occupancies and overall displacement

factors) are usually refined along with the scale factor, the background parameters and parameters related to peak shape, width and asymmetry, using the least-squares method. The quantity to be minimized is

$$R = \sum_{i} w_{i} (Y_{io} - Y_{ic})^{2}$$
 2-28

in which Y_{io} and w_i are the observed step intensities and the weight assigned to it at step *i*; Y_{ic} is the corresponding calculated intensity

$$Y_{ic} = Y_{ib} + \sum_{k=k_1}^{k_n} PSF_{ik} \cdot F_k$$
2-29

in which Y_{ib} is the calculated background correction, PSF_{ik} is the value of the normalized peak-shape function of reflection k [c.f. equation 2-3], and F_k is the Bragg intensity of the k^{th} reflection contributing to the intensity at point *i*. *PSF* involves all profile-shape (including asymmetry) parameters, and F contains all structure parameters plus the scale factor. The configuration in F corresponding to the minimum of R in equation 2-8 is taken as the final refined structure.

2.6. Convergence and Least-squares Error Criteria

When the quantity R in equation 2-8 becomes smaller as the least-squares process proceeds, the system is said to be converging. The convergence criteria specify the point at which the least-squares process (the refinement) is stopped. The refinement will be halted if all the variables pass the test (Howard & Preston 1989)

$$\frac{\Delta \beta_i}{|\beta_i| + \tau} \le \varepsilon$$
 2-30

where $|\beta_i|$ and $\Delta\beta_i$ are the magnitude and adjustment of variable β_i during a single cycle of refinement, τ (on the order of 0.001) is a number to prevent division by zero, and ε determines the number of significant digits of the variable obtained from the refinement. An alternative convergence criterion is to compare the shift of the variable with its standard deviation, which can be estimated as

$$\sigma_i = \sqrt{\frac{M_{ii}^{-1} \sum_j (2\theta_j) \cdot [I(2\theta_j)^{obs} - I(2\theta_j)^{calc}]^2}{N - P}}$$
2-31

in which σ_i is the variance of the *i*th variable, M_{ii}^{-1} is the corresponding diagonal element in the inverted normal-equations matrix, $I(2\Theta_j)^{obs}$ and $I(2\Theta_j)^{calc}$ are the observed and calculated intensities at the 2 Θ step *j*, and *N* and *P* are the total number of observations and variables, respectively. The system is said to have reached convergence when the condition, $\Delta\beta_i < (\alpha \times \sigma_i)$, is satisfied for all variables in a given refinement cycle; α is a user defined parameter, usually on the order of 0.3 (Howard & Preston 1989).

The least-squares error-criteria usually used in Rietveld refinement are (Post & Bish 1989)

$$R_{p} = \frac{\sum |Y_{io} - Y_{ic}|}{\sum Y_{io}}$$
 2-32

$$R_{vp} = \sqrt{\frac{\sum W_i (Y_{io} - Y_{ic})^2}{\sum W_i Y_{io}^2}}$$
 2-33

$$R_B = \frac{\sum |I_{ko} - I_{kc}|}{\sum I_{ko}}$$
 2-34

$$R_{\rm exp} = \sqrt{\frac{N - P}{\sum W_i Y_{io}^2}}$$
 2-35

$$GofF = \frac{\sum W_i (Y_{io} - Y_{ic})^2}{N - P} = (\frac{R_{wp}}{R_{exp}})^2$$
 2-36

$$d = \sum_{i=2}^{N} \left[\frac{Y_{io} - Y_{ic}}{\sigma_i} - \frac{Y_{io-1} - Y_{ic-1}}{\sigma_{i-1}} \right]^2 / \sum_{i=1}^{N} \left(\frac{Y_{io} - Y_{ic}}{\sigma_i} \right)^2$$
 2-37

The symbols in the expressions have the same meaning as above. R_p and R_{wp} are essentially the same, except that the latter is weighted. Their values represent the percent difference between the observed and calculated diffraction patterns. R_{exp} is the lower limit of R_p and R_{wp} based on counting statistics. A value of GofF (Goodness of Fit) near 1.0 is therefore an indication of near-perfect match of the observed and the calculated pattern. The calculation of R_B is strongly dependant on the structure model used, because the "observed" Bragg intensity (usually unmeasurable due to overlap) can only be determined by assuming that the Bragg intensities are in the same proportion as their calculated counterparts, although this is optimistic (Barerlocher 1986). The Durbin-Watson (d-) statistic (Flack & Vincent 1980; Hill & Madsen 1986) is a measure of the serial correlation in the profile. Serial correlation is the correlation between values (observations) taken in succession. There is no serial correlation between independent observations. In Rietveld method, the observed intensity at each step is taken as an independent observation. According to equation 2-31, the standard deviations approach zero when the number of steps, N, in the powder pattern approaches infinity (the step-width becomes infinitely small). This is in contrast to reality. In the diffraction experiment, the independent observations consist of the possible reflections. There are only finite number of reflections in a given 20 range, and hence there is a lower limit of precision in error estimation of the least-squares process. This also sets a limit for the step size in the powder intensity-data collection such that each step remains an independent observation. To assess weather a specific actual step-size is smaller than the limit, the d statistic (Hill & Flack 1987) can be used:

$$d = \sum_{i=2}^{N} \frac{(\Delta_i / \sigma_i - \Delta_{i-1} / \sigma_{i-1})^2}{\sum_{i=1}^{N} (\Delta_i / \sigma_i)^2}$$
 2-38

where Δ_i / σ_i is the weighted residual of the least squares corresponding to the *i*th element (variable). When d deviates significantly from 2, it signifies that there is serial correlation in the data set, and that the step width may be too small.

2.7. Examples of Rietveld Refinement

2.7.1. Single-phase Rietveld Study of Simple Mineral Structures using X-ray

Diffraction Data

When the Rietveld method was introduced to X-ray powder diffraction (Young et al. 1977), the method was tested with quartz (SiO₂) and synthetic fluorapatite $(Ca_5(PO_4)_3F)$. Most of the atomic positional parameters were within 2σ (σ being the estimated standard deviation) of the corresponding values from single-crystal studies. despite the use of a simple Gaussian peak-shape function. Studies with more sophisticated peak-shape functions (Thompson & Wood 1983), in which quartz and berlinite (AlPO₄) were studied, showed that while the atomic positions were refined to a level of accuracy compatible with their precision, the displacement factors were too large. Similar study of more complex structures (of olivine (Mg_2SiO_4) -related Ni₃(PO₄)₂; Nord & Stefanidis 1983) showed deviation of atomic positions as large as 5σ , and negative displacement factors. However, more recent studies of olivine, corundum (Al₂O₃) and plattnerite (β -PbO₂) (Hill & Madsen 1984) reported good agreement between Rietveld and single-crystal results. Rietveld refinement of platy minerals (e.g., muscovite (KAl₂AlSi₃O₁₀ (OH)₂), Sato et al. 1981) was less satisfactory. Deviations in interatomic distances as large as 0.27 Å were reported, and preferred orientation of the sample was attributed as the cause of the error.

2.7.2. Characterizing mineral-synthesis products

The Rietveld method has proven effective in characterizing very fine-grained products of mineral synthesis. The method was advocated as such by Hawthorne *et al.* (1984) and Raudsepp *et al.* (1984). Cation ordering and the M-site occupancies in the synthetic amphiboles and pyroxenes were characterized. The same procedure was extended

to more complex systems of other synthetic amphiboles (Raudsepp *et al.* 1987a,b). Subsequent work characterized two solid-solution series of clinopyroxene: the diopside (CaMgSi₂O₆)-hedenbergite (CaFeSi₂O₆) join and the diopside-CaNiSi₂O₆ join (Raudsepp *et al.* 1990a,b). In these studies, the cation-site occupancies and the bulk compositions were determined. It is interesting that the work showed, through half-normal probability analysis, that the esd's were still underestimated by a factor of ~ 1.6, even after the correction, C_{esd} , suggested by Bérar & Lelann (1991):

$$C_{esd} = R'/R$$
 2-39

in which R is the difference that Rietveld method tries to minimize (see equation 2-28). R' is a modified difference that takes into account of serial correlation in the refinement:

$$R' = \left[\sum_{i=1}^{n} (1 - z_{i}^{2}) a_{i}^{2}\right] + \left[\sum_{i=1}^{n} (\sum_{i=1}^{n} z_{i})^{2}\right]$$

$$a_{i} = w_{i}^{-1/2} (I_{calc.} - I_{obs.})$$

$$z_{i} = \frac{\left[2(a_{i}^{2} + a_{i-1}^{2})\right]^{1/2}}{2 + \left[2a_{i}^{2} + a_{i-1}^{2}\right]^{1/2}} \quad or \quad z_{i} = 0$$

$$2-40$$

There are two explanations for such underestimation; (1) the step width was too small (see discussion in 2.6); (2) there may be systematic contribution of error to the profile difference ($I_{calc.} - I_{obs.}$, see equation 2-31). Effect (2) may be subtle, but is quite common in difficult refinements. For instance, if the integrated intensity of a Bragg reflection is overestimated (where structure factors are off the correct values du to the badly adjusted structural parameters), $I_{calc.}$ will tend to exceed $I_{obs.}$ over a large angular

range centred on that reflection, depending on the range one chooses to consider on either side of a step in the diffraction pattern in the calculation.

Characterizing synthetic zeolites is another very active field of Rietveld refinement. The refinement of zeolite ZK-14 ($Ca_2Al_4Si_8O_{24}$) at different temperatures (Cartlidge & Meier 1984) is an example. There were 57 structural parameters, and soft constraints on T-O distances and O-T-O angles were initially applied, and then successfully removed for the room-temperature data at the end of the refinement. Reasonable bond-distances were obtained, although the displacement factors were too large.

2.7.3. Natural Zeolite and Clay Minerals

McCusker *et al.* (1985) refined the structure of gobbinsite ($Na_4(Ca,Mg,K_2) Al_6Si_{10}$ O₃₂•12H₂O) using 64 structure parameters and 50 soft constraints on bond distances and angles. The results were satisfactory if soft constraints were used, but unreasonable bond distances resulted when such constraints were not used.

Structure refinement of kaolinite $(Al_4Si_4O_{10}(OH)_8)$ was considered to be either pressing the limits (Young 1988) or beyond the limits (Thompson *et al.* 1989) of the Rietveld method. Suitch & Young (1983) and Young & Hewat (1988) both obtained unreasonable bond-distances. Bish & Von Dreele (1989) did a Rietveld refinement on the same material using X-ray diffraction data. Soft distance constraints were applied to the bond distances initially, and were lifted successfully in the final cycles of refinement. Reasonable bond-distances resulted. The same procedure was applied to the neutron diffraction data of Young & Hewat (1988) and met similar success (Bish 1993). As a result, both non-H atom and H-atom positions were determined. It is apparent that falseminima problem can be important in such work.

2.8. Multi-phase Rietveld Refinement

The Rietveld method can include more than one phase in the refinement. It is typical to refine the structure of the major phase while keeping the structure of the minor phase fixed (*e.g.*, Bish & Von Dreele 1989; Raudsepp *et al.* 1990a). The other use of multi-phase Rietveld refinement is to determine the modal amount of individual phases in a mixture from the Rietveld scale-factors (*e.g.* Hill & Howard 1987).

2.8.1. Structure Refinement of Powder Mixtures

In the refinement of the kaolinite structure (Bish & Von Dreele 1989), a minor amount of dickite $(Al_4Si_4O_{10}(OH)_8)$ was detected in the powder pattern by inspecting the residual after single-phase refinement of kaolinite. Dickite was then included in the refinement as a second phase, with variable cell-dimensions and fixed atomic positions. The overall fit of the calculated pattern to the observed was significantly improved.

The work of Raudsepp *et al.* (1990a) focuses on another problem in mineral synthesis, the problem of characterizing a synthetic product which cannot be made pure. In two of their synthetic samples, there was up to ~ 8% ferrobustamite (FeSiO₃) in addition to the host clinopyroxene ((Ni,Ca,Mg,Fe)₂Si₂O₆). Two-phase refinement was used, and the scale factor and site occupancies of ferrobustamite were allowed to vary (the

atomic positions were fixed at single-crystal values); there was a significant drop in R_{wp} from 12.1% in the single-phase (clinopyroxene only) refinement to 8.0% in the two-phase refinement.

2.8.2. Determination of Modal Amounts of Phases in Mixtures

The modal amount of a phase in a mixture can be calculated (Hill & Howard 1987) as

$$W_p = \frac{S_p(ZMV)_p}{\sum_i S_i(ZMV)_i}, \qquad 2-38$$

in which W_p is the weight percent of phase p, S, Z, M and V are the scale factor, the number of unit formula in the unit cell, the mass of the unit formula, and the volume of the unit cell, respectively.

Bish & Post (1988) used the Rietveld method to calculate the modal amount of the component phases in artificial mixtures of minerals. The binary 1:1 mixtures include quartz(SiO₂) - corundum(Al₂O₃), clinoptiolite((Na,K)₆[Al₆Si₃₀O₇₂]·24H₂O) - corundum, hematite(Fe₂O₃) - corundum and biotite(K₂(Mg,Fe²⁺)₆₋₅(Al,Fe³⁺)₀₋₁(Al,Si)₈O2₂₀(OH,F)₄) - corundum. For the first two mixtures, good modal values (absolute error of 0.2 wt%) were determined, with reasonable R_{wp} values of 18.8% and 14.9% for the quartz-corundum & clinoptilolite-corundum mixtures, respectively (R_{EXP} for all four binary mixtures are under or close to 10%). The biotite-corundum mixture presented the problem of preferred orientation, which produced an error of 2.5% absolute in the calculated modal amount, and

an R_{wp} of 32.2%. The mixture of hematite-corundum presents another problem for Rietveld analysis when analyzing mixtures with one component having a much higher linear X-ray absorption coefficient than the other phase(s): hematite has a greater linear absorption coefficient than corundum, and this caused an underestimation of its modal amount by 6%.

2.9. Summary

Rietveld technique is a powerful powder-diffraction method for extracting structural information from the powder-diffraction pattern through least-square refinement of stepscan intensity data. Proper modelling of profile shape is of vital importance in this process.

The Rietveld method has been successful in refining crystal structures of various levels of difficulty. However, further development needs to be done in the following areas: (1) evaluating the reliability of the Rietveld refinement, in determining both structural parameters and modal amounts; (2) devising methods to deal with micaceous materials that tend to show strong preferred orientation during sample preparation; (3) avoiding false minima.

Chapter 3

Reliability Study of

the Rietveld Method

The Rietveld method had experienced a rapid growth in its applications, particularly after its development as a technique for crystal-structure-refinement using powder X-ray diffraction data (see Chapter 2). Given such scale of application, the percentage of work dedicated to the study of precision and accuracy of the Rietveld method (Raudsepp *et al.* 1990a) is surprisingly small. Such study is especially important in establishing the validity of crystal-chemical information derived from mineral synthesis. It is also very important in establishing correct perceptions of the Rietveld method in the

mineralogical community.

3.1. Olivine, Pyroxene and Their Binary Mixtures

Olivine $[(Mg,Fe)_2 (SiO_4)]$ and pyroxene $[(M2)(M1)(Si,A1,Fe^{3+})_2 O_6]$, $M2 = Mg^{2+}$, Fe²⁺, Mn²⁺, Li⁺, Ca²⁺, Na⁺, M1 = Mg²⁺, Fe²⁺, Mn²⁺, Al³⁺, Fe³⁺, Ti⁴⁺, Cr³⁺, V³⁺, Ti³⁺, Zr⁴⁺ , Sc^{3+} , Zn^{2+} , are important rock-forming minerals that have crystal structure of moderate complexity. Olivine does not have cleavage, which offers the advantage of giving diffraction patterns without intensity distortion due to preferred orientation of the sample. Pyroxene shows good columnar cleavage, which, when other aspects of Rietveld refinement are in check, will provide a basis to assess the techniques (including sample preparation and diffraction-intensity correction) for minimizing the preferred orientation effect. Besides, both olivine and pyroxene represent solid solution series, *i.e.*, structures in which a cation site may be shared by more than one cation species (e.g. Mg and Fe in olivine). The natural samples selected in the study do show such solid solution phenomena, and testing the ability of correctly determining cation ratios of the same site using the Rietveld method is also one of the purposes of the study. The fact that olivine and pyroxenes are usually well crystallized makes parallel single-crystal study possible, which will provide a basis for comparison.

Accurate determination of model distribution of two or more coexisting crystalline phases are of interest to both observational and experimental mineralogy. Rietveld method has the intrinsic capability of determining such modal distribution. By artificially mixing the two pure phases of olivine and pyroxene in different proportion, the accuracy of determination of modal distribution can be assessed.

3.1.1. Experimental

An olivine separate was produced by magnetic separation and hand picking from a dunite (volcanic bomb) from Hawaii, U.S.A. The pyroxene sample is from Laurel, Argenteuil Co., Quebec. It is a diopside and occurs intimately mixed with calcite; euhedral pyroxene crystals were easily detached, crushed and washed in dilute HCl to remove calcite impurities. The samples were ground in alcohol to less than 10 μ m using an automated grinder. Binary mixtures of olivine and pyroxene were prepared at 10 wt% intervals. The mixtures were mixed by griding in alcohol to ensure thorough mixing.

Electron-microprobe analysis

Crystals of olivine and pyroxene were analyzed by electron microprobe using a CAMECA SX-50 operating in the wavelength-dispersion mode. Back-scattered electron images showed no discernible zoning in either mineral. Quantitative analysis was done in wavelength-dispersion mode with a beam diameter of 5 μ m and an accelerating potential of 15 kV. A sample current of 20 nA measured on a Faraday cup and a counting time of 20 s were used for Na, Ca, Mg, Al, Fe, Ti, and Si, and 50 s at 40 nA for Cr, Mn, and Ni. The following standards were used: albite (NaK α), fayalite (FeK α), diopside (CaK α , SiK α), kyanite (AlK α), olivine (MgK α), spessartine (MnK α), titanite (TiK α), and Ni₂Si

(NiK α). The data were reduced using the PAP routine of Pouchou & Pichoir (1985).

Mean compositions and unit formulae are given in Table 3-1-1.

Collection of X-ray powder-diffraction intensity data

Powder sample was mounted in an aluminum sample holder with $20 \times 15 \times 1.6$ mm rectangular cavity. With a 1° divergent slit, the irradiated area was confined to the sample at 20 angles greater than 19°. Samples were loaded from the back of the sample holder against a frosted glass slide. Upon removing the frosted glass slide, the sample surfaces were finely serrated with a razor blade. This technique tends to minimize preferred orientation of the powder sample due to cleavage or anisotropic morphology of a mineral.

A Philips 1710 powder diffractometer was used in the collection of the X-ray intensity data. The instrument uses a PW1050 Bragg-Brentano goniometer equipped with incident- and diffracted-beam Soller slits, 1° divergence and anti-scatter slits, a 0.2-mm receiving slit and a curved graphite diffracted-beam monochromator. The normal-focus Cu X-ray tube was operated at 40 kV and 40 mA, using a take-off angle of 6°. The profiles were taken with step increment of 0.05° 20. For the 1:1 mixture, intensity data were also collected with a step width of 0.01° 20 to examine the effect of step-width variation on the results of the refinement. The count time at each step was between 2–3 s, with a maximum intensity of 2,000–3,000 counts. Other experimental details are given in Table 3-1-2. The sample-related parameters (*e.g.* U, V, W, given the same instrumental set up) for the same phase in the mixture samples (*e.g.* olivine) vary substantially from sample

TABLE 3-1-1. CHEMICAL COMPOSITIONS (WT%) AND UNIT FORMULAE OF OLIVINE AND PYROXENE

	Olivine	Diopside
SiO ₂	39.47	53.04
Al_2O_3	0.02	1.84
TiO2	0.01	0.10
Cr2O3	0.02	0.02
FeO	11.36	1.28
MnO	0.19	0.04
NiO	0.36	0.03
MgO	47.51	17.84
CaO	0.20	25.58
Na ₂ O		0.05
Total	99.14	99.82
Si	0.987	1.932
Al	0.001	0.079
Ti	-	0.003
Cr	-	0.001
Fe	0.237	0.039
Mn	0.004	0.001
Ni	0.007	0.001
Mg	1.770	0.969
Ca	0.005	0.999
Na	-	0.004
0	4	6

ndi y Natar

-

to sample. This is probable due to the high correlation among these parameters themselves and between these parameters and the background parameters.

Rietveld structure-refinement

Structures were refined using the program LHPM1 [originally written as DBW3.2 by Wiles & Young (1981) and modified by Hill & Howard (1986)]. A pseudo-Voigt peakshape was used (with variable-percentage Lorentzian-character), the FWHM (Full peak-Width at Half-Maximum height) was varied as a function of 20 using the expression of Caglioti et al. (1958), and the peak asymmetry was corrected using the function of Rietveld (1969). Structural variables included atomic coordinates, M-site occupancies, and an overall isotropic displacement factor; non-structural variables were scale factor(s) and parameters for background correction, peak shape and asymmetry, and a preferredorientation correction. Single-phase refinements of olivine and pyroxene were done as a measure of the optimal agreement to be expected between the Rietveld and single-crystal refinements. Individual isotropic-displacement parameters were fixed at 'reasonable' values (*i.e.*, the relative sizes of the parameters were taken from single-crystal work on analogous crystals) and an overall displacement parameter was refined to scale the individual values. Those site occupancies taken as variable were refined without constraints of any sort. Refinement was terminated when the maximum parameter shift/error was less than 0.01.

For refinement of the mixtures, there were 58 variable parameters. Otherwise, refinement was similar to the single-phase refinements except for the presence of two structures and two scale factors. Again, refinement was terminated when the maximum

	bλιoxeue		2900.0	£800.0	010.0	4800.0	0600.0	0600.0	8600.0	010.0	8600.0	210.0
Z	anivilo	8900.0		120.0	600.0	010.0	0800.0	<i>LL</i> 00 [.] 0	£800.0	0800.0	6200.0	2600.0
	pyroxene		L40.0	97.0	61.0	15.0	22.0	6.33	LZ.0	L2.0	12.0	LZ.0
ιχ	anivilo	25.0		LS:0-	90.0	12.0	21.0	62.0	0.23	0.24	11.0	01.0
	pyroxene		540.0	690.0	180.0	£10.0	0/0.0	140.0	860.0	oc0.0	711.0	90.0
M	anivilo	090.0	0,00	980.0	650.0	090.0	9/0.0	250.0	0.063	580.0	911.0	060.0
	byroxene		200.0	Z00.0-	240.0-	[40.0-	/.00.0	020.0	900.0	0.03	/0.0-	91.0
٨	anivilo	220.0		10.0-	6.03	Z10.0	¢10.0	610.0	100.0-	070.0-	LE0.0-	200.0-
	pyroxene		800.0	520.0	0.042	970.0	510.0	210.0-	210.0	700.0	90.0	£00.0
n	ənivilo	110.0-		10.0	10.0	-0.003	110.0	200.0	900.0	820.0	6.023	£00.0
۰-۳ ^{**}	M	1.229	681.1	228.0	870.1	1.245	E8E.I	125.1	1.202	2.038	040.I	1.212
	pyroxene		65.5	84.4	28.4	4.42	5.54	89°£	67.5	97.9	26.2	2.43
RB	anivilo	3 <i>.</i> 74		4.05	65°E	08.E	5.45	2.83	2.85	L6.2	3.12	2.62
Ц,,,		78.11	16.21	15.45	15.44	13.00	£9 [.] 6	10.25	01.01	27.51	6 <i>L</i> .8	8 <i>L</i> .6
K), K	(*	<i>7L</i> .8	15.9	14.0	5.42	S9.6	90°L	67°L	85°L	00.8	L9 [.] 9	SIL
₫- <u>N</u> +		IIII	L9EZ	2343	2343	2343	2343	2343	2343	2343	5344	2344
	byroxene		(41)12.0	(7)12.2	(L)L9.4	(9)09.£	(9)95.2	(6)88.4	(L)LL.E	(11)47.5	(1)17.2	(7)12.1
* SF	anivilo	(22)17.61		(41)21.1	(91)75.2	(41)78.6	(12)95.7	10.59(28)	11.45(25)	(4)1.81	(4)0.22	(E)E.01
'S ⊝Z	(O2°)∋gnsī nso	981-91	861-81	981-91	981 - 91	661-61	661-61	661-61	981-91	981-91	661-61	681-61
		ənivilO	Pyroxene	ЪI	ЪЗ	53	₽4	ЪS	PG	LA	P8	
TAB	LE 3-1-2. DET/	LS HO STIL	LKUCTUR	E REFIN	A LNEME	VOA HTIV	лрек х-н	ATAU YAS	٦			

 $^*SF = scale factor (×10^4)$

 ^+N_-p = number of observations - number of variables; $R_p = R$ index for pattern, R_{wp} = weighted R index for pattern; $R_b = R$ index for structure (i.e. for the Brass nearly)

structure (i.e. for the Bragg peaks). ** D-W = Durbin-Watson statistic

shift/error was less than 0.01. Details of structure-refinements are given in Table 3-1-2.

Two additional phases of refinement were done to investigate the effect of two specific factors on the refinement results. The 1:1 mixture was refined at different step intervals from $0.02-0.10^{\circ} 2\theta$ in order to test whether the step interval has a significant effect on the accuracy of the results (it is known that it has a significant effect on the *precision via* serial correlation). In addition, the mixtures were also refined with all structural parameters for both olivine and pyroxene fixed at their single-crystal values in order to see if there was an interaction between the scale factor and the structural parameters, such that compensating errors in both could give a good fit to the pattern but inaccurate results.

Collection and refinement of single-crystal X-ray intensity data

Single crystals of olivine and pyroxene were ground to spheres and mounted on a Nicolet *R*3*m* automated four-circle diffractometer equipped with a molybdenum-target X-ray tube and a highly oriented graphite crystal monochromator mounted with equatorial geometry. Cell dimensions (Table 3-1-3) were refined from the setting angles of 25 automatically aligned intense reflections. Intensity data were collected according to the procedure of Hawthorne & Groat (1985): the data collection was in θ - 2 θ scan mode, using 96 steps with a scan range from [2 θ (MoK α_1) - 1]° to [2 θ (MoK α_2) - 1]°and a variable scan rate between 4.0 and 29.3°/min depending on the intensity of an initial one second count at the centre of the scan range. Backgrounds were measured for half the scan time at the beginning and end of each scan. Two standard reflections were monitored

TABLE 3-1-3. SINGLE-CRYSTAL X-RAY DIFFRACTION DATA COLLECTION AND REFINEMENT INFORMATION FOR OLIVINE AND DIOPSIDE

	Olivine	Diopside
a(Å)	4.764(1)	9.743(2)
b	10.226(3)	8.916(2)
с	6.004(2)	5.256(1)
β(°)		105.88(1)
$V(Å^3)$	292.5(1)	439.1(1)
Space group	Pbnm	C2/c
Z	4	4
Crystal Size(mm ³)	0.28×0.31×0.32	0.32×0.26×0.22
Radiation	ΜοΚα	ΜοΚα
Monochromator	Graphite	Graphite
R(azimuthal)%	1.74	1.34
Total no. IFI	462	649
No. of IFl _{obs}	458	648
R _(observed) %	2.4	3.2
wR _(observed) %	2.8	3.6
$R = \sum (F - F) / \sum F $		
$wR = \left[\sum w(F - F)^2 / \sum wF^2\right]$	^{0.5} , w=1	

every 60 measurements to check for stability and consistency of crystal alignment and instrumental drifting. All reflections calculated possible over the asymmetric unit, based on the crystal orientation matrix and unit cell parameters, were examined out to a maximum 20 of 60°. Eleven strong reflections uniformly distributed with regard to 20 were measured at 10° intervals of Ψ (the azimuthal angle corresponding to rotation of the crystal about its diffraction vector) from 0 - 350°. The data were used to perform absorption corrections, modeling the crystal shape as triaxial ellipsoids of variable shape and orientation. Intensities were corrected for background, absorption, Lorentz and polarization effects, and reduced to structure factors. Details concerning these procedures are given in Table 3-1-3.

Crystal structures were refined using the SHELXTL-PC system of programs; R indices are of the form given in Table 3-1-3. Full-matrix least-squares refinement converged to R indices of 2–3% for an anisotropic displacement model in which the site occupancies were refined unconstrained.

3.1.2. Results

Cell dimensions are given in Table 3-1-4, positional parameters in Table 3-1-5, site populations in Table 3-1-6 and selected interatomic distances in Table 3-1-7. Structure-factor tables and powder-diffraction step-scan intensities are given in Appendix S-1, 2, and Appendix P-1 to P-21.

Single-crystal refinement

Sample	Olivine		Olivine					Diopside		
number	wt%	a(Å)	b(Å)	c(Å)	V(Å ³)	a(Å)	b(Å)	c(Å)	β	V(Å ³)
SC SPh	100	4.7642(14) 4.7649(3)	10.2258(28) 10.2376(6)	6.0045(18) 5.9986(4)	292.53 292.61	9.7429(19) 9.7476(5)	8.9161(15) 8.9174(4)	5.2557(10) 5.2573(3)	105.880(14) 105.900(4)	439.14 439.49
P1	9.9	4.7673(21)	10.249(4)	5.9996(20)	293.04	9.7501(8)	8.9207(7)	5.2593(4)	105.897(5)	439.94
P2	19.9	4.7659(12)	10.2414(20)	5.9983(12)	292.75	9.7497(9)	8.9189(7)	5.2576(4)	105.903(5)	439.68
P3	30.6	4.7654(4)	10.2396(13)	5.9984(8)	292.66	9.7489(9)	8.9181(8)	5.2574(5)	105.888(6)	439.62
P4	39.7	4.7652(4)	10.2388(8)	5.9992(5)	292.68	9.7489(7)	8.9184(6)	5.2577(3)	105.896(5)	439.65
P5	49.9	4.7651(4)	10.2385(8)	5.9983(5)	292.61	9.7485(8)	8.9179(7)	5.2566(4)	105.894(6)	439.52
P6	59.9	4.7644(3)	10.2370(6)	5.9975(4)	292.52	9.7464(9)	8.9163(8)	5.2562(5)	105.897(7)	439.60
P7	70.0	4.7649(4)	10.2370(7)	5.9980(4)	292.58	9.7493(14)	8.9142(12)	5.2564(8)	105.893(11)	439.36
P8	79.9	4.7659(3)	10.2396(6)	5.9993(3)	292.91	9.7498(16)	8.9160(15)	5.2586(9)	105.872(13)	439.70
P9	89.6	4.7660(3)	10.2379(5)	5.9992(3)	292.82	9.747(4)	8.914(3)	5.2590(24)	105.90(3)	439.46

TABLE 3-1-4. REFINED CELL-DIMENSIONS FOR OLIVINE AND PYROXENE

SC: Single Crystal; SPh: Single Phase.

	SC	SPh	P1	P2	P3	P4	P5	P6	P7	P8	P9
, <u>, , , , , , , , , , , , , , , , , , </u>					Olivine						
M(1) x y z B(Å ²)	0 0 0 0.40(1)	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
M(2) x y z B(Å ²)	0.98978(18) 0.27774(8) 1/4 0.41(2)	0.9924(12) 0.2769(4) 1/4	0.998(10) 0.273(3) 1/4	0.990(5) 0.277(2) 1/4	0.990(10) 0.278(3) 1/4	0.990(2) 0.278(1) 1/4	0.988(2) 0.277(1) 1/4	0.988(1) 0.277(1) 1/4	0.990(1) 0.277(1) 1/4	0.990(1) 0.2774(3) 1/4	0.990(1) 0.2778(4) 1/4
T x y z B(Å ²)	0.42657(16) 0.09441(7) 1/4 0.39(2)	0.4288(9) 0.0949(5) 1/4	0.428(7) 0.107(3) 1/4	0.420(4) 0.096(2) 1/4	0.427(6) 0.095(3) 1/4	0.428(1) 0.095(1) 1/4	0.427(1) 0.095(1) 1/4	0.427(1) 0.096(1) 1/4	0.427(1) 0.095(1) 1/4	0.428(1) 0.095(4) 1/4	0.428(1) 0.095(4) 1/4
O(1) x y z B(Å ²)	0.7666(4) 0.0917(19) 1/4 0.50(4)	0.7655(18) 0.0896(12) 1/4	0.782(18) 0.081(8) 1/4	0.766(8) 0.093(4) 1/4	0.769(4) 0.095(2) 1/4	0.768(3) 0.092(2) 1/4	0.769(3) 0.090(2) 1/4	0.763(2) 0.091(1) 1/4	0.765(2) 0.091(1) 1/4	0.767(2) 0.090(1) 1/4	0.768(2) 0.089(1) 1/4
O(2) x y z B(Å ²)	0.2199(4) 0.44786(18) 1/4 0.48(4)	0.2197(19) 0.4477(12) 1/4	0.195(16) 0.439(8) 1/4	0.223(8) 0.443(3) 1/4	0.207(4) 0.445(3) 1/4	0.217(3) 0.443(2) 1/4	0.220(3) 0.445(2) 1/4	0.216(2) 0.446(1) 1/4	0.218(2) 0.446(1) 1/4	0.216(2) 0.446(1) 1/4	0.217(2) 0.446(1) 1/4
O(3) x y z B(Å ²)	0.27883(28) 0.16332(12) 0.03370(22) 0.52(3)	0.2784(14) 0.1639(8) 0.0318(13)	0.202(12) 0.163(5) 0.166(9)	0.264(6) 0.167(3) 0.023(5)	0.276(3) 0.164(2) 0.030(3)	0.273(3) 0.163(1) 0.032(2)	0.272(2) 0.163(1) 0.031(2)	0.275(2) 0.162(1) 0.031(1)	0.278(2) 0.163(1) 0.032(1)	0.279(1) 0.162(1) 0.030(1)	0.278(1) 0.161(1) 0.03291)

TABLE 3-1-5. ATOMIC POSITIONS FOR OLIVINE AND DIOPSIDE

TABLE 3-1-5 (continue).

					Diopside						
M(1) x y z B(Å ²)	0 0.90818(14) 1/4 0.38(3)	0 0.908(1) 1/4	0 0.906(1) 1/4	0 0.908(1) 1/4	0 0.908(1) 1/4	0 0.907(1) 1/4	0 0.907(1) 1/4	0 0.907(1) 1/4	0 0.907(2) 1/4	0 0.905(2) 1/4	0 0.898(5) 1/4
M(2) x y z B(Å ²)	0 0.30152(9) 1/4 0.67(2)	0 0.301(1) 1/4	0 0.302(1) 1/4	0 0.301(1) 1/4	0 0.302(1) 1/4	0 0.302(1) 1/4	0 0.302(1) 1/4	0 0.300(1) 1/4	0 0.300(1) 1/4	0 0.302(2) 1/4	0 0.299(3) 1/4
T x y z B(Å ²)	0.28645(7) 0.09328(8) 0.22934(14) 0.42(1)	0.288(5) 0.094(1) 0.230(1)	0.287(1) 0.094(1) 0.232(1)	0.288(1) 0.094(1) 0.233(1)	0.287(1) 0.093(1) 0.231(1)	0.287(1) 0.093(1) 0.231(1)	0.288(1) 0.094(1) 0.231(1)	0.287(1) 0.092(1) 0.234(1)	0.288(1) 0.091(1) 0.229(2)	0.287(1) 0.092(2) 0.230(2)	0.293(1) 0.090(3) 0.234(4)
O(1) x y z B(Å ²)	0.11533(22) 0.08722(22) 0.14135(36) 0.56(4)	0.115(1) 0.088(1) 0.143(2)	0.115(1) 0.091(1) 0.138(2)	0.113(1) 0.089(1) 0.140(2)	0.114(1) 0.089(1) 0.135(2)	0.116(1) 0.090(1) 0.140(2)	0.115(1) 0.089(2) 0.140(2)	0.113(1) 0.090(2) 0.137(3)	0.113(2) 0.089(3) 0.136(4)	0.111(2) 0.089(3) 0.137(5)	0.118(5) 0.080(6) 0.145(11)
O(2) x y z B(Å ²)	0.36136(21) 0.25015(23) 0.31912(38) 0.70(4)	0.363(1) 0.252(3) 0.320(2)	0.363(1) 0.250(1) 0.322(2)	0.365(1) 0.250(1) 0.321(2)	0.365(1) 0.250(1) 0.318(2)	0.364(1) 0.250(1) 0.319(2)	0.364(1) 0.251(1) 0.321(2)	0.366(1) 0.253(2) 0.325(3)	0.365(3) 0.251(3) 0.327(4)	0.368(3) 0.250(3) 0.327(4)	0.366(6) 0.250(6) 0.320(9)
O(3) x y z B(Å ²)	0.35085(20) 0.01806(22) 0.99519(37) 0.62(4)	0.353(1) 0.019(1) 0.999(2)	0.352(1) 0.018(1) 0.004(2)	0.349(1) 0.020(1) 0.003(2)	0.350(1) 0.020(1) 0.998(3)	0.352(1) 0.021(1) 0.000(2)	0.352(2) 0.019(1) 0.007(3)	0.353(2) 0.023(2) 0.005(3)	0.353(3) 0.025(3) 0.010(5)	0.358(3) 0.021(2) 0.010(5)	0.368(5) 0.028(6) 0.023(12)

	SC	SPh	P1	P2	P3	P4	P5	P6	P7	P8	P9
						Olivine					
M1 Mg	0.904(3)	0.924(7)	0.82(6)	0.854(28)	0.872(14)	0.918(10)	0.902(11)	0.906(7)	0.902(8)	0.910(6)	0.902(6)
Fe	0.096(3)	0.076(7)	0.18(6)	0.146(28)	0.128(14)	0.082(10)	0.098(11)	0.094(7)	0.098(8)	0.090(6)	0.098(6)
M2 Mg	0.912(3)	0.898(6)	0.902(41)	0.900(21)	0.900(13)	0.898(10)	0.902(10)	0.894(7)	0.898(7)	0.900(6)	0.900(6)
Fe	0.088(3)	0.102(6)	0.098(41)	0.100(21)	0.100(13)	0.102(10)	0.098(10)	0.106(7)	0.102(7)	0.100(6)	0.100(6)
						Diopside					
M1 Mg	0.992(4)	0.992(7)	0.984(8)	0.970(8)	0.982(10)	0.948(8)	0.976(11)	0.990(11)	0.992(17)	0.998(20)	0.962(41)
Fe	0.008(4)	0.008(7)	0.016(8)	0.030(8)	0.018(10)	0.052(8)	0.024(11)	0.010(11)	0.008(17)	0.002(20)	0.038(41)
M2 Mg	0.000(38)	0.038(7)	0.016(10)	0.024(10)	0.020(13)	0.040(10)	0.008(13)	0.026(14)	0.022(21)	-0.016(26)	0.04(6)
Fe	0.029(38)	-0.008(7)	0.008(10)	0.006(10)	0.004(13)	-0.012(10)	0.020(13)	0.004(14)	0.008(21)	0.044(26)	0.00(6)

TABLE 3-1-6. REFINED M-SITE POPULATIONS FOR OLIVINE AND PYROXENE

Sample number	SC	SPh	P1	P2	P3	P4	P5	P6	P7	P8	P9
Olivine (Wt%)			9.9	19.9	30.6	39.9	49.9	59.9	70.0	79.9	89.6
					Olivine						
T-O1 T-O2 T-O3 mean	1.620(2) 1.653(2) 1.637(2) 1.637(1)	1.603(6) 1.663(12) 1.647(17) 1.638(7)	1.71(9) 1.82(3) 1.86(4) 1.80(3)	1.65(4) 1.71(5) 1.72(4) 1.69(2)	1.63(3) 1.66(4) 1.659(27) 1.65(2)	1.623(15) 1.698(20) 1.654(12) 1.658(9)	1.626(15) 1.692(20) 1.660(12) 1.659(9)	1.603(11) 1.680(16) 1.645(10) 1.643(7)	1.608(11) 1.677(16) 1.647(10) 1.644(7)	1.620(8) 1.673(11) 1.647(8) 1.647(5)	1.622(7) 1.673(12) 1.638(7) 1.644(5)
M1-O1 M1-O2 M1-O3 mean	2.090(2) 2.078(2) 2.143(2) 2.104(1)	2.084(14) 2.079(13) 2.147(12) 2.103(8)	2.00(6) 1.93(5) 2.18(7) 2.04(3)	2.10(3) 2.082(28) 2.126(18) 2.103(15)	2.102(16) 2.124(16) 2.141(16) 2.092(9)	2.086(10) 2.099(10) 2.126(12) 2.104(6)	2.077(10) 2.087(10) 2.119(10) 2.094(6)	2.095(8) 2.094(7) 2.127(8) 2.105(4)	2.092(9) 2.089(9) 2.138(9) 2.104(5)	2.081(6) 2.093(6) 2.134(6) 2.103(3)	2.075(6) 2.089(6) 2.126(6) 2.097(3)
M2-O1 M2-O2 M2-O3a M2-O3b mean	2.179(2) 2.056(2) 2.225(2) 2.068(2) 2.132(1)	2.201(16) 2.058(14) 2.217(13) 2.067(12) 2.136(7)	2.22(8) 1.94(9) 2.23(5) 2.05(5) 2.11(3)	2.16(4) 2.03(4) 2.197(27) 2.04(4) 2.107(18)	2.14(4) 2.00(4) 2.22(3) 2.06(3) 2.105(18)	2.181(17) 2.007(17) 2.217(10) 2.073(12) 2.120(7)	2.179(16) 2.044(18) 2.222(10) 2.067(12) 2.128(7)	2.187(13) 2.039(14) 2.231(8) 2.062(10) 2.130(6)	2.183(14) 2.039(14) 2.228(9) 2.061(10) 2.128(6)	2.192(9) 2.037(10) 2.244(6) 2.055(8) 2.132(4)	2.200(9) 2.039(10) 2.237(6) 2.069(7) 2.136(4)

TABLE 3-1-7. SELECTED ATOMIC DISTANCES (Å) IN OLIVINE AND PYROXENE

42

.

TABLE 3-1-7. (continue)

Sample number	SC	SPh	P1	P2	P3	P4	P5	P6	P7	P8	P9
Olivine Wt%			9.9	19.9	30.6	39.9	49.9	59.9	70.0	79.9	89.6
4.444.447					Pyroxene						
T-O1	1.604(2)	1.617(8)	1.617(9)	1.639(9)	1.623(9)	1.610(8)	1.625(11)	1.632(11)	1.635(18)	1.654(20)	1.64(4)
T-O2	1.588(2)	1.601(10)	1.586(9)	1.589(10)	1.600(11)	1.595(8)	1.595(12)	1.636(13)	1.629(20)	1.626(23)	1.60(5)
T-O3a	1.668(2)	1.659(11)	1.649(10)	1.630(12)	1.648(12)	1.644(11)	1.622(14)	1.626(16)	1.589(23)	1.622(26)	1.59(6)
T-O3b	1.689(2)	1.714(11)	1.715(14)	1.715(12)	1.699(14)	1.731(11)	1.735(15)	1.732(16)	1.776(24)	1.765(26)	1.83(6)
mean	1.637(1)	1.648(5)	1.642(5)	1.643(5)	1.642(6)	1.645(5)	1.644(6)	1.656(7)	1.657(11)	1.667(12)	1.66(26)
M1-O1	2.057(2)	2.064(11)	2.043(9)	2.045(9)	2.027(11)	2.050(8)	2.050(12)	2.033(13)	2.027(20)	2.029(22)	2.09(5)
M1-O2a	2.119(2)	2.118(8)	2.160(12)	2.123(12)	2.139(14)	2.151(12)	2.135(15)	2.141(17)	2.142(26)	2.14(3)	2.14(6)
M1-O2b	2.052(2)	2.031(8)	2.035(10)	2.032(12)	2.023(15)	2.030(12)	2.030(15)	2.009(17)	2.024(26)	2.010(24)	1.96(7)
mean	2.076(1)	2.071(5)	2.079(6)	2.067(6)	2.063(8)	2.077(6)	2.072(8)	2.061(9)	2.070(14)	2.060(15)	2.06(3)
M2-O1	2.364(2)	2.354(10)	2.345(10)	2.355(10)	2.361(12)	2.356(10)	2.360(14)	2.328(16)	2.337(24)	2.337(29)	2.41(6)
M2-O2	2.343(2)	2.338(8)	2.327(9)	2.321(9)	2.335(11)	2.338(8)	2.327(12)	2.306(11)	2.297(19)	2.290(21)	2.32(4)
M2-O3a	2.563(2)	2.557(10)	2.541(10)	2.573(10)	2.570(12)	2.566(9)	2.535(14)	2.580(14)	2.582(14)	2.525(22)	2.53(5)
M2-O3b	2.718(2)	2.712(13)	2.738(12)	2.750(13)	2.722(15)	2.710(12)	2.737(15)	2.723(17)	2.713(26)	2.702(29)	2.66(7)
mean	2.497(1)	2.490(5)	2.488(5)	2.500(5)	2.497(6)	2.492(5)	2.490(7)	2.484(7)	2.482(11)	2.463(13)	2.480(28)

The results of single-crystal structure-refinements agree closely with the results of previous refinements of olivine and calcic pyroxene structures. The refined site-populations (Table 3-1-6) agree almost exactly with the bulk compositions of the crystals as determined by EMPA (electron-microprobe analysis) and SREF (single-crystal site-scattering refinement): olivine: EMPA: $Mg_{1.77}$ Fe^{*}_{0.25} SiO₄; SREF: $Mg_{1.82}$ Fe_{0.18} SiO₄; pyroxene: EMPA: $Ca_{1.00}$ Mg_{0.97} Fe^{*}_{0.04} Si₂ O₆; SREF: $Ca_{0.99}$ Mg_{0.99} Fe_{0.03} Si₂ O₆ (Fe^{*} = Fe+Ni+Mn).

Single-phase Rietveld refinements

Figure 3-1-1 shows the observed, calculated and difference X-ray powderdiffraction patterns from each single-phase refinement. As shown in Table 3-1-6, the site populations from the single-phase Rietveld refinements are statistically identical with the values from the single-crystal refinement. The single-crystal and Rietveld positional parameters can be compared using half-normal probability analysis (Abrahams & Keve 1971). If the data sets contain random normal distributions of errors, a half-normal probability plot should be linear of unit slope with zero intercept, provided that the standard deviations are correct. It is known that serial correlation in the powder-diffraction data leads to incorrect standard deviations, a measure of which is the Durbin-Watson statistic (Hill & Flack 1987). This problem was corrected using the procedure of Bérar & Lelann (1991); the assigned standard deviations given in the Tables are the corrected values.

Figure 3-1-1. Observed (upper), calculated (middle) and difference (lower) X-ray powder-diffraction patterns from each single-phase refinement: (a) olivine; (b) pyroxene; the observed and calculated patterns are displaced vertically (by adding 2000 and 600 counts to every data point in each respective pattern) to avoid pattern overlap.

1997.

Multi-phase Rietveld refinements

Figure 3-1-2 shows a typical observed, calculated and difference X-ray powderdiffraction pattern for a multi-phase refinement. The modal percentages of olivine and pyroxene were calculated from the following equation (Hill & Howard 1987, see also equation 2-18):

$$W_p = \frac{S_p(ZMV)_p}{S_p(ZMV)_p + S_q(ZMV)_q}$$
3-1

in which S is the refined scale factor, Z is the number of formula units per unit cell (Z = 4 for both olivine and C2/m pyroxene), M is the mass of the formula unit, and V is the unit-cell volume; p and q represent the phases in the mixture. The values for M and V were those determined from the multi-phase refinements, thus simulating the normal experimental situation in which M and V are determined from the refinement that also determines the values of S. The standard deviation of W_p was calculated by the equation:

$$\begin{aligned} \sigma_{W_{p}} &= \sqrt{\left(\frac{\partial W_{p}}{\partial S_{p}} \cdot \sigma_{S_{p}}\right)^{2} + \left(\frac{\partial W_{p}}{\partial V_{p}} \cdot \sigma_{V_{p}}\right)^{2} + \left(\frac{\partial W_{p}}{\partial S_{q}} \cdot \sigma_{S_{q}}\right)^{2} + \left(\frac{\partial W_{p}}{\partial V_{q}} \cdot \sigma_{V_{q}}\right)^{2}} \\ &= \frac{(ZM)_{p} \cdot (ZM)_{q}}{\left[(SZMV)_{p} + (SZMV)_{q}\right]^{2}} \cdot \\ \sqrt{V_{p}^{2} \cdot (SV)_{q}^{2} \cdot \sigma_{S_{p}^{2}} + S_{p}^{2} \cdot S_{q}^{2} \cdot V_{q}^{2} \cdot \sigma_{V_{p}^{2}} + S_{p}^{2} \cdot V_{p}^{2} \cdot V_{q}^{2} \cdot \sigma_{S_{q}^{2}} + S_{p}^{2} \cdot V_{p}^{2} \cdot S_{q}^{2} \cdot \sigma_{V_{q}^{2}}} \\ &\approx \frac{(ZM)_{p} \cdot (ZM)_{q}}{\left[(SZMV)_{p} + (SZMV)_{q}\right]^{2}} \cdot \sqrt{V_{p}^{2} \cdot (SV)_{q}^{2} \cdot \sigma_{S_{p}^{2}} + S_{p}^{2} \cdot V_{p}^{2} \cdot V_{q}^{2} \cdot \sigma_{S_{q}^{2}}} \end{aligned}$$

$$3-2$$

Table 3-1-8 shows the calculated modal proportions.

3.1.3. Discussion

Modal proportions

A graphical comparison of the refined and known modal proportion of olivine is given in Figure 3-1-3; the refined modal proportions agree with the known values within the estimated standard deviations. The mean value of the absolute accuracy across all compositions is 0.9%; the relative value is 2.3% (omitting the sample lowest in olivine) and 3.0% for all mixtures. Thus the refined modal proportions are accurate to within their assigned level of precision.

The modal proportions were also derived by refinement with fixed structural and instrumental parameters (derived from the single-phase Rietveld refinements), and with fixed structural and variable instrumental parameters. The modal proportions calculated were very similar to the full-refinement results, with mean absolute deviations of 0.7 and 0.9%, respectively, compared to the full-refinement value of 0.9% absolute.

Effect of step width on modal values

Table 3-1-9 and Figure 3-1-3 show the variation in refined modal proportion of olivine for the 1:1 mixture as a function of step width from $0.02-0.10^{\circ}$ 20. The refined values (by all three different methods) do not vary significantly with step width; accurate values are obtained up to a step width of 0.1° 20. Of course, the normally assigned standard deviations increase with increasing step-width (because of decreasing serial correlation); however, the variation disappears with correction *via* the method of Bérar & Lelann (1991).

TABLE 3-1-8 MODAL AMOUNT OF OLIVINE (WT%) IN THE OLIVINE-PYROXENE MIXTURES BY RIETVELD REFINEMENT

		P1	P2	P3	P4	P5	P6	P7	P8	P9
Refined	* (1) (2) (3)	9.3(3) 8.8(3) 9.1(6)	19.7(3) 19.2(4) 18.7(7)	33.8(4) 33.8(5) 31.7(10)	39.8(4) 39.5(5) 39.1(10)	50.5(5) 49.8(7) 49.7(15)	59.4(6) 59.3(8) 58.0(16)	69.6(9) 69.2(9) 68.8(25)	80.0(14) 79.5(11) 78.7(22)	90.3(15) 88.3(13) 89.9(28)
Actual		9.9	19.9	30.6	39.9	49.9	59.9	70.0	79.9	89.6

*(1) Background and scale factor only refined; structural parameters fixed at

single-crystal values, instrumental parameters fixed at single-phase

refinement values.

(2) Background, scale factor and instrumental parameters refined; structural

parameters fixed at single-crystal values.

(3) Full multi-phase refinement with all possible variable parameters refined.

Figure 3-1-3. Modal proportion of olivine derived from Rietveld structure refinement compared with the known modal proportions (full circles), and values for the 1:1 mixture (full squares) as a function of step width; the diagonal line is drawn through zero with a slope of 1; the horizontal line is drawn through 50% olivine with a slope of 0.

		SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8	SW9
Refined	* (1) (2) (3)	49.4(4) 49.6(6) 49.8(11)	50.5(5) 50.7(7) 49.4(12)	50.2(6) 50.0(7) 49.6(14)	50.0(5) 49.8(7) 49.7(15)	49.9(5) 49.9(7) 49.4(15)	49.9(6) 49.8(7) 49.4(16)	50.0(6) 49.6(7) 49.9(16)	49.7(6) 49.4(7) 49.3(16)	50.6(6) 49.9(8) 50.1(17)
actual		49.9	49.9	49.9	49.9	49.9	49.9	49.9	49.9	49.9

TABLE 3-1-9. MODAL AMOUNT OF OLIVINE (WT%) IN THE 1:1 OLIVINE-PYROXENE MIXTURE BY THE RIETVELD REFINEMENT FOR DIFFERENT STEP WIDTHS.

* (1) Background and scale factor only refined; structural parameters fixed at single-crystal values,

instrumental parameters fixed at single-phase refinement values.

(2) Background, scale factor and instrumental parameters refined; structural parameters fixed at singlecrystal values.

(3) Full multi-phase refinement with all possible variable parameters refined.

Cell dimensions

The cell dimensions from the single-crystal refinements and the single- and multiphase Rietveld refinements are shown in Table 3-1-4. The values obtained from the singleand multi-phase Rietveld refinements are fairly consistent. Where the phase is minor (*i.e.*, 10% of the mixture), the actual values can differ more from the mean value than the rest of the values (e.g., b for olivine in sample P1, a for pyroxene in sample P9); however, the assigned standard deviations are also significantly larger in these cases, and these larger discrepancies are actually not significant (*i.e.*, $< 2.5\sigma$). There are significant differences between the powder- and single-crystal cell dimensions. In particular, b for olivine is \sim 0.012 Å longer for the Rietveld determinations, a difference of approximately four pooled standard deviations. It has been observed here and in previous work of this lab that singlecrystal cell dimensions and bond-lengths do tend to be slightly shorter than corresponding powder-diffraction measurements. Given similar control over both sample- (e.g. samplerelated asymmetry) and instrumental- (e.g. Lorentz-Polarization) related effects, Rietveld method gives more accurate cell dimensions because of the fact that, in powder diffraction, only one circle (θ - 2 θ) is involved in the data-collection, whereas in singlecrystal diffraction experiment, four-circles are involved. The potential for misalignment (hence the inaccuracy) is larger in single-crystal experiment. It is true that, in powder diffraction experiment that there are extra instrument-related effects (e.g. displacement of sample surface from the focusing circle, flat sample, and sample transparency) that may affect the accuracy in determining the cell-dimensions. However, these effects had been

understood well (Klugg & Alexander 1971) and can be effectively corrected using analytical functions.

Cell dimensions for the 1:1 mixture (sample P5) were measured at a series of step widths from 0.02 to 0.10° 20. The values obtained were found to be independent of step width in this interval. Of course, as the step width approaches the peak width, information is rapidly lost, and the refinement degrades. However, when the step width is significantly narrower than the peak width, the refinement results are not sensitive to step width. This information is useful in optimizing data-collection efficiency.

Site populations and bulk compositions

Site populations are listed in Table 3-1-6. For the olivine, there are no significant differences between the values from the single-crystal and the single-phase Rietveld refinements. Where olivine is a minor phase (*i.e.*, 10% as in P1), there can be large differences between the actual value (as determined by all of the other refinements) and the refined value; the most notable case is for Mg at M1 in mixture P1 (Table 3-1-6), in which the relevant values are ~0.90(6) and 0.82(8). However, although the difference is large, so are the assigned standard deviations, and the value is accurate although very imprecise. With similar amounts of both phases, both accuracy and precision are good. The situation is similar for pyroxene, although the deviations at low amounts of the phase are actually less than for olivine. Because there are three scattering species (Ca,Fe,Mg) potentially occupying the M2 site in pyroxene, the site populations cannot be determined just from structure-refinement (Hawthorne 1983b). However, as the Ca content (of M2)

is known from the electron-microprobe analysis, its value can be fixed while refining the Mg and Fe contents of M2. The agreement across the complete set of data is good (Table 3-1-6). Thus for both olivine and pyroxene, the site occupancies can be accurately determined, but attention must be paid to the variation in the magnitude of the standard deviations, which vary significantly with the modal proportion of each phase.

Atomic positions and interatomic distances

The half-normal probability analysis of the Rietveld and single-crystal results for the atomic positions in the olivine (Fig. 3-1-4a) shows a nearly linear distribution with zero intercept and a slope of 1.3 (as compared to the ideal value of 1.0). The linearity shows that there is no systematic difference between the Rietveld and the single-crystal refinements, but the slope of about 1.3 indicates that the standard deviations in the Rietveld refinement are still slightly underestimated (by a factor of 1.3) even after correction for serial correlation. For the pyroxene (Fig. 3-1-4b), the distribution is slightly nonlinear with a small non-zero intercept, indicative of some error. However, omission of the two largest deviations does result in a linear distribution with zero intercept, and a slope similar to that for the olivine, indicating that two of the refined parameters (*x* coordinates at the T and the O3 sites) are in error.

Different sets of refinement of the same phase can more easily be compared using the interatomic distances. For the olivine, there is very good agreement between the important bond-lengths determined by single-crystal refinement and by single-phase

Figure 3-1-4. Half-normal probability plots for the atomic positions derived from singlecrystal and single-phase Rietveld refinements: (a) olivine

Figure 3-1-4 (continue) (b) pyroxene.

Rietveld refinement (Table 3-1-7). The maximum differences are 0.022(16) Å for M2–O1 and 0.017(6) Å for T–O1; these differences are not statistically significant. The situation is the same for the pyroxene refinements (Table 3-1-7); the maximum differences are 0.021(8) Å for M1–O2 and 0.025(11) Å for T–O3b; as with the olivine, these differences are not statistically significant.

The situation for the multiphase Rietveld refinements is less satisfactory, particularly where the modal proportion of the phase is small. For the olivine, there is a reasonable agreement between the single-crystal and single-phase refinement values and the results of the multiphase refinements when the modal proportion of olivine exceeds 30%. Below this value, the ordering of the bond lengths in terms of relative size is maintained, but large deviations occur, and these are significant where the modal proportion of olivine is 10%. Similar behaviour also occurs for the pyroxene results, although because of the slightly larger standard deviations, the differences are not statistically significant. To summarize, reasonably accurate interatomic distances can be obtained from Rietveld refinements of mixtures of olivine and pyroxene. However, where the modal proportion of either phase becomes small, the assigned standard deviations become so large that the interatomic distances are of no use for crystal-chemical purposes.

The interatomic distances for the refinement of the 1:1 mixture at a series of different step-widths from 0.02–0.10° 2 θ are not significantly different from the singlecrystal values with increasing step-width. This indicates that the larger step-widths (*i.e.*, up to 0.10° 2 θ) do not lead to a loss of accuracy, at least in the 1:1 mixture.

3.2 The Muscovite Example

The effectiveness of the Rietveld method may be limited by preferred orientation during data collection, particularly where the material has a micaceous or fibrous habit. Intensities of basal reflections (00ℓ reflections) tend to be enhanced (reflection geometry) or diminished (transmission geometry) to a degree that prevents accurate refinement of the structure (Sato *et al.* 1981). There are comprehensive reviews (Bish & Reynolds 1989) on the numerous sample-loading methods. Whereas these methods are generally effective in preparing random mounts of non-micaceous materials, most of them are not totally effective for micaceous materials. However, it has been shown (Bish & Von Dreele 1989, Bish & Johnston 1993, Catti *et al.* 1994) that, with care and certain numerical corrections of the observed intensity data, good-quality Rietveld refinements can be done on naturally occurring fine-grained micaceous materials (*e.g.*, kaolinite and dickite). It is the purpose here to examine the accuracy of Rietveld refinement of micaceous materials by comparing the results of Rietveld and single-crystal structure-refinements, using muscovite- $2M_1$ as an example.

3.2.1. Experimental

The muscovite used in the present study is from Himalaya mine, Mesa Grande, California. Electron-microprobe analysis using a CAMECA SX-50 operating in wavelength dispersion mode (see section 3.1.1) shows that it has almost end-member composition of $KAl_2(Si_3Al)O_{10}(OH,F)_2$ (Table 3-2-1).

TABLE 3-2-1. CHEMICAL COMPOSITION AND UNIT FORMULA* OF MUSCOVITE

SiO ₂	45.53	Si	3.068
Al_2O_3	36.34	^[4] Al	0.932
FeO	0.52	^[6] Al	1.954
MnO	0.22	Fe	0.029
MgO	_	Mn	0.013
CaO	_		
K ₂ O	10.18	K	0.876
Rb ₂ O	0.24	Na	0.096
Na ₂ O	0.74	Rb	0.010
F	1.20	OH	1.744
H ₂ O**	3.88	F	0.256
O=F	0.50		
Total	98.35	0	10

* based on 12(O,OH,F) with OH+F=2.0 ** estimated by stoichiometry

Single-crystal diffraction

A cleavage fragment of muscovite was mounted on a Nicolet *R*3*m* automated fourcircle diffractometer. Details of intensity-data collection are similar to the corresponding section in 3.1.1. Parameters pertinent to the data collection are listed in Table 3-2-2.

Single-crystal structure-refinement

The structure was refined in the space group C2/c using the structural parameters of Richardson & Richardson (1982) as the starting model. Full-matrix least-squares refinement of positional and anisotropic-displacement parameters converged to an R index of 4.1%. Other details of the refinement can be found in relevant sections in 3.1.1.

Powder diffraction

The muscovite crystals were cut as finely as possible with a pair of scissors, and then ground in alcohol to less than 10 μ m using an automated grinder. After drying, the powder was worked with a piece of weighing paper such that individual crystallites were dis-aggregated and randomized as much as possible.

Data collection in reflection geometry: Powders were front-loaded into Al holders, worked with a probe to remove any air pockets, and the surface was then chopped with a razor blade to minimize surface and near-surface preferred orientation of the crystallites. X-ray intensity data were collected on a Philips automated diffraction system PW1710 equipped with a graphite-crystal monochromator for CuK α radiation. Intensities were measured at 0.02°20 steps with counting times of 3 s per step and a scan range of 8–132°20.

TABLE 3-2-2. SINGLE-CRYSTAL X-RAY DIFFRACTION DATA-COLLECTION AND REFINEMENT INFORMATION FOR MUSCOVITE- $2M_1$

a (Å)	5.180(4)	Crystal size (mm)	0.60 x 0.20 x 0.01
b (Å)	8.993(6)	Radiation/Mono.	Mo <i>Kα</i> /Gr
c (Å)	20.069(13)	Total no. $ F $	1376
β (°)	95.69(6)	No. of $ F _{obs}$	981
V (Å ³)	930(1)	R(azimuthal) %	2.7
		R(observed) %	4.1
Space group	C2/c	wR(observed) %	4.5
Ζ	4		
$R = \Sigma(F_{o} - F_{o})$	$ \Sigma F_{\rm o} $		
$wR = [\Sigma(w F_{\rm o} $	$- F_{\rm c})^2 / \Sigma w F_{\rm o}^2]^{\frac{1}{2}}, w = 1$		

Data collection in transmission geometry: A thin film of powder was spread (without solvent) on prolene over a circular area ~10 mm in diameter, whose boundary was confined by a thin-wire ring glued onto the prolene using hair spray. The thin film was finely serrated with a razor blade, and then carefully covered by prolene to fix the powder during data collection. Intensity data were collected on a Siemens D5000 X-ray diffractometer in the 2 θ range 8–116° in steps of 0.02° 2 θ with a step-counting time of 20 s. The instrument operates in transmission geometry and has a Ge curved crystal incident-beam monochromator that provides monochromatic CuK α_1 radiation. A Kevex Psi-II solid-state (energy-dispersive) detector was used to record the diffracted radiation. Details of the data collection are listed in Table 3-2-3.

Rietveld structure-refinement

Structure-refinement was done using the program LHPM3 (an upgrade of LHPM1 as used in 3.1.). The March model (Dollase 1986) was used in the preferred-orientation correction. Minor crystalline alumina (Al_2O_3) was introduced into the sample during grinding. This impurity phase was accounted for using simultaneous two-phase Rietveld refinement. Other details of the Rietveld refinement procedure can be found in relevant sections in 3.1.1.

3.2.2 Result and Discussion

Cell dimensions obtained from single-crystal and Rietveld refinements are given in Tables 3-2-2 and 3-2-3, respectively. Atomic positions are listed in Table 3-2-4 and

	Trans.	Refl.		Trans.	Refl.
a (Å)	5.1765(4)	5.1805(7)	Unique reflections	718	718
<i>b</i> (Å)	8.9872(6)	8.994(1)	Structural parameters	37	37
<i>c</i> (Å)	20.072(1)	20.086(2)	Experimental parameters	20	20
β (°)	95.756(6)	95.740(7)	N–P	48	388
V (Å ³)	929.08	931.18	$R_{ m p}$	9.5	6.7
Space group	C2/c	C2/c	$R_{ m wp}$	12.4	8.7
2θ scan range (°)	8-116	8-116	R_{EXP}	8.1	5.9
step interval (°20)	0.02	0.02	$R_{\rm BRG}$	2.3	2.5
integration time/step (s)	20	3	DW d statistic	1.42	0.97
maximum intensity (counts)	2496	3509	G1*	0.95(1)	0.96(2)

TABLE 3-2-3. DETAILS OF POWDER-DIFFRACTION INTENSITY-DATA COLLECTION AND RIETVELD REFINEMENT FOR MUSCOVITE-2 M_1

*: see equation 2-8

	x	у	Z	Occupancy	$U_{ m iso}$
	H	Rietveld refinem	nent (transmission	mode)	
Al	0.251(2)	0.080(1)	-0.0015(6)	0.97(1)	
T1	0.449(2)	0.257(1)	0.1341(4)	0.98(1)	_
T2	0.033(2)	0.431(1)	0.3650(5)	0.95(1)	<u></u>
K	0	0.099(1)	1/4	0.86(2)	
OH	0.037(3)	0.066(2)	0.4537(7)	1.00	-
01	0.375(3)	0.245(2)	0.0537(10)	1.00	_
02	0.042(3)	0.445(2)	0.4469(10)	1.00	-
O3	0.410(3)	0.088(2)	0.1678(10)	1.00	-
04	0.244(3)	0.368(2)	0.1683(2)	1.00	_
05	0.249(4)	0.307(2)	0.3440(3)	1.00	<u> </u>
		Rietveld refine	ment (reflection m	iode)	
Al	0.249(2)	0.081(1)	-0.0012(5)	0.98(1)	
T1	0.447(2)	0.256(1)	0.1346(4)	0.97(1)	-
T2	0.032(2)	0.428(1)	0.3642(4)	0.93(1)	_
К	0	0.104(1)	1/4	0.94(2)	_
OH	0.045(3)	0.068(2)	0.4526(6)	1.00	
01	0.379(3)	0.246(2)	0.0540(8)	1.00	_
02	0.035(2)	0.442(2)	0.4483(8)	1.00	-
O3	0.413(3)	0.090(3)	0.1667(6)	1.00	-
O4	0.257(4)	0.372(2)	0.1691(6)	1.00	-
05	0.248(4)	0.307(2)	0.3438(7)	1.00	

TABLE 3-2-4. FINAL ATOMIC COORDINATES OF MUSCOVITE-2M1

	x	у	Z	Occupanc	y $U_{ m iso}$
		Single-cry	vstal refinement		
Al	0.2510(2)	0.0838(1)	0.0000(1)	0.965(8)	71(3)
T1	0.4514(2)	0.2582(1)	0.1355(1)	0.944(8)	81(3)
T2	0.0345(2)	0.4295(1)	0.3646(1)	0.942(8)	78(3)
K	0	0.0986(2)	1/4	0.894(6)	226(5)
OH	0.0429(6)	0.0617(3)	0.4501(2)	1.00	135(8)
01	0.3836(6)	0.2511(3)	0.0536(2)	1.00	136(8)
O2	0.0380(6)	0.4447(3)	0.4463(2)	1.00	134(8)
O3	0.4128(6)	0.0925(4)	0.1682(2)	1.00	189(9)
O4	0.2516(6)	0.3726(4)	0.1688(2)	1.00	189(9)
O5	0.2469(7)	0.3083(4)	0.3426(2)	1.00	208(10)

TABLE 3-2-4. (continue)

	Single-crystal	Trans.	Refl.
 T1–O1	1.646(3)	1.62(2)	1.62(2)
T1-O3	1.650(4)	1.68(2)	1.64(2)
T1-O4	1.649(4)	1.66(2)	1.64(2)
T1–O5a	1.643(4)	1.65(2)	1.66(2)
<t10></t10>	1.647	1.65	1.64
O1	109.8(2)	108.4(12)	108.4(13)
01-T1-04	110.4(2)	110.9(9)	112.4(9)
O1–T1–O5a	112.3(2)	113.9(7)	112.5(8)
O3-T1-O4	107.3(2)	105.7(9)	108.6(9)
O3-T1-O5a	107.0(2)	106.7(10)	106.5(10)
O4T1O5a	109.8(2)	110.8(11)	108.2(11)
<0-T1-O>	109.4	109.4	109.4
T202	1.643(3)	1.64(2)	1.69(2)
T2O3b	1.642(4)	1.60(2)	1.62(2)
T204c	1.646(3)	1.62(2)	1.65(2)
T205	1.641(4)	1.66(2)	1.64(2)
<t2o></t2o>	1.643	1.63	1.65
O2T2O3b	109.9(2)	110.6(11)	109.3(11)
O2-T2-O4c	110.6(2)	112.1(8)	110.2(9)
O2-T2-O5	112.5(2)	110.8(9)	111.1(9)
O3b-T2-O4c	107.1(2)	109.1(11)	107.8(10)
O3b-T2-O5	110.1(2)	109.3(10)	110.3(9)
O4c-T2-O5	106.5(2)	104.7(12)	108.1(11)
<0-T2-0>	109.4	109.4	109.5
Al-O1	1.936(3)	1.96(2)	1.93(2)
Al–O1f	1.924(3)	1.93(2)	1.97(2)
Al–O2g	1.920(3)	1.92(2)	1.93(2)
Al-O2h	1.939(3)	1.89(2)	1.89(2)
Al-OHc	1.913(3)	1.89(2)	1.89(2)
Al-OHi	1.913(3)	1.86(2)	1.89(2)
<a1-0></a1-0>	1 924	1 91	1.92

TABLE 3-2-5. INTERATOMIC DISTANCES (Å) AND ANGLES (°) FOR MUSCOVITE

		Single-crystal	Trans.	Refl.
 K–O3	x2	2.824(3)	2.82(1)	2.85(1)
K-O4d	x2	2.833(4)	2.88(1)	2.86(2)
K05	x2	2.860(4)	2.87(1)	2.84(2)
<k-o<sub>inner></k-o<sub>		2.839	2.86	2.85
K-O3e	x2	3.308(3)	3.32(1)	3.32(1)
K04	x2	3.296(4)	3.25(1)	3.27(2)
K–O5d	x2	3.535(4)	3.55(2)	3.58(2)
<k-o<sub>outer></k-o<sub>		3.380	3.37	3.39

TABLE 3-2-5. (continue)

a: 1-x, y, $\frac{1}{2}$ -z; b: $\frac{1}{2}$ -x, $\frac{1}{2}$ +y, $\frac{1}{2}$ -z; c: -x, y, $\frac{1}{2}$ -z; d: $-\frac{1}{2}$ +x, $-\frac{1}{2}$ +y, z; e: x-1, y, z; f: $\frac{1}{2}$ -x, $\frac{1}{2}$ -y, -z; g: $\frac{1}{2}$ -x, $-\frac{1}{2}$ +y, $\frac{1}{2}$ -z; h: $\frac{1}{2}$ +x, $\frac{1}{2}$ -y, $-\frac{1}{2}$ +z; i: x, -y, $-\frac{1}{2}$ +z.

interatomic distances and angles are compared in Table 3-2-5. Structure-factors and powder-diffraction step-scan intensities are given in Appendix S-3 and Appendix P-22 and P-23.

The final calculated patterns from the Rietveld structure-refinement are compared to the observed patterns in Figure 3-2-1. The fit for the transmission-geometry data is very close (Fig. 3-2-1a), with no significant intensity in the difference pattern. The fit is not quite as close for the reflection-geometry data (Fig. 3-2-1b). There is some residual intensity associated with the 004, 006, 0010 and some hkl (k = 3n) peaks. These residuals are probably indications of partial stacking disorder. Notice the negative residual intensities that accompany the positive residual intensities. Such combination of residual intensities is characteristic of partial stacking disorder in phyllosilicates (Brindley 1980). The stacking disorder will preferentially suppress the intensities of the hkl ($k \neq 3n$) reflections, causing the intensities of the hkl (k = 3n) reflections to increase relative to the rest of the pattern. Such intensity distortion cannot be accounted for in a Rietveld refinement where stacking disorder is not modeled explicitly.

How significant is the preferred orientation in each sample? We can evaluate this by comparing the observed patterns with the ideal powder pattern calculated from the coordinates and site populations of the refined single-crystal structure (Fig. 3-2-2). Both powder patterns in Figure 3-2-2 show significant preferred-orientation effects, but they seem to be more severe in the transmission-geometry pattern as indicated by the intensity difference between the observed and ideal patterns (Fig. 3-2-2a). Nevertheless, the difference patterns in Figure 3-2-1 indicate that the preferred-orientation correction copes

Figure 3-2-1. Observed (upper), Rietveld calculated (middle) and difference (lower) X-ray powder-diffraction patterns of muscovite- $2M_1$; constant counts have been added to each pattern to displace them vertically. (a) transmission mode;

Figure 3-2-1. (continue) (b) reflection mode.

better with this effect in the transmission-geometry sample. Two other effects warrant comment here. First, note the increased resolution in the transmission-geometry pattern compared to that observed in the reflection-geometry pattern. Transmission geometry does not use parafocusing as in reflection geometry which is a cause for substantial linebroadening and asymmetry. Second, note the difficulty in modelling the shape of the basal reflection 002. This is primarily an instrumental effect. The Lorentz-Polarization term in the expression of diffraction intensity (Brindley 1980), and, accordingly, the diffraction intensity itself, increases rapidly to infinity towards 0° 2 θ . However, the exact rate of the increase is a function of, in addition to the 2 θ -angle, the degree of polarization of the radiation and the degree of randomness of the powder sample which are difficult to model closely. Therefor, the lowest-order reflection(s) is(are) usually omitted from the refinement (*e.g.*, Bish & Von Dreele 1989).

Accuracy of the refined structure

Agreement of the observed and calculated patterns is not an indication of accurate results; a model that produces good agreement can still incorporate systematic error and hence be inaccurate. However, in the present case, this possibility can be tested for each set of powder intensity-data, as both an electron-microprobe analysis and single-crystal structure-refinement results on the same material are available.

The unit formula calculated from the electron-microprobe analysis (Table 3-2-1) indicates the following site-occupancies: $Al^* = 1.02$, T(1) = T(2) = 0.98 Si^{*}, $K^* = 0.93$; $Al^* = {}^{[6]}Al + 26$ Fe/13 + 25 Mn/13, Si^{*} = Si + 13 {}^{[4]}Al/14, $K^* = K + 11$ Na/19. These

Figure 3-2-2. Observed (upper), calculated from refined single-crystal structure (middle) and difference (lower) X-ray powderdiffraction patterns of muscovite- $2M_1$; (a) transmission mode;

agree closely with the values derived from both single-crystal and Rietveld structurerefinement.

The half-normal probability plots are linear (Fig. 3-2-3), with r^2 values of 0.97 and 0.99, and slopes of 1.94(6) and 2.12(5) for the transmission and reflection data, respectively. In each case, the intercept passes though the origin (within the standard error of estimate) and hence there is no systematic error involved in the two sets of results. However, the slopes of the plots should be 1.0 if the assigned standard deviations are correct. For both sets of data, the slopes are 2.0 (within 2 standard deviations), indicating that the pooled standard deviations are wrong. The standard deviations from the Rietveld refinements (Table 3-2-3) are up to an order of magnitude larger than the standard deviations for the single-crystal refinement. The pooled standard deviations from the Rietveld refinement. Hence, any reasonable inaccuracy in the single-crystal standard deviations (*i.e.*, by a factor of 1 to 2) will have an insignificant effect on the pooled standard deviations; inaccuracy in the latter must result from inaccuracy in the Rietveld standard deviations.

It is well known (Hill & Flack 1987) that serial correlation in Rietveld structurerefinement results in significant underestimation in the calculated standard deviations, and Hill & Flack (1987) have shown that a weighted form of the Durbin-Watson statistic (Durbin & Watson 1971) is sensitive to the amount of serial correlation between leastsquares residuals in Rietveld refinement of step-scan powder-diffraction data: a d statistic of ~2.0 indicates no serial correlation. The Durbin-Watson d statistic for the Rietveld

Figure 3-2-3. Half-normal probability plots for refined positional coordinates of muscovite- $2M_1$; (a) single-crystal and transmission-mode Rietveld refinements;

Figure 3-2-3. (continue) (b) single-crystal and reflection-mode Rietveld refinements.

refinements reported here do differ significantly from 2.0 (Table 3-2-3). Bérar & Lelann (1991) have introduced a method to correct standard deviations for serial correlation, and the standard deviations quoted in Table 3-2-4 have been corrected with this algorithm. Nevertheless, the slopes in Figure 3-2-3 show that both sets of standard deviations are still underestimated. The single-crystal standard deviations are up to an order of magnitude less than the standard deviations from the Rietveld refinements, and hence do not contribute significantly to the pooled standard deviations. Thus the slope of the half-normal probability plot is the factor by which the Rietveld standard deviations are incorrect (*i.e.*, 2.0). Nevertheless, there is good agreement between the refined parameters, indicating that a platy habit and the presence of preferred orientation in the sample does not preclude accurate structure-refinement by the Rietveld method.

3.3. Phlogopite

One important aspect of mica synthesis, the crystal structural characterization of the run-products, had been difficult due to the usually fine grain sizes and the micaceous habit. Partial structural information can be obtained through solid state NMR (Circone et al. 1991, Sanz & Rober 1992), vibrational spectroscopy (Robert & Kodama 1988, Robert et al. 1995) and calorimetric techniques (Circone & Navrotsky 1992). There had been a number of crystal structural studies of natural micaceous materials using powder diffraction techniques and Rietveld method (Adams 1983, Young & Hewat 1988, Bish & Von Dreele 1989, Walker & Bish 1992, Bish & Johnston 1993, Bish 1993, Liang et al. 1995, Liang & Hawthorne 1996). However, the present work represents the first in applying the Rietveld method to the crystal structural characterization of synthetic mica.

3.3.1. Experimental

Material

The synthetic mica, fluorophlogopite (NBS standard SRM675), was used unmodified. Grain sizes of the sample ranges from 0.5 mm to less than 10 μ m. The sample was emerged in double distilled water, and the finer-grained portion (< 10 - 200 μ m, average 40 μ m) that suspends in the distilled water was separated from the coarsegrained portion (50 - 500 μ m, average 300 μ m) that does not suspend. Ethanel was added to the suspension to accelerate precipitation and to promote porosity in the natural-dried precipitate such that minimum effort is needed to disaggregate the dried precipitate.

Powder diffraction and Rietveld structure-refinement

Both the fine- and the coarse-grained portions were used in the experiment. Powders were front-loaded into Al holders. X-ray intensity data were collected on a Philips automated diffraction system PW1710. Intensities were measured at $0.05^{\circ}2\theta$ steps with counting times of 2.5 s per step and a scan range of $7 - 127^{\circ}2\theta$ (to the higher angle limit of the diffractometer). Details of sample preparation and experimental procedures can be found in Liang & Hawthorne (1996) and Raudsepp *et al.* (1990). Parameters pertinent to the data collections are listed in Table 3-3-1.

Structure refinement was done using the program LHPM3 (originally written as

	1 <i>M</i>	$2M_1$		1 <i>M</i>	$2M_1$
a (Å)	5.312(3)	5.32(2)	Unique reflections	464	874
b (Å)	9.196(4)	9.17(4)	Structural parameters	23	5
c (Å)	10.148(2)	20.09(3)	Experimental parameters	15	5
β (°)	100.09(3)	95.2(2)	N-P	21	81
V (Å ³)	488.07	976.3	$R_{\rm P}$ 1		3.1
Space group	C2/m	C2/c	$R_{ m WP}$	1′	7.3
2θ scan range (°)		7–127	$R_{\rm EXP}$	e	5.1
step interval (°20)		0.05	$R_{ m BRG}$	7.2	8.7
integration time/step (s)		2.5	DW d statistic	0.32	
maximum intensity (counts)	8582	G1*	0.0	54(1)

TABLE 3-3-1. DETAILS OF POWDER-DIFFRACTION INTENSITY-DATA COLLECTION AND RIETVELD REFINEMENT FOR FLUOROPHLOGOPITE

*: see equation 2-8

DBW3.2 by Wiles & Young 1981 and modified by Hill & Howard 1986). A pseudo-Voigt peak-shape was used, and the peak asymmetry was corrected using the function of Rietveld (1969). Simultaneous 2-phase refinement was used to accommodate the fact that there is minor $2M_1$ polymorph coexisting with the major 1M polymorph. Full structural refinement, with the starting model of McCauley *et al.* (1973), was done for the 1Mpolymorph. Only unit cell parameters and the scale factor were refined for the $2M_1$ polymorph, with atomic coordinates fixed at the values of a $2M_1$ biotite (Takeda & Ross 1975). Other details of the Rietveld refinement were similar to those as in Liang & Hawthorne (1996).

Electron microprobe analysis

Electron microprobe analysis of the fluorophlogopite sample was done using a CAMECA SX-50 operating in the wavelength-dispersion mode, with a beam diameter of 5 μ m and an accelerating potential of 15 kV. A sample current of 20 nA measured on a Faraday cup and a counting time of 20 s were used for K, Mg, Al, Si and F. The following standards were used: diopside (SiK α), kyanite (AlK α), orthoclase (KK α), zinnwaldite (FK α), and olivine (MgK α). The data were reduced using the PAP routine of Pouchou & Pichoir (1985). Experimental details are as described by Hawthorne *et al.* (1993). The mean composition and unit formula are given in Table 3-3-2.

Fourier-Transform Infrared Photo-Acoustic Spectroscopy (FT-IR PAS)

The spectra were collected with a Bio-Rad FTS-60A (Bio-Rad, Cambridge, MA)
TABLE 3-3-2. CHEMICAL COMPOSITION AND UNIT FORMULA* OF PHLOGOPITE

SiO ₂ wt%	42.96	Si	3.031
Al_2O_3	11.68	^[IV] Al	0.971
MgO	28.33	Mg	2.979
K ₂ O	11.18	Κ	1.006
H ₂ O**	0.92	OH	0.434
F	7.02	F	1.565
O=F	-2.96	0	10
Total	99.14		

* based on 12(O,OH,F) with OH+F=2.0

** estimated by stoichiometry

spectrometer. An MTEC Model 200 photoacoustic cell (MTEC, Ames, IA) with its accompanying preamplifier and power supply was used to acquire all the spectra. The sample tray was filled with the powder sample without attempting to compact the powder. The photoacoustic cell (with the sample) was purged with dry helium. A high-surface-area carbon-black sample (MTEC) was used as the reference material for all spectra. Different interferometer mirror speeds, corresponding to average modulation frequencies of 10, 5 and 2.5 KHz, respectively, were used in the collection of the spectra. Other experimental details can be found in Sowa & Mantsch (1994).

Single-crystal diffraction and structure refinement

A crystal of $0.4 \times 0.3 \times 0.03$ mm was mounted on a Nicolet R3m automated fourcircle diffractometer. Cell dimensions (Table 3-3-3) were refined from the setting angles of 25 automatically aligned intense reflections. The cell dimensions conform to those of the 1*M* polymorph of phlogopite. Intensity data were collected according to the procedure of Hawthorne & Groat (1985). Absorption corrections were done with the psi-scan method, modelling the crystal shape as a thin plate. Intensities were corrected for background, absorption, Lorentz and polarization effects, and reduced to structure factors. Details concerning these procedures are given in Table 3-3-3.

Crystal structures were refined using the SHELXTL-PC system of programs; R indices are of the form given in Table 3-3-3. The structure was refined in the space group C2/m (1*M* polytype) using the structural parameters of McCauley *et al.* (1973) as the starting model. Full-matrix least-squares refinement of positional and anisotropic-

TABLE 3-3-3. SINGLE-CRYSTAL X-RAY DIFFRACTION DATA-COLLECTIONAND REFINEMENT INFORMATION FOR PHLOGOPITE 1M

a (Å)	5.313(2)	Crystal size (mm)	0.60 x 0.20 x 0.01
<i>b</i> (Å)	9.198(3)	Radiation/Mono.	MoKα/Gr
<i>c</i> (Å)	10.147(2)	Total no. $ F $	736
β (°)	100.17(2)	No. of $ F _{obs}$	671
<i>V</i> (Å ³)	488.6	R(azimuthal) %	2.0
		R(observed) %	3.7
Space group	C2/m	wR(observed) %	4.0
Ζ	4		
$R = \Sigma(F_{\rm o} - F_{\rm c} $	$)/\Sigma F_{o} $		
$wR = [\Sigma(w F_{o} -$	$ F_{\rm c})^2 / \Sigma w F_{\rm o}^2]^{1/2}, w = 1$		

displacement parameters converged to an R index of 3.7%.

3.3.2. Result and Discussion

As substantial stacking disorder (see later discussion) was observed in the finegrained portion of the fluorophlogopite sample, all result reported with respect to the Rietveld refinement are those using the coarse-grained portion of the material. The use of the fine-grained portion is to show different degrees of stacking disorder with respect to different grain sizes.

Cell dimensions obtained from single-crystal and Rietveld refinements are given in Tables 1 and 3, respectively. Atomic positions are listed in Table 3-3-4 and interatomic distances and angles are compared in Table 3-3-5. Structure-factors and powder-diffraction step-scan intensities may be obtained from The Depository of Unpublished Data, CISTI, National Research Council of Canada, Ottawa, Ontario, K1A 0S2.

Phase identification

Apart from the major 1*M* polymorph, there also exists minor $2M_1$ polymorph in the fluorophlogopite sample. Based on the refined scale factors of the 1*M* and the $2M_1$ polymorphs of 0.00123(8) and 0.000028(2), respectively, the 1M to $2M_1$ ratio can be calculated (Hill & Howard 1987) to be 92:8.

Accuracy of the Rietveld refined structure

The half-normal probability plot comparing the two sets of structural parameters

			1141		
	x	у	Z	Occupancy	$U_{ m iso}$
		Sing	gle-crystal		
K	0	0	0	0.25	0.0333
Si	0.5753(1)	0.1666(1)	0.2250(1)	0.973(7)	0.0056
Mg1	0	1/2	1/2	0.242(3)	0.0048
Mg2	0	0.8311(2)	1/2	0.487(4)	0.0043
01	0.8212(4)	0.2344(3)	0.1667(2)	1.000	0.0202
O2	0.5244(7)	0	0.1660(3)	0.500	0.0128
O3	0.6301(4)	0.1664(2)	0.3900(2)	1.000	0.00622
F	0.1334(5)	0	0.4021(3)	0.486(6)	0.0077
		Rietvel	d refinement		
K	0	0	0	0.25	-
Si	0.580(3)	0.164(1)	0.227(1)	0.96(4)	-
Mg1	0	1/2	1/2	0.24(2)	-
Mg2	0	0.831(1)	1/2	0.49(2)	-
01	0.826(4)	0.234(2)	0.167(1)	1.000	-
O2	0.509(3)	0	0.168(2)	0.500	-
O3	0.644(6)	0.162(2)	0.389(1)	1.000	-
F	0.165(5)	0	0.402(1)	0.48(3)	-

TABLE 3-3-4. FINAL ATOMIC COORDINATES OF FLUOROPHLOGOPITE-1M

	Single-crystal	Rietveld
T01	1.650(3)	1.67(2)
T–O1a	1.650(2)	1.67(2)
T-O2	1.651(1)	1.64(1)
T-O3	1.648(2)	1.62(1)
<t-0></t-0>	1.650	1.65
01-012	2 674(1)	2.67(1)
01-01a	2.671(3)	2.74(2)
01-02	2.071(3)	2.68(3)
$01^{2}-02$	2.672(3)	2.63(2)
01a - 03	2.711(3)	2.74(2)
02–03	2.716(3)	2.69(2)
<0-0>T	2.693	2.69
	109 2(1)	107(1)
OI = I = OIa	108.3(1) 108.1(2)	107(1)
01 - 1 - 02	100.1(2)	113(1)
01 - 1 = 03	10.9(1)	112(1)
01a - 1 - 02	100.1(1)	109(1)
01a - 1 - 03	110.0(1)	111(1)
<0-T-0>	109.5	
Mal 026 -4	2 (19272)	2 10(2)
Mg1-030 X4	2.065(2)	2.10(2)
Mg1-FC X2 <mg1-o f=""></mg1-o>	2.023(2)	1.99
Mg2-O3d x2	2.073(2)	2.14(2)
Mg2-O3e x2	2.083(2)	2.03(3)
Mg2-Ff x2	2.038(2)	2.12(1)
<mg1-0 f=""></mg1-0>	2.065	2.10

TABLE 3-3-5. INTERATOMIC DISTANCES (Å) AND ANGLES (°) IN FLUOROPHLOGOPITE

86

		Single-crystal	Rietveld
K-O1g	x4	2.998(3)	2.99(1)
K–O1h	x4	3.275(2)	3.29(1)
K02	x2	2.992(3)	2.93(2)
K–O2i	x2	3.277(4)	3.36(2)
<ko></ko>		3.136	3.14

a: -1/2+x, 1/2-y, z; b: -1/2+x, 1/2+y, z; c:-1/2+x, 1/2+y, z; d: -1/2+x, 1/2+y, z; e: 1-x, 1-y, 1-z; f: x, 1+y, z; g: -1+x, y, z; h: -1/2+x, -1/2+y, z; i: -1+x, y, z.

87

Figure 3-3-1. Half-normal probability plot comparing structural parameters of the 1M polytype from single-crystal and the Rietveld refinements.

from single-crystal and Rietveld refinements, respectively, is shown in Figure 3-3-1. The plot shows a linear distribution of the data points. The intercept passes though the origin (within the standard error of estimate) and hence there is no systematic error involved in the two sets of results. However, the slope of 2.8(1) indicates that the standard deviations in the Rietveld refinement are underestimated by a factor of 2.8. This value is higher than that (2.0) in the similar study of muscovite (Liang & Hawthorne 1996). A higher value of the slope indicates greater random error of the Rietveld results (see relevant discussion in Liang & Hawthorne 1996). The stacking disorder, although minor, may be the source of the increases random error.

The unit formula

The refined cation- and F-occupancies for the 1*M* polytype (Table 3-3-4) from single-crystal and Rietveld refinements, respectively, agree closely. The unit formula calculated from the electron-microprobe analysis (Table 3-3-2) indicates the following site-occupancies:

 $K^* = 1.006/4 = 0.252$, $Si^* = (Si + 13Al/14)/4 = 0.983$, $Mg^* = 2.979/4 = 0.745$, $F^* = (F + 8(OH)/9)/4 = 0.488$. Corresponding values from the single-crystal refinement are $K^* = 0.25$, $Si^* = 0.973(7)$, $Mg^* = Mg1 + Mg2 = 0.729(7)$, $F^* = 0.486(6)$. It can be seen that the EMPA result and the results from structure refinement agree very closely.

FTIR PAS spectrum at the O-H stretching region (Fig. 3-3-2) shows characteristic O-H stretching near 3710 cm⁻¹ (Serratosa & Bradley 1958, Bassett 1960), confirming the existence of O-H groups in the structure of the fluorophlogopite.

Figure 3-3-2. FTIR PAS spectra of fluorophlogopite at the O-H stretching region. Differing mirror speed (from 10 to 2.5 KHz) represents depth-profiling. The top spectrum corresponds to the experiment that sampled the shallowest from the grain surface, while the bottom spectrum corresponds to the deepest. The O-H stretching band of the fluorophlogopite is marked by an arrow. The other band to the lower wavenumber side may represent fine structure due to F that also occupies the OH site in the phlogopite structure.

00

Stacking disorder

In the diffraction patterns of the fluorophlogopite (Fig. 3-3-3), certain reflections (both basal and non-basal) are preferentially enhanced, causing residual intensity distribution characteristic of partial stacking disorder (Bailey, 1984). This effect is more evident with the fine grained portion, indicating an increasing stacking disorder as the average grain size decreases.

3.4 Zeolites

Structure refinement of zeolites presents unique problems. Zeolites usually have large unit-cell dimensions. Their structures can be considered to consist of two structural units: (1) the framework configuration; (2) the interstitial constituents. The former consists of corner-sharing Si(Al)O₄ tetrahedra that are relatively rigid; the latter includes the usually highly mobile cations (to compensate excess negative charges generated by Al^{3+}/Si^{4+} replacement) and water molecules. It is the purpose of the present section to determine how well the Rietveld method can deal with the two general structure units.

3.4.1. Experimental

Chabazite from Wassons Bluff, Nova Scotia were chosen for the study. Details of electron-microprobe analysis, single-crystal and powder x-ray data collection and their corresponding structure refinements are similar to relevant sections in 3.1.1. Atomic

Figure 3-3-3. Observed, calculated and difference X-ray diffraction patterns of the fluorophlogopite.

9<u>2</u>

positions of the charge-compensating cations were determined by difference Fourier method, and the scattering factor of Ca was used for all sites of the charge-compensating cations. The chemical compositions of the zeolites are reported in Table 3-4-1. Details pertinent to the intensity-data collection and structure refinement for single-crystal and Rietveld methods, respectively, are listed in Table 3-4-2 and 3-4-3.

3.4.2 Result and Discussion

The observed and calculated diffraction patterns of chabazite are shown in Figure 3-4-1. The fractional atomic coordinates, refined cation site-occupancies, and interatomic distances and angles of both Rietveld and single-crystal refinements for chabazite are listed in Tables 3-4-4 and 3-4-5. Structure-factors and powder-diffraction step-scan intensities for chabazite are given in Appendix S-5, and Appendix P-25, respectively.

The calculated and observed diffraction patterns

For chabazite, there is a reasonable fit between the calculated and the observed diffraction patterns (Fig. 3-4-1). The residual is, in part, contributed by an impurity phase with minor diffraction peaks near 11, 17 and 30° 2 Θ that have no corresponding Bragg reflections in the calculated pattern (Fig. 3-4-1). However, the existence of the impurity phase did not adversely affect the structure refinement of the chabazite, as indicated by the close agreement in atomic coordinates and site occupancies (Table 3-4-5) between the results of Rietveld and single-crystal structure refinement.

TABLE 3-4-1. COMPOSITIONS (WT%)
AND UNIT FORMULAE OF CHABAZITE
DETERMINED BY ELECTRON
MICROPROBE ANALYSIS

SiO ₂	52.6
Al_2O_3	16.8
MgO	0.2
CaO	7.7
Na ₂ O	0.6
K ₂ O	0.9
SrO	
H ₂ O*	21.2

Si	9.04
Al	3.40

Mg	0.05
Ca	1.42
Na	0.20
K	0.20
Sr	

Н 24.3 О 37

*determined by difference

TABLE 3-4-2. SINGLE-CRYSTAL X-RAY DIFFRACTION DATA COLLECTION AND REFINEMENT INFORMATION FOR CHABAZITE

Chabazite
13.766(5)
13.766(5)
14.978(6)
120
2458.1
R3m
3
0.16 x 0.20 x 0.20
ΜοΚα
Graphite
1.5
902
890
6.5
6.6
$wF^2]^{0.5} w=1$

a (Å)	13.7796(15)
b (Å)	13.7796(15)
<i>c</i> (Å)	14.9932(11)
β (°)	120
V (Å ³)	2465.48
2θ scan range (°)	10–120
step interval (°2θ)	0.02
integration time/step (s)	20
maximum intensity (counts)	2564
Space group	R-3m
Unique reflections	491
Structural parameters	26
Experimental parameters	15
N-P	5466
R _p	13.3
R _{WP}	17.4
R _{EXP}	10.5
R _{BRG}	5.6

TABLE 3-4-3. POWDER INTENSITY DATA COLLECTION AND DETAILS OF RIETVELD STRUCTURE REFINEMENT

Figure 3-4-1. Observed, calculated and difference X-ray diffraction patterns of chabazite

97

	x	у	Z	Occupancy	U _{iso} (x1000)
		Rietvel	d refinement		
Т	0.2292(8)	0.0004(9)	0.1038(6)	0.92(3)	
01	0.2000(17)	0.1000(8)	0.1261(17)	1/2	_
O2	0.1181(9)	-0.1181(9)	0.1270(14)	1/2	_
03	0	0.3586(17)	1/2	1/2	
04	0.2632(15)	0	0	1/2	
05	0	0	0.5790(66)	0.07(1)	
06	-0.0986(26)	0.0986(26)	0.5451(45)	0.26(3)	_
Ca1*	1/2	1/2	0	0.08(1)	_
Ca2*	0	0	0.2261(28)	0.08(1)	_
Ca3*	0.2497(29)	-0.2497(29)	0.0143(66)	0.25(2)	
Ca4*	0	0	0	0.07(1)	_
		Single-cr	ystal refinement		
Т	0.2285(1)	-0.0001(1)	0.1048(1)	0.94(1)	12
01	0.1997(4)	0.0998(2)	0.1254(3)	1/2	39
O2	0.1206(2)	-0.1206(2)	0.1328(3)	1/2	41
O3	0	0.3474	0	1/2	33
04	0.2618(4)	0	0	1/2	43
05	0	0	0.5922(8)	0.11(1)	53
06	-0.1053(10)	0.1053(10)	0.5257(12)	0.32(1)	193
Ca1*	1/2	1/2	0	0.08(1)	169
Ca2*	0	0	0.2333(10)	0.08(1)	105
Ca3*	0.2536(9)	-0.2536(9)	0.0213(20)	0.28(1)	795
Ca4*	0	0	0	0.02(1)	2904

TABLE 3-4-4. FINAL ATOMIC COORDINATES OF CHABAZITE

*: Ca, K, Na, and Sr are expected to accompany the same crystallographic sites. The refined site occupancies represent such collective effect of disordered cation site occupancies not those of Ca alone.

	Single-crystal	Rietveld
 T–O1	1.643(2)	1.65(1)
T02	1.636(4)	1.62(1)
T-O3	1.643(2)	1.64(1)
T04	1.632(2)	1.62(1)
<t-o></t-o>	1.638	1.63
O1–T–O2	108.8(2)	107.2(11)
O1–T–O3	111.1(2)	110.0(13)
01–T–04	111.4(2)	112.8(11)
O2-T-O3	106.3(2)	109.1(10)
O2-TO4	111.1(2)	109.3(11)
O3-T-O4	108.0(2)	108.4(9)
<0-T-0>	109.4	109.5
(Ca1-O2)x2	3.200(5)	3.30(2)
(Ca1-O3)x4	3.462(1)	3.47(1)
(Ca1-O4)x2	3.278(5)	3.26(2)
(Ca1-O6)x2	2.568(15)	2.44(6)
(Ca2-O1)x3	2.877(10)	2.82(3)
(Ca2-O2)x3	3.237(7)	3.19(3)
Ca2-O5	2.614(19)	2.92(11)
(Ca3-O1)x2	3.467(31)	3.35(10)
Ca3-O2	3.590(14)	3.57(6)
(Ca3-O4)x2	3.450(18)	3.36(5)
Ca3-O6a	2.632(34)	2.98(12)
(Ca3-O6b)x2	2.890(25)	2.72(8)
(Ca4-O1)x6	3.032(5)	3.04(2)
(Ca4-O2)x6	3.489(3)	3.40(2)

TABLE 3-4-5. INTERATOMIC DISTANCES (Å) AND ANGLES (°) FOR CHABAZITE

a: 1/3+x,2/3+y,2/3+z; b:1/3+y,-1/3-x+y,-1/3-z.

Unit-cell dimensions

Unit-cell dimensions determined from Rietveld refinements are slightly greater than single-crystal values. This is similar to the results in the olivine and pyroxene study in 3.1. Nevertheless, the differences are less than 3σ of the single-crystal measurement and the differences are thus insignificant.

Atomic positions by interatomic distances and angles

In chabazite, the T-O distances of the Rietveld refinement agree with the singlecrystal results. There are also close agreement in the O-T-O angles. Interatomic distances involving interstitial cations and the water molecules (O₅ and O₆) were not as well determined, giving differences in general of one magnitude greater than those of the T-O distances. Interstitial cations and water molecules in zeolites are highly mobile species (Liang & Sherriff 1993). What diffraction method sees, if the motions are slow enough, is the average electron density distribution of these species. To improve the refinement of atomic positions of these mobile species, it is necessary to couple the Rietveld refinement to MD calculation, in which the time averages of the trajectories of the individual interstitial species are taken as the average atomic positions.

Cation site-occupancies

The refinement of cation site-occupancies can be divided into two groups: that of the framework cations (T-sites) and that of the extra-framework cations (including water). Occupancies of the framework cations agree with the single-crystal results within onesigma. Refinements of the site-occupancies of the non-framework cations were more difficult. The error ranges from 0 to 7σ .

Error analysis

In the half-normal probability analysis, the data points (Fig. 3-4-2) fall in a linear trend, with some random scattering. This indicates that no systematic error was present in either data set. The slope of ~ 1.4 indicates that the standard deviations in the Rietveld refinement are underestimated by a factor of 1.4.

3.5. Summary

Reliability of Rietveld method in both structural and quantitative studies has been assessed. Three categories of materials were considered in the structural study: (1) anhydrous silicates (olivine and pyroxene); (2) micaceous alumino-silicates (muscovite and phlogopite); (3) porous alumino-silicates (chabazite).

(1) For all three categories of materials, unit-cell dimensions and site-populations determined are compatible to those from single-crystal structure determinations on the same materials.

(2) For the relatively simple structures of category (1) materials, accurate and precise stereochemical details (*i.e.*, atomic positions) can be obtained, given that the phase under study is > 10 wt% in the powder mixture.

(3) For category (2) materials, it is possible to prepare nearly random powder mounts

Figure 3-4-2. Half-normal probability analysis of chabazite

for intensity-data collection both in reflection and transmission geometries, which is of vital importance in ensuring successful Rietveld refinement.

(4) For category (3) materials, Rietveld refinement of the framework configuration is compatible to single-crystal refinement. Refinement of the interstitial configuration can still be successful, albeit the accuracy is inferior to that of the framework configuration.

The modal proportions of binary mixtures can be determined with an accuracy of 0.9% absolute and 3.0% relative; this is within the level of the assigned precision. The refined modal proportions are independent of step width over the range of $0.02-0.10^{\circ} 2\theta$. However, all conclusions have to be made on the assumption of similar X-ray absorption coefficients for the component phases.

Chapter 4.

The Static Structure-Energy Minimization Method

Two kind of computer simulations of solids are usually used: the Static Structure-Energy Minimization (SSEM) and the Molecular Dynamics (MD) methods. SSEM method searches for minimum structure-energy (static). Vibrational energy, which is most sensitive to sample temperatures, is not considered; MD methods simulate atomic motions by solving Newton's equations of motion for individual atoms in the crystal. Temperature effects can be simulated explicitly with the MD method. However, only the SSEM method is considered here, as it is relatively highly developed and less computer-power demanding.

4.1. Interatomic Interactions

The basic particles in computer simulation of mineral structures are atoms (ions). Therefore, an accurate description of the interatomic interactions is essential in calculating the total energy and simulating atomic motion. The interaction potential, V, can be factored into separate summations (modified from Catlow 1990) as follows:

$$V = \sum_{ij} V'(r_i, r_j) + \sum_{ijk} V'(r_i, r_j, r_k) + \sum_{ijkl} V'(r_i, r_j, r_k, r_l) + \dots$$

$$4-1$$

where the first term refers to the sum over all pairs of atoms, the second term to all threeatom interactions, *etc*. The primes indicate that no duplicate be counted in the summation. In silicates, the potential can best be approximated, using a modified ionic model, as (Purton & Catlow 1990)

$$U = U_{c} + U_{R} + U_{R} + U_{S}$$

in which the U's are potentials associated with the Coulomb interaction (U_c) , a two-atom repulsion (U_R) , a three-atom interaction (U_B) which accounts for the covalency, and polarization (U_S) :

$$U_{C} = \frac{1}{2} \sum_{i}^{(one \ cell)} \sum_{j \neq i}^{(all \ cells)} q_{i} q_{j} R_{ij}^{-1}$$

$$4-3$$

$$U_{R} = \frac{1}{2} \sum_{i}^{(one \ cell)} \sum_{j \neq i}^{(all \ cells)} A_{ij} \exp(-r_{ij}/\rho_{ij}) - C_{ij}r^{-6}$$

$$4-4$$

105

$$U_{B} = \frac{1}{2} \sum_{ijk} K_{b,ijk} (\theta_{ijk} - \theta_{0})^{2}$$

$$4-5$$

$$U_{s} = k_{s} d^{2}$$

in which *i*, *j*, *k* represent individual atoms (or ions), q_i is the formal charge of the *i*th ion, *r* is the internuclear distance, *d* is the core-shell separation of a polarizable ion (*e.g.*, O²⁻) approximated by the shell model (Dick & Overhauser 1958), Θ and Θ_o are the calculated and ideal O-Si-O or O-Al-O bond angles, and $(A_{ip} \ \rho_{ip} \ C_{ip} \ k_{b,ijk}$ and k_s) are the atomspecific parameters which can be obtained either by empirical fitting or by theoretical calculation (see later discussion). The total energy (structure-energy) can be calculated with respect to a given configuration, the starting structure model. The minimum-energy configuration can be sought, usually in the direction of steepest decent of the structure energy through computing the partial derivatives of the total energy with respect to the individual structural parameters.

Among the four interaction terms in eq. 4-2, the Coulombic interaction, U_c , can be calculated explicitly (*c.f.* eq. 4-3) over all atom(ion)-pairs in the system (the whole crystal). There are several ways of formulating the short-range repulsion, U_R . Apart from the Buckingham-type expression (eq. 4-4), there are two additional types of formulation currently in use: the Born-type and the Gilbert-type. The Born-type (Born & Huang 1954) expresses the interaction as

$$U_{ii} = \lambda_{ii} \exp(-r_{ii}/\rho_{ii}) , \qquad 4-7$$

in which U_{ij} is the repulsion between atoms *i* and *j*, r_{ij} is the interatomic distance, and λ_{ij} and ρ_{ij} are atom-pair-specific parameters which have to be determined. The Gilbert-type formulation (Gilbert 1968) is of the form

$$U_{ij} = f_0(B_i + B_j) \exp\left[\frac{A_i + A_j - r_{ij}}{B_i + B_j}\right], \qquad 4-8$$

in which A_{ij} A_{j} and B_{ij} B_{j} are atom-specific parameters, and f_0 is a constant with a numerical value of 1 and units of KCal·mol⁻¹·Å⁻¹. The conversion between the atom(ion)-pair-specific parameters λ_{ij} and ρ_{ij} in the Born-type equation and the atom(ion)-specific parameters in the Gilbert-type equation (provided that the parameter, λ_{ij} , in the former assumes the unit of KCal·mol⁻¹) is (Kunz & Armbruster 1992)

$$(A_i + A_j) = \rho_{ij} \ln(\lambda_{ij} / \rho_{ij})$$

$$(B_i + B_j) = \rho_{ij}$$

$$(4-9)$$

Unlike the summation of Coulombic terms which is over all atom pairs in the crystal, the summation of short-range repulsion terms is only over nearest neighbours, or second-nearest neighbours (when anion-anion interaction is considered).

The three-body interaction term, U_B in eq. 4-2 (*c.f.* eq.4-5), represents the covalency of a given interaction (Sanders *et al.* 1984), and is particularly important for Si-O and Al-O bonds in minerals. Therefore, the simulation in eq. 4-5 will not go beyond the nearest neighbour of a given atom (*e.g.*, Si or Al). The last term in eq. 4-2, the polarization term U_s , describes the polarization (usually of O²⁻ only) using the shell model

of Dick & Overhauser (1958). The shell model is a simple mechanical model in which each ion consists of two components, a core of charge X and a shell of charge Y, connected by a harmonic spring. The sum of X and Y comprises the total formal ionic charge. The shell is massless, and the core has the mass of the ion. The ionic polarization is described by the displacement of the centre of the shell from that of the core (*c.f.* eq. 4-6). It is necessary to include polarization effects to study the lattice dynamics, dielectric and defect properties (Catlow 1990). Ionic polarization (and 3-body interaction) is now routinely used in the simulation of silicate minerals (*e.g.*, Bell *et al.* 1992; Collins & Catlow 1992; Winkler *et al.* 1991; Dove 1989; Purton & Catlow 1990).

In minerals containing the hydroxyl group, an intramolecular interaction is usually included, which can be approximated by a Morse function (Saul *et al.* 1985)

$$V_{OH} = D_{e} \{1 - \exp[-\beta(r - r_{e})]\}^{2}$$
4-10

in which D_e is the hydroxyl bond-energy, β is a parameter to be determined, and r and r_e are the observed and the ideal O-H distances, respectively. Coulombic interaction between O and H of the hydroxyl, which assumes effective charges of -1.426 and 0.426 (determined by quantum mechanical calculation, Saul *et al.* 1985), respectively, has to be subtracted, as it is assumed that the Morse potential describes all components of the interactions between the two atoms involved in the calculation.

4.2. Static Structure-Energy Minimization

The Static Structure-Energy Minimization (SSEM) technique searches for a stable structural configuration in terms of the minimum structure energy in the vicinity of an approximate structure configuration. Given a structural configuration (unit-cell size, content and, in many cases, the arrangement of atoms (ions) in the unit-cell) and physical conditions (P, T), the Gibb's free energy of the system can be written (Burnham 1985) as

$$G=H-T$$
·S $4-1$

where the enthalpy, H, is

$$H = U + P \cdot V$$

$$= U_{coh} + U_{vib} + P \cdot V$$

$$4-12$$

and the entropy, S, is

$$S = S_{config.} + S_{vib}$$
 4-13

in which U is the internal energy, V the unit-cell volume, and the subscripts 'coh', 'vib' and 'config.' denote cohesive, vibrational and configurational, respectively. In ordered structures (no positional disorder) $S_{config.} = 0$, and at ambient temperature and pressure conditions, the P V term is negligible compared to U. Therefore the cohesive energy, which is termed structure energy here, U_{coh} , dominates the free-energy expression. With the static lattice approximation, similarly bonded structures are assumed to have similar vibrational characteristics. These slightly different structures can thus be compared in terms of structure energy, which is approximated by summing up all the interaction energies from eq. 4-3 to 4-6. A problem arises when calculating the Coulombic interaction term (eq. 4-3), which involves a slowly converging series (Boeyens & Gafner 1969). Ewald (1921) first showed that convergence can be accelerated by summing in reciprocal space. After development by Bertaut (1952), different extensions of the Ewald method appeared (Ohashi & Burnham 1972; Williams 1971). The program WMIN (Busing 1981) uses the Williams formulation of the Coulombic interaction energy:

$$U_{c} = \frac{1}{2Z} \sum_{i}^{one \ cell} \sum_{j=i}^{all \ cells} \frac{q_{i}q_{j}}{r_{ij}} [erfc(a)]$$

$$+ \frac{1}{2\pi VZ} \sum_{h\neq 0}^{reciproc. \ latt.} \frac{|F_{c}(h)|^{2}}{|h|^{2}} \exp(-b^{2}) \qquad 4-14$$

$$- \frac{k}{Z} \sum_{i}^{one \ cell} q_{i}^{2},$$

in which Z is the number of formula units per unit-cell, V is the unit-cell volume, h is the reciprocal-lattice vector, and k is the Ewald constant. The first summation in eq. 4-14 would be identical to the formal Coulombic interaction expression (*c.f.* eq. 4-3) if not for the additional term [*erfc(a)*], an error-function complement. The argument "*a*" increases as the distance r_{ij} , and the value of [*erfc(a)*] decreases from unity to zero. The denominator Z is introduced to ensure that the calculated energy represents that of the unit formula. Convergence is accelerated by the introduction of the error-function complement, but with the trade-off of loosing contributions to the Columbic energy at longer distances.

Such loss is compensated exactly by the second summation in reciprocal space, in which

$$F_c(h) = \sum_{i}^{one \ cell} q_i \exp(2\pi i h \cdot x_i)$$

$$4-15$$

where $|F_c(h)|$ is a structure-factor-like quantity in which the charge q_i replaces the atomic scattering factor in the usual X-ray expression ($h = \{h, k, l\}, x_i$ is a vector of coordinates for atom *i*). The convergence of the second sum in eq. 4-15 is accelerated by the term $exp(-b^2)$ whose argument increases as |h| [and $exp(-b^2)$] decreases from unity to zero. The third summation is, in effect, the contributions in the second sum when h = 0.

After the calculation of the total structure energy, the minimum energy configuration can be sought by different methods. The program WMIN offers three methods: (1) Newton's method, which requires calculation of second derivatives of the energy with respect to the structural parameters; (2) the steepest-decent method, which calculates only the first derivatives; (3) the Rosenbrock search, a vector-search method which requires no derivatives. Newton's method is the best approach to locate a local energy minimum. However, it is easy to fall into false minima. Such method is most suitable when the structure is close to its global minimum-energy configuration. The Rosenbrock method is slower, but offers a better chance to locate true minimum, even from a saddle point (Busing 1981). It is desirable to start the minimization with the Rosenbrock search, and end it with Newton's method, or the method of steepest descent.

4.3. Parameterization of the interatomic potentials

Except for the Coulombic interactions (which can be calculated explicitly), the potential functionals in eq. 4-2 must be parameterized empirically or theoretically. The empirical approach fits the parameters to known structures, making no distinction between different sources of interaction (*e.g.*, ionic or covalent). The theoretical approach uses Modified Electron-Gas (MEG) theory (Muhlhausen & Gordon 1981) which considers purely ionic interaction and is confined to closed-shell systems. A quantum-mechanical approach may also be used to parameterize functions for interactions which cannot be done by empirical or MEG methods (*e.g.*, Morse function for the O-H interaction: Saul *et al.* 1985).

4.3.1. Empirical parameterization

In some simple cases, the short-range repulsion parameters, λ and ρ as in eq. 4-7, can be fitted to compressibility data (Kittel 1971) or vibrational spectra (Lasaga 1980; Bish & Burnham 1980). The more common approach is to fit the parameters to the known structure (Busing 1970; Catlow & James 1982; Catlow *et al.* 1982; Miyamoto & Takeda 1984; Matui & Busing 1984a,b; Kunz & Armbruster 1992). The short-range interaction parameters, q_i , can be adjusted by WMIN in a least-squares procedure (in which one or more related structures are entered as observations) by solving the following equation (Busing 1981):

$$\overline{B} W B \Delta a = -\overline{B} W d$$
4-16

where $d_i = \partial U/\partial p_i$, and $B_{ij} = \partial^2 U/\partial p_i \partial q_i$ are the derivatives of the energy with respect to structural parameter, p_i , and energy parameter, q_j ; W is a weight matrix. The equation is solved for Δq_j , the change in the short-range parameter q_j that tends to minimize the values of d_i .

4.3.2. Parameterization using MEG theory

The Born-type short-range potential functional (eq. 4-7) can be fitted by a leastsquares procedure to the results of an MEG calculation which gives the interaction energy of a given cation-anion pair as a function of the interatomic distance (Post & Burnham 1986). The MEG calculation gives the total interaction energy as (Burnham 1990)

$$U = U_C + U_{sr} + U_{se} \tag{4-17}$$

where U_c is a Coulombic interaction energy arising from the interaction of the non-overlap parts of the electron density of two ions, and can be calculated directly as in the standard ionic model for point charges (*c.f.*, eq. 4-3); U_{sr} is the short-range energy, and can be calculated from electron-gas theory (Gordon & Kim 1972; Waldman & Gordon 1979) which assumes that the total charge-density of the cation-anion pair, ρ_{ij} , is simply the direct sum of the individual charge-densities, ρ_i and ρ_j . The charge-density distributionfunction ρ_i / ρ_j of the individual ion *i/j* can be calculated using Hartree-Fock Self-Consistent-Field theory. U_{sr} can be separated into three components, the kinetic E_{kin} , exchange E_{ex} , and correlation E_{corr} energies:

$$U_{sr} = F[E_{kin}(\rho), E_{ex}(\rho), E_{corr}(\rho)]$$

$$4-18$$

in which ρ is the direct sum of ρ_i and ρ_j . The density function, ρ , needs to be modified (Waldman & Gordon 1979) from the simple sum in order to correct for errors in the predicted potential-well depths (Gordon & Kim 1972) arising from gradients in nonuniform densities. U_{se} in eq. 4-18 are the ion self-energies, corresponding to the energy differences between free ions and shell-stabilized ions. A shell-stabilized ion is a model (Muhlhausen & Gordon 1981) to account for the isotropic-size change of an ion due to a crystal field (by introducing a valence shell of fixed radius r_0 rather than the ionic radius).

4.3.3. Parameterization through quantum-mechanical calculation

When there is insufficient data to derive a reliable empirical potential, and it is not possible to use MEG theory (which is suitable for closed-shell ionic solids only), it is necessary to use quantum-mechanical calculation to derive the parameters for a given potential. The parameterization of a Morse potential for the OH⁻ group in crystalline NaOH (Saul *et al.* 1985) is an example. The crystal was divided into two regions: an inner quantum-mechanical cluster and outer point charges. The electronic wave function of the cluster (the inner region, embedded in the outer region of the point-charge model) was calculated with two separate basis sets for O and H, and Na, respectively by the Hartree-Fock Self-Consistent-Field (HF SCF) method. The energy of the cluster ions can thus be obtained from the calculated wavefunction. Such energies (as a function of internuclear separation in this particular case) can then be fitted to a Morse function.

4.4. Application of Static Structure-Energy Minimization: Examples

Quartz

Simulation of the quartz structure using an ionic model (Tossell 1980; Post & Burnham 1986) failed to describe the structure correctly, presumably due to the fact that the bonding in quartz bears strong covalent character. This led to the development of empirical methods that incorporate both ionic and covalent (angle-dependent) features (Sanders *et al.* 1984; Post & Burnham 1986). In the model of Sanders *et al.* (1984), Si and O are assigned their usual formal charge, and covalency is modelled by introducing a bond-bending term (the three-body interaction, *c.f.* eq. 4-5). The model reproduced the quartz structure well, and the simulation results agree well with a recent quantum-mechanical calculation (van Beest *et al.* 1990).

Forsterite

There have been a number of simulations of forsterite, Mg_2SiO_4 (Price & Parker 1984; Post & Burnham 1986; Price *et al.* 1987a,b; Jackson & Gordon 1988). These simulations differ principally with respect to the form and parameterization of the interatomic potentials. The work of Price *et al.* (1987a,b) gave the best fit of the calculated structure to the observed structure. The interatomic-potential parameterizations were adopted from different sources: Mg-O of the Born-Mayer form (Lewis 1985); O-O of the

Buckingham form (Saul *et al.* 1977); and Si-O of the Buckingham form (Sanders *et al.* 1984). In addition, a three-body interaction involving O-Si-O, and polarization effects involving O (approximated by the shell model) were incorporated; they were parameterized by fitting to the structure and elastic constants of quartz (Sanders *et al.* 1984).

Diopside

Diopside, CaMgSi₂O₆, is difficult to simulate (Catlow *et al.* 1982; Matsui & Busing 1984a; Post & Burnham 1986). The difficulties arise from the fact that all three O atoms in the asymmetric unit show strong deviations from Pauling's second rule (Burnham 1990). More recent simulations by Dove (1989) gave better results due to the implementation of three-body interactions and polarization effects. Modelling of diopside structure resumed (Winkler *et al.* 1991) with a modified force-constant, k, in the shell model, leading to improved agreement with the experimental structure details.

Al,SiO, polymorphs

The Al_2SiO_5 polymorphs (andalusite, sillimanite and kyanite) have Al in various coordination. Each structure has one [4]-coordinated Si and one [6]-coordinated Al, and one Al in [5]-, [4]-, and [6]-coordination, respectively. The simulation of these minerals will test the transferability of the potential parameterizations and the soundness of the existing simulation model (which involves three-body interactions and polarization effects).

Winkler et al. (1991) used the same simulation procedure as for diopside in the
simulation of the Al_2SiO_5 polymorphs, except that they had to consider different equilibrium O-Al-O angles for different coordination. The simulated results are generally good, except for discrepancies of 2-3% in the cell dimensions of kyanite and sillimanite. There was also a problem of an exceptionally short O_3 - O_3 distance in andalusite (2.06 Å compared to 2.26 Å); this was attributed to an inadequacy in parameterizing the 3-body interaction constant for the [5]-coordinated Al.

Feldspar

The crystal structures of low albite (NaAlSi₃O₈), maximum microcline (NaAlSi₃O₈), and anorthite (CaAlSi₂O₈) were modelled by Purton & Catlow (1990). Emphasis was laid on the comparison between different simulation models and different potential parameterizations. The model that incorporates three-body interaction and polarization effects consistently performed better than the two-body rigid-ion model. It was also found that the MEG potentials for the cation-O interaction fit the feldspar structures better than any other empirical cation-O potentials. T-O-T bond angles are sensitive to different choices of cation-O interaction potentials. It was shown that, at the present level of approximation, the feldspar structure can be simulated accurately.

Micas

Muscovite, phlogopite and octahedrally-substituted phlogopite analogues have been modelled and compared to the structure and elastic and dielectric properties obtained experimentally (Collins & Catlow 1992). The interaction model was essentially identical

with the ones used in the simulation of the other minerals (see above). One thing to be noted is that rather than using MEG-derived interatomic potentials for the cation-O interaction as in the feldspar modelling, empirical cation-O parameters were used throughout the work. However, all parameterizations were transferred from previous studies. The interaction within the OH group was approximated by a Morse potential whose parameterization was obtained from a previous ab initio study (Catlow 1977). The Si-Al disorder at the tetrahedral sites was approximated using a single hybrid species $(Al_{0.25}Si_{0.75})$ of charge +3.75 and with the short-range interaction of Si. One immediate shortcoming of this average treatment of the Si-Al order-disorder is that potential terms other than the Coulombic term are not averaged. The parameter values (e.g. the repulsion parameters) for Si, for example, are used as approximation of the average value. Jones et al. (1990) proposed an approach in simulating such disorder explicitly with the split-site model. A particular lattice site can have a fraction x of an ionic species A (e.g. Si⁴⁺) and a fraction y of an ionic species B (e.g. Al^{3+}), where the position of each can be relaxed separately based on their own set of parameters for the various potential functions (see equations 4-3 to 4-9). Such treatment has the advantage that the overall calculation is still confined in the true unit-cell of the mineral under study. More general treatment of Si-Al order-disorder is through the construction of a super-cell in which possible Si-Al orderdisorder schemes are treated explicitly in terms of structure-energy minimization (see discussion in the following section on Si-Al order-disorder).

The O-Al-O bond angles involving the [6]-coordinated Al were not considered in the short-range interaction calculation. In general, the simulated cell dimensions are within 1% of the experimental values. T-O bond distances are within 0.02 Å of the experimental values, showing the utility of using hybrid tetrahedral species in calculating short-range repulsions. The calculated O-H bond-distance also agrees closely with the experimental data, indicating the applicability of the Morse-potential model. Other structural details, including the corrugation of the basal surfaces (the departure from coplanarity of the basal O-atoms) and the mean Al-O distances, were also modelled well. Problems with the K-O potential (being too repulsive) was recognized, which cause the O_{basal} -T- O_{apical} angle and the tetrahedral rotation angle to be too small.

Al-Si order-disorder

In a series of papers (Bertram *et al.* 1990; Jones *et al.* 1990; Padlewski *et al.* 1992a,b), Price and coworkers studied Al/Si ordering in sillimanite and mullite. Super-cells consisting 3 to 8 unit-cells were used. In the relatively simple case where three unit- cells were used in the super-cell, there are a total of $\sim 3 \cdot 10^6$ possible configurations of arranging 12 Al and 12 Si atoms at the 24 tetrahedral sites. These configurations were subdivided into 43 groups according to the nature of first, second, third, ... nearest neighbours of the Al atom at the tetrahedral site. At least 3 configurations in each group were considered and full-energy minimization performed. Löwenstein's rule was clearly displayed, as configurations having Al-Al nearest neighbours are either not stable (non-convergent during the EM processes) or give large structure-energies. The energy associated with Al/Si ordering for nearest-neighbour sites is 0.97 eV in the *ab*-plane, and 0.56 eV perpendicular to the *ab*-plane. The interaction of the second-nearest neighbours

was significant, whereas that of the more distant neighbours was negligible.

4.5. Summary

Static Structure-Energy Minimization (SSEM) of crystal structure is a semiempirical method that involves establishing and parameterizing an interaction model. Current SSEM models include individual terms of Coulombic-interaction, repulsion, covalency and polarization, and assumes that the interaction terms are additive. Each interaction is represented by an analytical function with (except the Coulombic term) parameter(s) to be determined. The parameterization can be done by any or all of the following means: (1) fitting to known crystal structures; (2) fitting to the result of calculation of the Modified Electron Gas (MEG) type that consider ionic interaction only between closed-shell ions; (3) fitting to result of quantum-mechanical calculation. Parameterization from all three approaches are in use, and were shown to be transferable between different structures. The current SSEM method is not only capable of reproducing details of crystal structure (unit-cell dimensions and atomic coordinates), with minor modification, it is also capable of reproducing physical properties. The SSEM method can be important prediction tools in crystal-structure studies of powder materials for which experimental data (powder diffraction and spectroscopic observations) may not be in such a resolution that certain structural details, such as the light-atom position, be unambiguously determined.

Chapter. 5

Calculating H-atom Positions in Mica and Clay Structures

Clay minerals are of both geological and environmental importance, and have industrial importance in the oil, paper and ceramic industries. However, the clay minerals are usually very fined-grained. Powder-diffraction methods are usually used in the crystalstructure determination of the clay minerals. However, due to the nature and currently limited resolution of powder-diffraction methods, determination of H-atom positions in the clay structures can be very difficult. Hydrogen atoms, combined with the hydroxyloxygens, constitute part of the nearest coordination sphere of the octahedral cations (see later discussion on the clay structures). Difficulty in locating H-atom(s) originated from the fact that H-atom is not a strong X-ray scatterer, and it causes strong incoherent neutron scattering. X-ray diffraction method relies on the different scattering power of an atom to locate that atom in the structure. Hydrogen, as part of the OH-group, has less than one electron associated to it, which makes its scattering power vary weak compared to the other atoms commonly found in clay minerals (Fig. 5-1). Extremely high-quality (free of deformation and stacking-disorder) crystals are needed in order to be able to obtain intensity data to reliably determine the H-atom position(s). However, this is very rarely the case. Stacking disorder is very common in clay minerals (Brindley 1980, see also 3.2.). Neutron diffraction may in some cases offer a solution to the problem (as demonstrated by examples cited in this chapter that are to be discussed later). However, the technique is in many ways limited in its application. Neutron diffractions, especially those with highflux neutron source, are not as widely available as X-ray diffraction. Furthermore, H causes strong incoherent scattering cross section due to the scattering from the two possible nuclear spin states of ¹H (von Dreele 1989). A diffractogram of high signal-tonoise ratio may be very difficult to obtain because of this exceptionally high incoherent background contribution. Deuterating H-containing materials to replace H by D can eliminate the problem of high incoherent scattering. However, the deuteration process is not only expensive and time-consuming, there is also the problem, for natural Hcontaining materials, of incomplete deuteration. As D has positive neutron diffraction length, whereas H has negative diffraction length, scattering from residual H will cancel the scattering from D, making the detection of D or H difficult. Therefore, it is necessary, or at least helpful, to use theoretical calculation to assist in locating H-atom positions in

clay minerals.

Micas are minerals that closely resemble the clay minerals. However, unlike clay minerals, micas usually occur in large crystals, which makes detailed single-crystal structure study possible. Hydrogen-atom positions in several mica minerals had been determined experimentally using single-crystal neutron diffraction, in conjunction with single-crystal X-ray diffraction experiments. Reproducing these H-atom positions using computer simulation (the SSEM technique) will be a step forward in assisting determining of H-atom positions in clay minerals using powder diffraction method.

Theoretical calculation of H-atom positions or O-H orientations in phyllosilicates began in the early 1970's. The ionic model was used by then and only the electrostatic (Coulombic) energy was calculated with respect to O-H orientation in the structure (Giese 1971). The approach was applied to 31 dioctahedral and trioctahedral hydrated phyllosilicates to determine their O-H orientations (Giese 1979, 1984). This early work was not concerned with O-H distances. Total energies, with the calculation limited to unit cell (in spite of the electrostatic interaction being a very slowly converging quantity in terms of interatomic distance; see equation 4-3), were calculated for a selected number of O-H orientations, and the one that gave the lowest energy was suggested to be the energetically favourable orientation. Such calculation gives qualitative idea of the O-H orientations. The method was further developed (Abbott *et al.* 1989; Abbott 1992) by considering the Born repulsion (equation 4-7) and using energy-minimization techniques in the calculation. The O-H distance is not fixed in this calculation, which includes any number of nearest and non-nearest neighbours of the H-atom in the calculation of the

Figure 5-1. X-ray scattering power of H-atom, in comp: In with those of the other atoms commonly found in clay minerals

electrostatic and repulsion terms. Potential sites (the vicinity of each hydroxyl O-atom) for the H-atoms were considered one at a time. Given an arrangement of the non-H atoms within certain radius from the potential H-atom site, equilibrium (with minimum structure energy) H-atom position can be sought and taken as the calculated H-atom position. This method reproduced H-atom positions in a number of mica and clay species. One problem with this method is that different short-range repulsion parameters have to be used for different environments of the OH-group (environment that corresponds to trioactohedral mica or brucite-type structures). This hinders the general applicability of the method and may raise uncertainty in the final results. Possible sources of the problem may be (1) the truncation of the Coulombic summation at ~ 4.5 Å from the H-atom; (2) omission of three-body interaction term. The method is further limited in that it can consider only one H-atom position at a time. When a structure contains more than one unique H-atom positions, possible strains arising from interaction of the H-atoms cannot be realised.

Developed in parallel is the SSEM method for periodically repeating structures that was reviewed in chapter 4, which had been used to calculate H-atom positions in kaolinite (Collins & Catlow 1991), and, with minor modification, the whole structures and the physical properties of micas (Collins & Catlow 1992). The agreement of the calculated structures and their corresponding physical properties to the observed indicated that the interaction model used in the calculation (including electrostatic, repulsion, polarization, and bond-bending terms) is applicable in general to micas and clay minerals. Although semi-empirical molecular-orbital calculation (Peterson *et al.* 1979) and periodic *ab-initio* Hartree-Fock calculation (Hess and Saunders 1992) have been used to study the O-H

orientations and individual H-atom positions, it is chosen here to use the more generally applicable SSEM method for the calculation of H-atom positions in the mica and clay minerals. All H-atom positions in a structure will be considered simultaneously by fixing the rest of the structures (unit-cell dimension, and atomic coordinates of non-H atoms) at the values determined by single-crystal diffraction experiments. One objective of the work is also to resolve uncertainties in the interpretation of structural configurations concerning H-atom positions in several micas and clay minerals.

5.1. Crystal Structures of Micas and Clay Minerals

Micas and clay minerals are members of phyllosilicates in which the TO_4 tetrahedra are interconnected laterally to form two-dimensionally extending sheet of composition T_2O_5 (T = Si, Al, or Fe³⁺) (Fig. 5-2 and 3). Each tetrahedron shares three of its corners (O-atoms) with the neighbouring tetrahedra, with the fourth corner (the apical O-atom) points in a direction normal to the sheet. These apical O-atoms form part of the octahedral sheet immediately adjacent to the tetrahedral sheet. Apart from the apical O-atoms, the common plan of junction between the tetrahedral and octahedral sheets also consists of OH-groups (may be replaced by F-atoms). In the centre of the octahedra may be Mg, Al, Fe²⁺ and Fe³⁺, but other atoms (cations) of similar size (Li, Ti, V, Cr, Mn, Co, Ni, Cu and Zn) may also be present. Out of every three octahedra for a given species, the average occupancies of the octahedra can range from 2 to 3, with species at each end termed di- and tri-octahedral, respectively. The tetrahedral and the octahedral sheets

combine into layers that are basic building blocks of micas and clay minerals. An individual layer may be a 2:1, or an 1:1 layer, depending on the ratio of the number of tetrahedral sheets to that of the octahedral sheet. A 2:1 layer consists of two opposing tetrahedral sheets (with the apices of the tetrahedra in one sheet pointing to those of the other sheet), with an octahedral sheet sandwiched in between (Fig. 5-2). Alkaline or alkaline-earth cations (K, Na, Li, Ca) may be found in between layers. An 1:1 layer consists of one each of the tetrahedral and octahedral sheets (Fig. 5-3), where the plan of anions in the octahedral sheet not shared by the tetrahedral sheet consists entirely of OH-groups (Fig. 5-4).

In real mica or clay structures, individual layers may be stacked to show periodicity in translation or rotation. Different (periodical) stacking sequences give rise to different *polytypes*. Smith & Yoder (1956) and Bailey (1969) showed that there are at least 12 possible polytypes for micas and clay minerals. Six of the relatively common polytypes are shown in Figure 5-5.

The layers can also stack in a random fashion to a certain degree. Diffraction studies of these species will be more difficult.

5.2 The Calculation

The SSEM program used in the present work is WMIN (Busing 1981). A subroutine, THRBD, was added to the original program to include three-body and polarization terms (see equation 4-5 and 4-6), which was tailored for silicate structures.

Figure 5-4. Stick-and-ball representation of the 1:1 clay mineral (kaolinite example). Structural parameters from Bish (1993)

.

Figure 5-5. The six common polytypes (from Smith & Yoder, 1969) of micas. The arrows are the interlayer stacking vectors. Full line vectors show the layer stacking in one unit cell, whereas broken line vectors show the positions of layers in the next unit cell. The base of the unit cell is shown by thin lines, and the space group and lattice parameters are listed by the side of the diagram in each case.

Minerals selected in the study (Table 5-2-1) have near-end-member chemical compositions and have H-atom positions determined by neutron diffraction. These minerals can be divided into the following groups:

(1) Minerals with non-split H-atoms: phlogopite, chlorite, kaolinite;

(2) Minerals with split H-atom positions: margarite;

(3) Minerals with reasonably well-determined H-atom positions, but with rooms for different interpretation of the results: muscovite, dickite.

All minerals were assumed to have end-member chemical compositions in the calculation. There are two stages in determining the H-atom positions:

Stage 1: locate H-atom position(s) (presumed unknown) in the vicinity of the corresponding hydroxyl O-atom(s). Unit-cell dimensions and non-H atomic coordinates were all fixed at the experimentally determined values. The program was set up such that H-atoms can be positioned on the same site as those of the corresponding hydroxyl O-atoms. Space-group symmetry of the crystal determined experimentally based on the arrangement of the non-H atoms is used, and H-atom(s) are forced, at the stage, to obey this symmetry;

Stage 2: relax the symmetry of the structure, now including the H-atom position(s) located in stage 1, to space-group symmetry P1. All H-atoms can vary their positions independently, with the unit-cell dimensions and the non-H atomic positions still fixed at the experimental values. Deviation, if any, of the H-atom positions from the symmetry of the non-H atoms will be detected at this stage (see later discussions on individual species).

Interaction potentials used in the SSEM calculations include Coulombic interaction,

Mineral	Chemical Formula	Polytype	References*
Phlogopite	KMg ₃ (AlSi ₃)O ₁₀ (OH) ₂	1 <i>M</i>	Rayner,1974
Chlorite	Mg ₁₂ [Si ₈ O ₂₀](OH) ₁₆	IIb_4	Joswig et al. 1980
Margarite	Ca ₂ Al ₄ (Si ₄ Al ₄)O ₂₀ (OH) ₄	$2M_1$	Joswig <i>et al.</i> 1983
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	1 M	Bish, 1993
Muscovite	KAl ₂ (AlSi ₃)O ₁₀ (OH) ₂	$2M_1$	Rothbauer, 1971
Dickite	Al ₂ Si ₂ O ₅ (OH) ₄	1 <i>M</i>	Bish & Johnston, 1993

TABLE 5-2-1. MICAS AND CLAY MINERALS SELECTED FOR STUDY

* Reference to structure refinements from neutron-diffraction data.

S	hort-range repulsion:	rt-range repulsion: Born/Buckingham-type and Morse potentials*				
		λ (kCal/mol)	ρ (Å)	C (kCal/mol·Å ⁻⁶)	Ref.	
$Si^{4+} - O^{2-}$		29607.352	0.3025	245.860	[1]	
$Al^{3+} - O^{2-}$		33675.03	0.29912		[2]	
$K^{1+} - O^{2-}$		1505142.4	0.2134		[3]	
$O^{2-} - O^{2-}$		524946	0.149	642.9	[1]	
	<u>, (), (), (), (), (), (), (), (), (), ()</u>	D _e (kCal/mol)	$r_{\rm c}$ (Å)	β (Å ⁻¹)		
H ^{0.426+} - O ^{1.42}	26-	162.63	0.9485	2.1986	[4]	
	E	ond-bending inter	action**			
		k _B (kCal/rad ²)		θ ₀ (°)		
O ²⁻ – Si ⁴⁺ –	O ²⁻	48.3631		109.47	[1]	
Shell-core interaction between O-shell and O-core***						
k _p (kCal/Å ²)						

TABLE 5-2-2. POTENTIAL PARAMETERS USED IN THE STRUCTURE-ENERGY CALCULATION

* c.f. equations 4-7, 4-4 & 4-10; ** c.f. equation 4-5; *** c.f equation 4-6

1728

[1]

[1] Sanders *et al.* (1984); [2] James (1979); [3] Post & Burnham (1986);
[4] Saul *et al.* (1985).

O(core)^{+0.86902} - O(shell)^{-2.86902}

repulsion, covalency and polarization (of the forms of equation 4-3 to 4-6). For the interaction between O and H of the OH groups, a Morse potential was used (*c.f.* equation 4-10). Parameters used in these potentials are given in Table 5-2-2. Isomorphous replacement, such as $AI \rightarrow Si$ in muscovite, was not considered in the energy calculation, except that an effective average formal charge was used for the *T* atoms in the calculation of the Coulombic energy. The potential terms involving (Si,AI)–O were approximated using the parameterization for Si–O. Although such practice has been suggested to be undesirable (*e.g.* Post & Burnham 1986), reasonable success had been reported using this approach in modelling a number of mineral structures (*e.g.* Collins & Catlow 1992, Abbott *et al.* 1989). Furthermore, the calculation focuses on long-range symmetry, rather than the shot-range symmetry, so that the results from the calculation can be compared directly to the results of diffraction experiment, or be verified using diffraction methods.

In the SSEM calculation, 6 cycles of Rosenbrock search was used to reduce the probability of the minimization falling into a local minimum. The search was then switched to Newton's method to speed up the process.

5.3. Results and Discussion

The micas and clay minerals selected in the study are among their most common polytypes (Bailey 1980; *c.f.* Table 5-2-1), and the results and discussions below will be limited to the polytype considered of each mineral.

5.3.1. Phlogopite, Chlorite and Kaolinite

H-atom position(s) calculated with symmetry constraints of C2/m, C1 and C1 for phlogopite, chlorite and kaolinite, respectively, are given in Table 5-3-1. H-atom positions calculated with symmetry relaxed to P1 are given in Table 5-3-2.

Phlogopite has only one unique H-atom position, and the calculation reproduces the H-atom position determined by neutron diffraction to the third decimal place in the fractional atomic coordinate (Table 5-3-1), which is within 2σ (σ = estimated standard deviation) of the experimental value. For chlorite and kaolinite that have multiple unique H-atom positions in their structures, the accuracy to the third decimal place were still achieved for the bulk of the coordinates, with small proportions of the coordinates giving accuracies to the second decimal place (Table 5-3-1). In chlorite, the difference ranges from 0 to 34σ , with an average of 10σ . Such difference may be attributed to the fact that while the calculation assumed ideal chemical composition (Table 5-1-1), the mineral in the neutron diffraction study shows chemical composition slightly off ideal (Joswig et al. 1980). Nevertheless, even the largest difference, at the x-coordinate of H_2 of -0.017, represents only a shift along the *a*-axis (axial length of 5.3266 Å) of 0.09 Å, which is about 1/10 of the average O-H distance of 1.00 Å (Shannan 1979). Comparison of the calculated and the observed coordinates for kaolinite is slightly more difficult, as the standard deviations of the observed coordinates, determined by powder neutron diffraction, vary from 0.0001 to 0.003 (by a factor of 30). It should be noted that (1) the calculated coordinates that associate with some of the greatest differences (at $H_1(z)$, $H_3(x)$, $H_4(x)$ of 0.011, -0.016 and 0.041, respectively) correspond to the experimentally determined

TABLE 5-3-1. CALCULATED H-POSITIONS (FIRST ROWS) IN PHLOGOPITE, CHLORITE AND KAOLINITE WITH SYMMETRY CONSTRAINTS, COMPARED TO THOSE DETERMINED EXPERIMENTALLY (SECOND ROWS). DIFFERENCES ARE GIVEN IN THE THIRD ROWS.

Phlogopite* KMg3(AISi3)O16(OH)2	H	<i>x</i> 0.0981 0.0992(40) -0.0011	y 0.0000 0.0000	<i>z</i> 0.3050 0.3081(15) -0.0031
Chlorite** (Mg ₁₂)(Si ₈ O ₂₀)(OH) ₁₆	H ₁	0.7129 0.7139(5) -0.0010	0.3418 0.3339(3) 0.0079	0.1405 0.1399(3) 0.0006
	H ₂	0.1023 0.1193(5) -0.0170	0.0131 0.0054(3) 0.0076	0.3632 0.3632(2) 0.0000
	H ₃	0.1406 0.1301(5) 0.0105	0.3326 0.3353(3) -0.0027	0.3627 0.3629(2) -0.0002
	H_4	0.6184 0.6143(5) 0.0041	0.1585 0.1594(3) -0.0009	0.3625 0.3635(2) -0.0010
Kaolinite*** Al ₂ Si ₂ O ₅ (OH)4	H ₁	0.152 0.145(3) 0.007	0.0624 0.0651(1) -0.0027	0.337 0.326(6) 0.011
	H ₂	0.063 0.063(3) 0.000	0.1681 0.1638(1) 0.0043	0.736 0.739(1) -0.003
	H ₃	0.020 0.036(3) -0.016	0.5111 0.5057(2) 0.0054	0.731 0.732(1) -0.001
	${ m H_4}$	0.575 0.534(3) 0.041	0.3201 0.3154(2) 0.0047	0.736 0.728(1) 0.008

* observed H-position taken from Rayner (1983); ** observed H-position taken from Joswig *et al.* (1980); *** observed H-positions taken from Bish (1993)

TABLE 5-3-2. H-ATOM POSITIONS IN PHLOGOPITE, CHLORITE, AND KAOLINITE PROJECTED BACK INTO THE ASYMMETRIC UNITS AFTER SSEM WITHOUT SYMMETRY CONSTRAINTS

Symmetry operation	х	у	Z
11/11	0076	Phlogopite	2025
H(11) x, y, z	.0976	.0000	.3035
H(12) -x, y, -z	.0970	.0000	.3035
H(13) I/2+x, I/2+y, z	.0976	.0000	.3035
H(14) 1/2-x, 1/2+y, -z	.0972	.0000	.3035
Mean	.0975	.0000	.3035
Determined with symmetry	.0981	0	.3050
Experimental*	.0992(40)	ů 0	.3081(15)
		Chlorite	
H(11) x y z	.7134	.3418	.1420
$H(12) \frac{1}{2+x} \frac{1}{2+y} z$.7134	.3418	.1420
H(13) -x - y - z	.7134	.3418	.1420
H(14) I/2-x, I/2-y, -z	.7134	.3418	.1420
Mean	.7134	.3418	.1420
Determined with symmetry	.7129	.3418	.1405
Experimental**	.7139(5)	.3339(3)	.1399(3)
H(21) x, y, z	.1004	.0143	.3616
H(22) $1/2 + x, 1/2 + y, z$.1004	.0143	.3616
H(23) -x, -y, -z	.1004	.0143	.3616
H(24) 1/2-x, 1/2-y, -z	.1004	.0143	.3616
Mean	.1004	.0143	.3616
Determined with symmetry	.1023	.0131	.3632
Experimental**	.1193(5)	.0054(3)	.3632(2)
H(31) x, y, z	.1420	.3326	.3610
H(32) $1/2+x, 1/2+y, z$.1420	.3326	.3610
H(33) -x, -y, -z	.1420	.3326	.3610
H(34) 1/2-x, 1/2-y, -z	.1420	.3326	.3610
Moon		3326	
Intermined with commentary	•144V 1406	.3340	3677
Experimental**	1202(5)	.3320	3629(2)
Буреншешаг.	.1202(2)	(c)	.5027(2)

TABLE 5-3-2. (continue	ue)	(continu	-2. (5-3	E	BL	ГA]
------------------------	-----	----------	-------	-----	---	----	----	---

.1577 .3 .1577 .3 .1577 .3 .1578 .3	607 607 607
.1577 .3 .1577 .3 .1577 .3 .1577 .3 .1578 .3	3607 3607 3607
.1577 .3 .1577 .3 .1578 .3	3607 3607
.1577 .3 .1578 .3	1607
.1578 .3	
	607
.1577 .3	3607
.1585 .3	3625
(5) .1594(3) .3	3635(2)
Kaolinite	
.0648 .3	344
.0648 .3	344
.0648 .3	344
.0624 .3	337
3) .0651(1) .3	326(2)
.1683	740
.1683	740
.1683 .7	740
.1681 .7	736
3) .1638(1) .7	739(1)
5096	735
5097	735
.5097	735
5111	731
(5017)	732(1)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
.3180	739
.3180	739
.3180 .'	739
.3201	736
3) .3154(2) .	728(1)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

* Rayner (1974); ** Joswig et al. (1980); *** Bish (1993)

coordinates that give the largest standard deviations (0.006, 0.003 and 0.003, respectively); (2) the coordinates (y-coordinates of all the H-atoms) determined to a higher precision (with standard deviations of 0.000n) all agree with the calculated to the third decimal place that has been shown to be the accuracy of the SSEM method. These two points suggest that both theoretical and experimental studies with respect to the crystal structure of kaolinite are needed.

After SSEM calculation with symmetry relaxed, the H-atom positions obtained for each of the three minerals (Table 5-3-2) retain the corresponding symmetry of the non-H atom configuration. There is extensive evidence (Farmer & Russel 1964; Rayner 1974; Joswig *et al.* 1980; Johnston *et al.* 1990; Hess & Saunders 1992; Bish 1995), that H atoms in these minerals do obey the symmetry of the non-H atoms. Such a result indicates that the SSEM procedure is reliable in reproducing H-atom positions in environments with site symmetry higher than P1.

5.3.2. Margarite

Margarite is unique in that H-atom positions appear in pairs and are so close together that they can be represented by split H-atom model (Joswig *et al.* 1983). Reproducing such split-atom model will be a more stringent test of the SSEM procedure.

From the non-H configuration of Joswig *et al.* (1983), assuming non-split H-atoms that obey the *Cc* symmetry of the non-H atoms, SSEM calculation generated two H-atom positions (Table 5-3-3). It is interesting to note that these two H-atom positions are very close (in errors of ~ 0.01 in fractional coordinates) to H(11B) and H(12B), respectively,

TABLE 5-3-3. H-ATOM POSITIONS IN MARGARITE CALCULATED WITH SYMMETRY CONSTRAINT *Cc* AND ASSUMING NON-SPLIT H-ATOMS

	x	у	Z	
H1	0.449	0.581	0.107	
H(11B)*	0.439(3)	0.591(2)	0.098(1)	
diff.	0.010	-0.010	0.009	
H(11A)*	0.3663(7)	0.6550(5)	0.0620(3)	
H2	0.566	0.386	0.904	
H(12B)*	0.561(4)	0.399(3)	0.905(1)	
diff.	0.005	-0.013	0.001	
H(12A)*	0.6325(9)	0.3452(5)	0.9396(4)	

* Split H-atom positions determined from neutron diffraction experiment (Joswig *et al.*, 1983)

Figure 5-6. Hydroxyl-orientation in margarite (a) as compared to O-H orientations in dioctahedral mica (muscovite, b) and trioctahedral mica (phlogopite, c, next page).

Figure 5-6 (continue).

 \mathcal{C}

	Margarite			Muscovite		
a(Å)	5.108(1)			5.1918(2)		
b(Å)	8.844(2)			9.1053(5)		
$c(\text{\AA})$	19.156(3)			20.0457(7)		
β(°)	95.48(2)			95.735(3)		
Space						
group	Cc			C2/c		
	x	у	Z	x	у	z
Ca/K	0.00000	0.0978(5)	0.25000	0.00000	0.0978(5)	0.25000
M1	(omitted from	m simulation)				
M21	0.2522(4)	0.0851(2)	0.0003(1)	0.2501(6)	0.0838(3)	0.0001(1)
T11	0.4636(4)	0.9279(3)	0.1425(1)	0.4650(5)	0.9291(2)	0.1356(1)
T21	0.4546(3)	0.2565(2)	0.1449(1)	0.4514(5)	0.2581(3)	0.1356(1)
O11	0.3636(2)	0.0978(1)	0.1776(1)	0.4172(4)	0.0929(2)	0.1682(1)
O21	0.2674(2)	0.7786(1)	0.1683(1)	0.2505(4)	0.8106(2)	0.1577(1)
O31	0.2882(3)	0.3906(2)	0.1785(1)	0.2504(4)	0.3702(2)	0.1686(1)
041	0.4611(2)	0.9455(1)	0.0526(1)	0.4609(4)	0.9428(2)	0.0534(1)
051	0.3953(2)	0.2545(1)	0.0600(1)	0.3859(3)	0.2514(2)	0.0534(1)
OHII	0.4547(4)	0.5670(2)	0.0517(1)	0.4566(4)	0.5628(2)	0.0502(1)
HIIA HIIB	0.3663(7) 0.439(3)	0.6550(5) 0.591(2)	0.0620(3) 0.098(1)	0.3656(19)	0.6560(13)	0.0522(10)
				Generated by	y the 1-operati	on
M22	0.7480(4)	0.9169(2)	0.9998(1)	0.7499	0.9162	0.9999
T12	0.5350(3)	0.0747(2)	0.8553(1)	0.5350	0.0709	0.8644
T22	0.5468(4)	0.7438(2)	0.8579(1)	0.5486	0.7419	0.8644
O12	0.6376(2)	0.9181(1)	0.8227(1)	0.5828	0.9071	0.8318
O22	0.7122(2)	0.2156(1)	0.8323(1)	0.7495	0.1894	0.8423
O32	0.7352(3)	0.6036(2)	0.8214(1)	0.7496	0.6298	0.8314
O42	0.5451(2)	0.0618(1)	0.9406(1)	0.5391	0.0572	0.9466
O52	0.6200(2)	0.7497(1)	0.9477(1)	0.6141	0.7486	0.9466
OH12	0.5489(3)	0.4361(2)	0.9489(1)	0.5434	0.4372	0.9498
H12A	0.6325(9)	0.3452(5)	0.9396(4)	0.6344	0.3440	0.9478
H12B	0.561(4)	0.399(3)	0.905(1)			

TABLE 5-3-4. COMPARISON OF CRYSTAL STRUCTURES OF MARGARITE (JOSWIG *et al.* 1983) AND MUSCOVITE (ROTHBAUER, 1971).

that correspond to the lesser halves (both with 21% site-occupancy) of the split H-atoms of H(11) and H(12) (Joswig *et al.* 1983). In margarite, the A-position constitutes an O-H dipole that forms large angle to the *c*-axis (Fig. 5-6), and correspond to the H-atom position in dioctahedral mica such as in muscovite (compare Fig. 5-6a and b). The B-position constitutes an O-H dipole that forms small angle to the *c*-axis, and corresponds to the H-atom position in trioctahedral mica such as in phlogopite (compare Fig. 5-6a and c). It is important to note that while the simulation was based on the ideal dioctahedral non-H atom configuration (Table 5-3-4), it is the H-position which carries strong trioctahedral character (the B-position), rather than the H-position which carries strong dioctahedral character (associated with A-position), that is energetically favoured. In other words, the occupation of the B-position in margarite by H-atom is not related in the first order to whether the M1-site (the third octahedral site which is empty in dioctahedral mica, but filled in trioctahedral mica) is occupied or not.

The H-atom positions calculated without symmetry constraints, after being transformed back into the asymmetric unit in Cc, are given in Table 5-3-5. It can be seen that the space-group symmetry Cc is no longer maintained among those positions initially generated from H1 or H2. Among the four positions initially generated from H1, there are two groups: (1) those that are represented by H11 which corresponds to H(11A), and those that are represented by H12 which corresponds to H(11B) in the notation of the work of Joswig *et al.* (1983). Similarly, two groups, H21 and H22, can be identified among the work of Joswig *et al.* (1983). The experimentally observed split H-atom model has been

		x	у	Z	
H1					
	x, -y, z+1/2	0.3672	0.6633	0.0718	
	x+1/2, -y+1/2, z+1/2	0.4186	0.6304	0.0991	
	H11	0.3929	0.6468	0.0854	
	H(11A)*	0.3663(7)	0.6550(5)	0.0620(3)	
	diff.	0.0266	-0.0082	0.0234	
	x, y, z	0.439	0.576	0.104	
	x+1/2, y+1/2, z	0.438	0.579	0.103	
	H12	0.439	0.578	0.104	
	H(11B)*	0.439(3)	0.591(2)	0.098(1)	
	diff.	0.000	-0.013	0.006	
H2					
112	$x_{-} - y_{-} \frac{7 + 1/2}{2}$	0.5898	0.3657	0.9023	
	x+1/2, $-y+1/2$, $z+1/2$	0.5903	0.3668	0.9022	
	H21	0.5900	0.3662	0.9022	
	H(12A)*	0.6325(9)	0.3452(5)	0.9396(4)	
	diff.	-0.0425	0.021	-0.0374	
	x, y, z	0.551	0.425	0.896	
	x+1/2, y+1/2, z	0.556	0.419	0.898	
	H22	0.553	0.422	0.897	
	H(12B)*	0.561(4)	0.399(3)	0.905(1)	
	diff.	-0.008	0.023	-0.008	

TABLE 5-3-5. H-ATOM POSITIONS IN MARGARITE CALCULATED WITHOUT SYMMETRY CONSTRAINTS

* determined from neutron diffraction (Joswig et al., 1983)

reproduced. However, the agreement between the calculated and experimentally determined coordinates is rather poor with regard to H11 [H(11A)] and H21 [H(12A)]. The differences are in second decimal places, with the largest being -0.0425 (Table 5-3-5). Further examination of the coordinates of the two H-atoms that comprise H11 reveals that the supposedly equivalent coordinates differ by as much as 0.04 along the x-axis (equal to 0.2 Å along the *a*-axis of axial length of 5.102 Å). In fact, one of the H-atom positions, which corresponds to the symmetry operation of x, -y, 1/2+z, matches very closely the observed H(11A)-position (with difference in the 0.00n level). This raises the possibility of further splitting of the H11 position into H111 and H112 (Table 5-3-6). Such splitting is in accordance to the split H-atom model in the muscovite structure (see 5.3.3. and Chapter 6). Margarite and muscovite have essentially the same structural configuration (Table 5-3-4, Fig. 5-6) except that, in margarite, tetrahedral Al and Si are ordered into different sites and that the interlayer cation is divalent due to greater extent of Al replacement of Si in the tetrahedral sheet. The symmetry of margarite is lowered from C2/c (of muscovite) to Cc due to the tetrahedral ordering. H-atom positions (the Apositions) calculated in Cc symmetry can be compared to those in C2/c symmetry by operating on the latter by the 1-symmetry operator (Table 5-3-6). There is a close correspondence of (H111 and H112) in margarite to (H1 and H2) in muscovite. The postulation of further splitting is supported experimentally by the elongated thermal displacement model of H(11A), with U_{33} twice as large as U_{11} and U_{22} (Joswig et al. 1983). If H11 [H(11A)] is split, from the quasi-1 relationship between the two halves of the margarite structure (Table 5-3-4), the quasi-1 equivalent of H11 [H(11A)], H21

[H(12A)], should also be similarly split into H211 and H212 (Table 5-3-6). However, the coordinates of the two H-atom positions that comprise the H21-position agree to each other so closely that there is hardly room for a further split. In fact, this calculated H21-position corresponds to one hypothetical split, H211, while the experimentally observed position, H(12A), corresponds to the other hypothetical split, H212 (Table 5-3-6). Experimental evidence do exist in support of such further splitting: the thermal displacement model of H(12A) shows similar elongation as H(11A), albeit not as obvious. The fact that such further splitting was not produced by the calculation is probably due to that a non-ideal structure configuration was used. While the calculation assumes ideal dioctahedral structural configuration and complete tetrahedral order of the non-H atoms, the coordinates of these atoms actually came from a sample that displays minor trioctahedral character (minor M1-site occupancy) and partial tetrahedral compositional (AI, Si) disorder (Joswig *et al.* 1983). Substantial effort is needed before such partial site-occupancy/disorder can be simulated explicitly using SSEM method.

On assuming multiple split H-atom model, the differences in fractional coordinates between the experimentally determined and the calculated positions are, in general, in the third decimal place (Table 5-3-6).

5.3.3. Muscovite

The calculated H-atom position in muscovite in the space group C2/c is given in Table 5-3-7. The eight H-atom positions determined with the symmetry relaxed to P1 are listed in Table 5-3-8 (projected back into the asymmetric unit of the C2/c structure). There

	Margarite				Muscovite		
<u> </u>	x	у	Z		x	у	Z
H111 H11A* diff.	0.3672 0.3663(7) 0.0009	0.6633 0.6550(5) 0.0083	0.0718 0.0620(3) 0.0098	- <u>H</u> 1	0.3656(19)	0.6560(13)	0.0522(10)
H112	0.4186	0.6304	0.0991	H2	0.3883(25)	0.6380(17)	0.0720(15)
H12 H11B* diff.	0.439 0.439(3) 0.00 0	0.578 0.591(2) -0.013	0.104 0.098(1) 0.006	Gene	rated by the 1-	- operation from	n H1 & H2
H211† H12A*	0.6328 0.6325(9)	0.3367 0.3452(5)	0.9282 0.9396(4)	H1'	0.6344	0.3440	0.9478
H212 H212†	0.5900 0.5814	0.3662 0.3696	0.9022 0.9009	H2'	0.6117	0.3620	0.9280
H22 H12B* diff.	0.553 0.561(4) -0.008	0.422 0.399(3) 0.023	0.897 0.905(1) -0.008				

TABLE 5-3-6. SPLIT H-ATOM POSITIONS IN MARGARITE AS COMPARED TO MUSCOVITE (CHAPTER 6).

* from Joswig et al., 1983; † hypothetical, derived from the 1 equivalent of H111 or H112. The highlighted are the H-atom positions calculated in margarite.

TABLE 5-3-7. H-ATOM COORDINATES IN MUSCOVITE IN THE SPACE GROUP C2/c

	Calculated	Experimental*	Difference	
<i>x</i>	0.3987	0.3727(7)	0.0260	
y	0.6322	0.6499(4)	-0.0177	
z	0.0815	0.0599(2)	0.0216	
О-Н (Å)	0.956	0.928(5)	0.028	

*Rothbauer (1971)

Symmetry operation	x	у	Z
$\frac{1}{H(11) x, y, z}$	0.3629	0.6509	0.0643
H(12) -x, -y, -z	0.3642	0.6515	0.0642
H(13) $1/2 + x, 1/2 + y, z$	0.3629	0.6509	0.0643
H(14) 1/2-x, 1/2-y, -z	0.3646	0.6516	0.0642
H1	0.3637	0.6512	0.0642
$H(21) = r v \frac{1}{2} - 7$	0 3932	0.6438	0.0766
$H(22) = x_{-y_{1}}/(2+7)$	0.3942	0.6442	0.0766
$H(23) \frac{1}{2-x} \frac{1}{2+y} \frac{1}{2-z}$	0.3961	0.6436	0.0772
H(24) $1/2+x, 1/2-y, 1/2+z$	0.3944	0.6445	0.0765
H2	0.3945	0.6440	0.0767
H-position calculated in C2/c H-position observed*	0.3987 0.3727(7)	0.6322 0.6499(4)	0.0815 0.0599(2)

TABLE 5-3-8. THE EIGHT H-ATOM POSITIONS PROJECTED BACK INTO THE ASYMMETRIC UNIT OF THE C2/c MUSCOVITE CELL

* Rothbauer, 1971

is a reasonable agreement between the calculated and the experimentally determined Hatom positions in the C2/c muscovite structure (Table 5-3-7). However, if the symmetry is relaxed to P1 in the calculation, there are eight independent H-atom positions. If each of these positions is transferred back to the x y z position of the asymmetric unit of the C2/c muscovite structure (Table 5-3-8), the H-atom positions fall into two sets labelled H_{1j} and H_{2j} (j=1,4) in Table 5-3-8. The average values of the x and y coordinates for each set bracket the experimental values (Table 5-3-8). The slightly greater difference of the z-coordinates is probably related to the inadequate description of H bonding in the calculation (Collins & Catlow 1991), or average description of the Si-Al substitution that assumes total disorder. Overall, the result is in accord with the anisotropic displacement model of Rothbauer (1971) in which the H-atom shows very anisotropic displacement behaviour; the result of the P1 calculation indicates this anisotropic model to be an envelope of two positions of the split-H atom, separated by 0.44 Å. The result for the split-site model is in accord with the work of Abbott et al. (1989) who also gave two general OH orientations (two H-atom positions) in the muscovite structure. They based their prediction on calculations for 18 different local arrangements of Al and Si over the tetrahedral sites surrounding the H-atom in the C2/c muscovite structure. As no apparent long-range Si-Al ordering has been observed (Güven 1971, Richardson & Richardson 1982, Schultz et al. 1989, see also 3.2.), all the above 18 arrangement are equally possible in muscovite structure. Therefore, two H-atom positions are expected according to the calculation of Abbott et al. (1989). Furthermore, the H2 position has very similar atomic coordinates to those of the single H-atom position calculated with symmetry constraints
(Table 5-3-8). This suggests that H2 is energetically more favourable than H1. Careful examination of the relative positions of H1 and H2 indicated that H2 corresponds to the "type-2" minimum of Abbott *et al.* (1989), which is energetically more favourable than the "Type-1" minimum (corresponding to H1 position in the present work). These remarkably similar results produced by the two different approaches prompted experimental verification, which will be described in the following chapter (Chapter 6).

5.3.4. Dickite

The calculated H-atom positions in dickite in the space group Cc are shown in Table 5-3-9. The 16 H-atom positions determined with the symmetry relaxed to P1 are listed in Table 5-3-10 (projected back into the asymmetric unit of the Cc structure). When the symmetry of Cc was used, the agreement between the calculated and observed coordinates is rather poor (Table 5-3-9). Most differences are in the second decimal places, with the highest [of H1(z)] being -0.0402. After optimization with P1 symmetry, 6 unique H-atom positions can be identified (Table 5-3-10). Among the 16 H-atom positions in the dickite unit-cell, those that are initially generated from H1 and H2, respectively, of the asymmetric unit (4 for each of the H1 and H2 atoms) still maintain (with a spread of 0.02 in fractional coordinates) the Cc symmetry. The H-atom positions initially generated from H3 can be divided into two groups, H31 and H32, with a principal separation of 0.07 in the *x*-coordinate (corresponding to 0.36 Å). H-atom positions initially generated from H4 can be similarly grouped into H41 and H42, with a principal separation of 0.26 Å along the *a*-axis (*x*-coordinate). It is important to notice that after optimization

TABLE 5-3-9. CALCULATED (FIRST ROWS) AND EXPERIMENTALLY DETERMINED* (SECOND ROWS) H-POSITIONS IN DICKITE (CALCULATION WITH SYMMETRY *Cc*, ASSUMING NON-SPLIT H-ATOMS). THE DIFFERENCES ARE GIVEN IN THIRD ROWS.

	x	у	Z
H1	0.4911	0.2014	0.1147
	0.4795(9)	0.1848(4)	0.1549(5)
	0.0116	0.0166	-0.0402
H2	0.3077	0.2543	0.3615
	0.2957(8)	0.2558(5)	0.3627(3)
	0.0120	-0.0015	-0.0012
H3	0.297	0.9329	0.3596
	0.326(1)	0.9456(5)	0.3515(4)
	-0.029	-0.0127	0.0081
H4	0.2690	0.5739	0.3595
	0.2891(9)	0.5813(6)	0.3605(3)
	-0.0201	-0.0074	-0.0010

* Bish & Johnston, 1993

		X	у	Z	
H1					
	x, y, z	0.4898	0.1744	0.1580	
	x, -y, z+1/2	0.4794	0.1803	0.1669	
	x+1/2, y+1/2, z	0.4900	0.1743	0.1580	
	x+1/2, -y+1/2, z+1/2	0.4786	0.1805	0.1667	
	H1	0.4844	0.1774	0.1624	
	H1*	0.4795(9)	0.1848(4)	0.1549(5)	
	diff.	0.0049	-0.0074	0.0075	
H2					
	<i>x</i> , <i>y</i> , <i>z</i>	0.2952	0.2605	0.3664	
	$x_{1} - y_{1} + \frac{1}{2}$	0.3170	0.2535	0.3636	
	x+1/2, y+1/2, z	0.2951	0.2605	0.3664	
	x+1/2, -y+1/2, z+1/2	0.3170	0.2465	0.3636	
	H2	0.3061	0.2552	0.3650	
	H2*	0.2957(8)	0.2558(5)	0.3627(3)	
	diff.	0.0104	-0.0006	0.0023	
H3					
	<i>x</i> , <i>y</i> , <i>z</i>	0.328	0.9340	0.3589	
	x+1/2, y+1/2, z	0.328	0.9341	0.3588	
	H31	0.328	0.9340	0.3588	
	H3*	0.326(1)	0.9456(5)	0.3515(4)	
	diff.	0.002	-0.0116	0.0073	
	x, -y, z+1/2	0.253	0.9281	0.3643	
	x+1/2, -y+1/2, z+1/2	0.253	0.9285	0.3643	
	H32	0.253	0.9283	0.3643	

TABLE 5-3-10. H-POSITIONS IN DICKITE CALCULATED WITH P1 SYMMETRY

TABLE 5-3-10. (continued)

		x	у	Z	
 H4					
	x, y, z	0.2463	0.5656	0.3585	
	x+1/2, y+1/2, z	0.2462	0.5656	0.3585	
	H41	0.2462	0.5656	0.3585	
	x, -y, z+1/2	0.2971	0.5802	0.3658	
	x+1/2, -y+1/2, z+1/2	0.2972	0.5802	0.3658	
	H42	0.2972	0.5802	0.3658	
	H4*	0.2891(9)	0.5813(6)	0.3605(3)	
	diff.	0.0081	-0.0011	0.0053	

* determined from neutron diffraction (Bish & Johnston, 1993)

by considering each of the 16 H-atoms explicitly (in P1 symmetry), the agreement between the calculated and the observed atomic coordinates of the H1 and H2 improves substantially by a factor of 10 (compare Table 5-3-9 and 5-3-10). There is also a similar improvement in the agreement between the calculated and observed coordinates of H3 and H4, given that the two observed H-atoms correspond to H31 and H42, respectively, of the calculated. Such agreement level conforms to the accuracy of the SSEM calculation (see earlier discussion). The results indicate (1) instead of representing all 4 H-atoms non-split in space group Cc, two of the H-atoms (H3 and H4) should be represent split; (2) interactions between H-atoms can be important in determining equilibrium H-atoms positions in the structure. This is especially true when the structure contain many H-atoms.

The result that there are probably 6 unique H-atom positions in the dickite structure helps explain apparent disagreement between the diffraction and vibrational spectroscopic studies on the OH-groups in dickite. It had long been a mystery (Farmer & Russel 1964; Johnston *et al.* 1990; Joswig & Drits 1986; Prost, *et al.* 1989; Sen Gupta, *et al.* 1984) that, whereas infrared (IR) spectroscopy shows 6 O-H stretching bands (corresponding to at least 6 unique OH-groups and hence 6 H-atom positions) in the low-temperature IR spectra of dickite (Fig. 5-7), diffraction experiments can locate only 4 unique H-atom positions. The strong bands (Figure 5-7) at 3620, 3655 and 3731 cm⁻¹ can be explained by the 4 H-atom positions located by the diffraction experiments (the band at 3655 cm⁻¹ is known to be the overlap of two O-H (O-H2 and O-H4) stretching bands), but the two weak bands at 3619 and 3717 cm⁻¹ were left unassigned. The postulation that H3 and H4 split into (H31, H32) and (H41, H42) explains the existence of the two additional bands.

The O-H stretching frequency is strongly influenced by details of H-bonding (Nakamoto et al. 1955). Longer H...O distance and smaller O-H...O angle will give higher stretching frequency, and vice versa. This relationship is maintained in the correspondence of the H...O distances and O-H...O angles of the four experimentally-observed H-atoms (assuming that H3 = H31 and H4 = H42, Table 5-3-11, also refer to Table 5-3-10), and their assignment to the IR-bands. The H32...O distance decreases from 2.28 (2.36) of H31...O (H..3...O) to 2.15, and the O-H32...O angle increases from 144° (140°) of O-H31...O (O-H3...O) to 176°. Such difference will cause the O-H32 band to shift from 3731 cm⁻¹ of O-H31 (O-H3) toward a lower frequency, most likely one of the weak bands at 3717 and 3619 cm⁻¹. In fact, the band at 3717 cm⁻¹ had already been suggested to be a split of H3 based on the large thermal displacement factor and some anisotropy of the H3site in the neutron diffraction data (Bish & Johnston 1993). On the contrary, the H...O distance and O-H...O angle associated with H41 increase to 1.96 Å and decreases to 156°, respectively, from those related to H42 (equivalent to H4) of 1.96 Å and 156°, respectively. This means that the O-H41 stretching band will increase in frequency relative to that of O-H42 (O-H4), from 3655 to probably 3619 cm^{-1} .

The excessive intensity of the band at 3731 cm^{-1} is still found puzzling. For similar populations of IR-active (O-H stretching) vibration, IR-intensity is inversely proportional to the frequency due, mostly, to the modulation of a transition dipole moment function (Steele 1971) which is an inverse linear function over vibrational frequency (Hermansson *et al.* 1991, Burns & Hawthorne, 1994). Site-population of H3 (H31) is similar or less than those of H1, H2, or H4. Since the stretching frequency of O-H3 (O-H31) is the

Figure 5-7. Variable-temperature FT-IR spectra of dickite (adapted from Johnston & Bish, 1993)

159

	d _{o-H} (Å)	d _{H0} (Å)	∠0-H0(°)
OH1	0.99 0.94*			
OH2	1.00 0.96*	01	1.93 1.97*	166 164*
OH31	0.99 0.95*	03	2.28 2.36	144 140*
OH32	0.99		2.15*	176
OH41	1.00	02	1.96	156
OH42	1.00 0.94*		1.92 1.99*	167 166*

TABLE 5-3-11. HYDROGEN BONDS IN DICKITE

* determined by neutron diffraction (Bish & Johnston, 1993)

160

highest in the spectrum, its intensity should be smaller than any of the two major bands that represent the stretching vibration associated with H1, H2 and H4(H42). However, this is not the case (Fig. 8). Further vibrational study is needed using Raman spectroscopy which gives vibrational intensity independent of transition dipole moment (Sherwood 1972), such that a more realistic picture of the vibrational intensity distribution can be obtained.

5.4. Summary

Using the SSEM calculation, with the input of space group symmetry, unit-cell dimensions, and non-H atomic coordinates, H-atom positions of the O-H group(s) in micas and clay minerals can be located to the accuracy to the third decimal place in atomic coordinates. Split H-atom model can be reliably reproduced, and relative energies of the split positions can also be resolved.

The non-split H-atom in muscovite as determined by diffraction experiment is predicted to be split, with the split position closer to the *c*-axis energetically more favourable than the split position closer to the basal plane. Similar splitting is predicted for the structurally similar mineral, margarite.

In addition to the diffraction-determined 4 unique H-atom positions in dickite, 2 more H-atom positions were shown possible in the dickite structure, with the experimentally determined H3 and H4 split into (H31, H32) and (H41, H42), respectively. The total of 6 unique H-atom positions helps to explain the existence of 6 O-H stretching

bands on vibrational spectra of dickite.

Chapter 6.

The Split H-atom position Model in Muscovite: Experimental Verification

Locating H atoms in muscovite has been difficult. Being a very weak X-ray scatterer, H was usually omitted in X-ray structure studies (Güven 1971, Richardson & Richardson 1982, see also 3.2.). Even in the study of Schultz *et al.* (1989) in which the H atom was included, only isotropic-displacement factors for the H-atom position could be refined. Single-crystal neutron diffraction (Rothbauer 1971) gave accurate information about the H-atom position in muscovite. However, the exceptionally large anisotropic-displacement of the H-atom (amplitude up to 14 times greater than those of other atoms in the structure) was not explained. Vibrational spectroscopic studies (IR and Raman) can

provide indirect information on H-atom positions by detecting the relative orientation of the OH dipoles in the structure. Despite extensive work (Serratosa & Bradley 1958, Basset 1960, Vedder & Mcdonald 1963, Wada & Kamitakahara 1991), the question of OH orientation and even the number of unique OH groups in muscovite remains unclear.

H-atom in muscovite had been predicted split in space group C2/c by SSEM calculation (Chapter 5). As part of the effort to better understanding of crystal chemistry of micas and clay minerals, it is necessary to test such theoretical prediction by experiments.

6.1. Experimental

6.1.1. Single-crystal neutron-diffraction study at room temperature

The program SHELXTL PCTM was used for the structure-refinement. The coherent neutron scattering-lengths (in fm¹) were $b_0 = 5.803$, $b_H = -3.7409$, $b_{Si} = 4.1491$, $b_{AI} = 3.449$, $b_K = 3.71$ (Koester 1977).

The single-crystal neutron-diffraction data of Rothbauer (1971) were used to refine the H-atom position in the structure; all 625 reflections in the original study were included. The space group, unit-cell dimensions and non-H atom positional parameters of Rothbauer (1971) were used as input parameters. However, two H-atoms were inserted in the starting model, both with fractional occupancy of 0.5. During the initial structurerefinement, only the positional, displacement and site-occupancy parameters of the two H-

¹: fm = 10^{-15} m. Scattering length takes the unit of length.

atom positions were varied. The isotropic-displacement factors of the two H sites were refined independently and the site occupancies were refined without constraint. The complete structure, including position and anisotropic-displacement parameters for all atoms, was refined in the final cycle of refinement.

6.1.2. Neutron diffraction at 12 K

Powder neutron-diffraction data for muscovite was collected at 12 K in a liquid-He cryostat using the same sample as in 3.2, loaded into a vanadium can. The intensity data were collected over a 48-hour period on the high-resolution powder diffractometer at the C2 beam-hole of the NRU reactor at the Chalk River Laboratories, Ontario. A wave-length of 1.5022(1) Å, calibrated with Al_2O_3 powder, was used in the data collection. The detector collects data simultaneously over an 80° range of scattering angles with an angular separation of the wires of 0.1°. The scattering range of 8 to 118° was covered by setting the detector in low- and high-angle positions in sequence. A second set of data was collected with the detector at positions 0.05° offset to those of the first set, giving intensity data at a step interval of 0.05° 2 Θ .

The structure at 12 K was refined using the program LHPM3. Details of the procedure are similar to those in 3.2. Parameters pertinent to the refinement are listed in Table 6-1.

TABLE 6-1. POWDER-DIFFRACTION INTENSITY-DATA COLLECTION AND DETAILS OF RIETVELD REFINEMENT OF MUSCOVITE AT 12 K

2O scan-angle (°)	16-117
step interval ($^{\circ}2\Theta$)	0.05
maximum intensity (counts)	7234
Refinement details	
No. of unique reflections	779
No. of structural parameters	46
No. of experimental parameters	9
N-P	1968
R _n	1.8
R _{WP}	2.4
R _{EVP}	1.6
R _{BRG}	0.46
Space group	C2/c
Unit-cell dimensions	
a(Å)	5.1628(7)
	5.1765(4)*
	5.1918(2)**
$b(\mathbf{A})$	8.962(1)
	8.9872(6)*
	9.1053(5)**
c(Å)	19.977(3)
	$20.072(1)^*$
	20.0457(7)**
ß(°)	95.738(12)
P()	95.756(6)*
	95.735(3)**

*room-temperature (from 3.2); **room-temperature (Rothbauer 1971).

6.1.3. Fourier-Transform Infrared Photo-Acoustic Spectroscopy (FT-IR PAS) at room temperature

Fourier-Transform Infrared Photo-Acoustic Spectroscopy (FT-IR PAS) differs from conventional FT IR spectroscopy in that the IR band-intensity distribution is not only a function of absorbability of the sample and IR frequency (as in transmission IR spectroscopy), but is also strongly dependent on the thermal-diffusion length, μ_s , of the sample (Spencer 1986; Choquet *et al.* 1986), which is defined as

$$\mu_s = \sqrt{(2k/\rho C\omega)}$$
 6-1

where k, ρ , C are the thermal conductivity, density and specific heat of the sample, respectively, and ω is the modulation frequency of the light:

$$\omega = 2\pi V_V$$
 (for a Michelson interferometer) 6-2

in which v is the IR frequency and V is the mirror velocity of the interferometer. The intensity ratio of two adjacent IR bands will change in response to varying mirror speed; as the mirror speed decreases, the intensity of the band at higher wavenumber increases relative to the band at lower wavenumber. This is the property of FT-IR PAS that was used here to show that there is more than one O-H stretching band in the IR spectrum of muscovite.

The spectra were collected with a Bio-Rad FTS-60A (Bio-Rad, Cambridge, MA) spectrometer. An MTEC Model 200 photoacoustic cell (MTEC, Ames, IA) with its accompanying preamplifier and power supply was used to acquire all the spectra. The

sample tray was filled with the powder sample without attempting to compact the powder. The photoacoustic cell (with the sample) was purged with dry helium. A high-surface-area carbon-black sample (MTEC) was used as the reference material for all spectra. Different interferometer mirror speeds, corresponding to average modulation frequencies of 5, 10, 50, 100, 400 and 2500 Hz, respectively, were used in the collection of the spectra. The number of scans was varied depending on the mirror speed (modulation frequency) used. The resolution of the spectra is 4 cm⁻¹. Other experimental details can be found in Sowa & Mantsch (1994).

6.1.4. Precession photography

A single-crystal precession camera was used to obtain zero-level precession photos of a crystal of the same muscovite sample that was used in the low-temperature neutrondiffraction experiment. Exposures of up to one week were used to examine possible deviations from *C*2/*c* symmetry. Photos corresponding to μ -angles of 25 and 30°, respectively, were obtained to identify any double diffraction effects as a double diffraction cannot occur at two different μ -angles.

6.1.5. Peak-profiling of very weak reflections using single-crystal

diffractometer

The same muscovite crystal used in the precession work was mounted on a fully automated single-crystal diffractometer. Peak profiles of the very weak h0l (*l*=odd) reflections were obtained by step-scanning the corresponding peaks. For each weak

reflection that may span a 2θ -range of up to 2° , between 100 to 120 steps were taken, with a counting time of 5 minutes at each step. For one of such reflection, 201, scans in different orientations, corresponding to varying psi-angle, were taken to ensure that the reflection observed was not a double diffraction. A double-diffraction can only be observed at one specific psi angle, whereas a Bragg diffraction is observed throughout the complete range of psi angles.

6.2. Results

6.2.1. Neutron-diffraction study at room temperature

The H-atom positions determined by structure-refinement using the neutrondiffraction data of Rothbauer (1971) at room temperature are listed in Table 6-2, and the final positional parameters of the muscovite structure are given in Table 6-3. Structurerefinement using a single H-atom model gave an *R*-index of 3.9% and a weighted *R*-index of 4.3%; refinement using a split H-atom model gave essentially the same R-values of 3.9% (R) and 4.2% (weighted *R*), respectively. The non-H atom part of the structure is not significantly affected by the different models for the H-atom site (Table 6-3). There is approximately a 50:50 occupancy of the split-site H-atom sites. There is also a very close correspondence between the experimentally determined split H-atom sites and the sites predicted from the SSEM calculation (Table 6-2).

	Experimental	Calculated*	Difference
 H1			
x	0.3652(19)	0.3637	0.0015
ν	0.6560(12)	0.6512	0.0048
7	0.0521(10)	0.0642	-0.0121
Õ-H(Å)	0.967(12)	0.988	-0.021
H2			
x	0.3883(24)	0.3945	-0.0062
ν	0.6384(16)	0.6440	-0.0056
, Z.	0.0720(14)	0.0767	-0.0047
о́-Н(Å)	0.899(20)	0.979	-0.080

TABLE 6-2. H POSITIONS DETERMINED FROM NEUTRON-
DIFFRACTION DATA AT ROOM TEMPERATURE
WITH THE NON-H ATOMS FIXED

* Chapter 5

	x	у	Z	occupancy
		Room tamper	iture	
A 1	0.2501(6)	0.0838(3)	0.0001(1)	1.10(2)
AI TV(1)	0.2301(0)	0.0000(0)	0.1356(1)	0.96(2)
1(1) T(2)	0.4030(3)	0.2581(3)	0.1356(1)	0.99(2)
1(2)	0.4314(3)	0.2301(3)	0.1682(1)	1
	0.4172(4)	0.0525(2) 0.8106(2)	0.1577(1)	1
02	0.2303(4)	0.0100(2) 0.3702(2)	0.1686(1)	1
03	0.2304(4)	0.3702(2) 0.0428(2)	0.0534(1)	1
04	0.4009(4)	0.9420(2) 0.2514(2)	0.0534(1)	1
05	0.3859(3)	0.2314(2) 0.5638(2)	0.0504(1)	1
OH	0.4566(4)	0.3026(2)	1//	0.50(1)
K	0	0.0976(3)	0.0522(10)	0.50(1)
H(1)	0.3656(19)	0.0300(13)	0.0322(10)	0.36(6)
H(2)	0.3883(25)	0.0380(17)	0.0720(13)	0.50(0)
		12 K		
Al	0.264(6)	0.082(2)	0.001(2)	0.94(3)
T(1)	0.464(4)	0.930(2)	0.137(1)	0.92(4)
T(2)	0.449(4)	0.261(3)	0.134(1)	0.99(5)
01	0.406(8)	0.091(12)	0.167(1)	1
02	0.253(10)	0.801(8)	0.157(1)	1
03	0.247(3)	0.368(2)	0.167(1)	1
04	0.457(3)	0.949(2)	0.052(1)	1
05	0.382(4)	0.253(2)	0.054(1)	1
OH	0.460(5)	0.560(2)	0.050(1)	1
ĸ	0	0.092(4)	1/4	0.48(2)
H(1)	0.392(4)	0.668(2)	0.052(5)	0.49(6)
H(2)	0.402(3)	0.632(2)	0.088(3)	0.41(5)
		Rothbauer ()	1971)	
A 1	0.2502(4)	0.0835(2)	0.00008(8)	1.11(1)
AI T(1)	0.2002(4)	0.0000(2)	0.13553(8)	0.96(1)
1(1) T(2)	0.4040(3)	0.2581(2)	0.13559(8)	0.97(1)
1(2)	0.4310(3)	0.2301(2) 0.0027(1)	0.16829(6)	1
	0.410/(3)	0.027(1)	0.15783(7)	1
02	0.2303(3)	0.3703(1)	0.16869(6)	1
03	0.2302(3)	0.9703(1)	0.05343(6)	1
04	0.4010(2)	0.9+32(1) 0.2515(1)	0.05348(5)	1
05	0.3839(2)	0.2313(1) 0.5627(2)	0.05018(6)	1
OH	0.4300(3)	0.3027(2)	1/4	0.50(1)
K	0.0007(7)	0.0700(3)	0.0599(2)	0.88(1)
Н	0.3727(7)	0.0499(4)	0.0000(2)	0.00(1)

TABLE 6-3. ATOMIC COORDINATES OF THE FINAL REFINED STRUCTURE OF MUSCOVITE

6.2.2. Neutron-diffraction study at 12 K

The unit-cell dimensions of muscovite at 12 K are compared to those at room temperature in Table 6-1; final atomic coordinates and cation occupancies are given in Table 6-3. Selected interatomic distances and angles in muscovite at different temperatures are given in Table 6-4. The observed and calculated diffraction patterns, along with their difference, are shown in Figure 6-1. A comparison of the nuclear density distribution for the H sites at room temperature and at 12 K is given in Figure 6-2. Powder-diffraction step-scan intensity is given in Appendix P-27.

There is a contraction in cell dimensions upon cooling (Table 6-1); the contraction in the *c*-dimension (0.1 Å) is an order of magnitude larger than that in the *a*- (0.01 Å) and *b*- (0.02 Å) dimensions, a feature characteristic of hydrous phyllosilicates (Bish & Johnston 1993, Bish 1995, Bish & Von Dreele 1989).

6.2.3. Precession photos and profiles of the weak reflections

Precession photos with $\mu = 25$ and 30° are shown in Figure 6-3. The corresponding indexing is given in Figure 6-4. Profiles of a selected number of *h*0*l* (*l*=odd) reflections are shown in Figure 6-5. Profiles for one of such reflection, 201, at different psi-angles, are given in Figure 6-6.

6.2.4. The IR-spectra

The photoacoustic FT-IR spectrum between 500 and 4000 cm⁻¹ of the same muscovite sample as used in the low-temperature neutron-diffraction experiment is shown

	room temperature	12 K
<t(1)-o></t(1)-o>	1.644(1)	1.65(3)
<o-t(1)-o></o-t(1)-o>	109.4(8)	109.5(13)
<t(2)-o></t(2)-o>	1.643(1)	1.63(4)
<o-t(2)-o></o-t(2)-o>	109.4(8)	109.4(10)
<al-o></al-o>	1.930(1)	1.92(1)
<k<sub>inner-O></k<sub>	2.859(1)	2.83(3)
<k<sub>outer-O></k<sub>	3.363(2)	3.39(2)
H(1)-O	0.967(12)	1.04(10)
H(2)-O	0.899(20)	1.06(7)
H(1)-H(2)	0.44(3)	0.78(12)

TABLE 6-4. SELECTED INTERATOMIC DISTANCES(Å) AND ANGLES (°) OF MUSCOVITEAT ROOM TEMPERATURE AND 12 K

Figure 6-1. Observed and calculated neutron-diffraction patterns of muscovite at 12 K. The observed diffraction-pattern has been increased by 5000 counts to avoid pattern overlap.

174

Figure 6-2. Difference-Fourier maps, with H removed from the refinement model, projected down [100] showing the H-density distribution in muscovite at A: room temperature (contours from -10.0 to -2.0) and B: at 12 K (contours from -11.0 to -1.0). The contour interval is 0.1. Arbitrary unit.

in Figure 6-7. The interferometer-mirror speed (in modulation frequency) used in collecting the spectrum was 2.5 KHz. Spectra in the OH-stretching region of 3200 to 3900 cm⁻¹ are given in Figure 6-8. The mirror speed for these spectra ranges from 5 Hz to 2.5 KHz.

6.3. Discussion

6.3.1. H-atom positions at room temperature

Although the calculation of H-atom positions in muscovite (see section 5.3.4) was not done at room temperature because the vibrational energy was ignored, the fact that the unit-cell dimensions and the non-H atomic positions were fixed at room-temperature values made the result of the calculation close to an analogous calculation at room temperature. When C2/c symmetry was applied to the H atoms derived from the refinement, the calculation reproduced that of the latest of the kind (Collins & Catlow 1992). However, this gives a difference an order of magnitude greater than that observed when C2/c symmetry was removed (*c.f.* Tables 6-2 and 5-2-5). There is much closer agreement between calculated and observed H-atom positions when the split H-atom model is used.

6.3.2. H-atom position at 12 K

At 12 K, an elongated nuclear-density distribution for the H atom was observed (Fig. 6-2), similar to that observed at room temperature. The sample used in the present

Figure 6-3. Precession photos of muscovite with μ = 25 and 30°, respectively

Figure 6-4. Partial indexing of the precession photos of muscovite in Figure 6-3. Solid circles represent reflections conform to the symmetry. Note the existence of double

178

TWO-THETA (degree)

Figure 6-5. Peak profiles of selected h0l (l=odd) reflections in muscovite. Intensities of 201 and 201 were raised by 2600 and 3600 counts, respectively.

TWO-THETA (degree)

Figure 6-6. Peak profiles of 201 of muscovite with different Psi-angles. Intensities for all profiles, except the one at psi = 350° , were raised appropriately.

Figure 6-7. FT-IR PAS of muscovite at room temperature

181

Figure 6-8. FT-IR PAS spectra of the OH-stretching region of muscovite at room temperature

182

study has a chemical composition similar to the sample used by Rothbauer (1971), although the unit-cell parameters of the two samples do differ somewhat. Although the individual O-H distances at 12 K are not significantly different from those at room temperature, the H(1)-H(2) separation is significantly larger at low temperature (0.78 Å) than at room temperature (0.44 Å). Such an increase in separation at low temperature supports the split H-atom model. Nevertheless, even with such a separation, it was still not possible to resolve two maxima (Fig. 6-2).

The occupancy of the Al site (Table 6-3) was persistently low during the Rietveld refinement. It could be related to the fact that the isotropic-displacement factors from the room-temperature structure refinement were used and fixed in the low-temperature refinement. Attempts to refine individual displacement factors were not successful.

6.3.3. Infrared spectroscopy

There is evidence from infrared spectroscopy (Serratosa & Bradley 1958, Basset 1960, Vedder & McDonald 1963, Rouxhel 1970) of more than one OH-orientation in the muscovite structure. The FWHM of the O-H stretching band of muscovite is almost twice as large as that of phlogopite (Rouxhel 1970, Basset 1960, Serratosa & Bradley 1958), irrespective of sample temperature (from 273 to 77 K). In fact, two O-H orientations were suggested by Serratosa & Bradley (1958), in analogy to the O-H orientations in lepidolite. The FT-IR PAS spectrum of muscovite in the present work (Fig. 6-7) shows similar width of the OH-stretching band at high mirror-speed (2.5 KHz). In this spectrum, there is a shoulder to the high-frequency side of the absorption envelope and it is separated from the

principal maximum by an inflection point; this indicates the presence of (at least) two distinct bands in the spectrum. This conclusion is reinforced by the series of spectra collected with gradually decreasing interferometer-mirror speed (Fig. 6-8). The intensity of the high-frequency shoulder increase relative to the maximum intensity of the envelope as the mirror speed decreases from 2.5 KHz to 5 Hz. Note that wave number increases toward the right-hand side in Figure 6-8, and that slower mirror speed favours higher IR frequencies (see 6.1.3.). The increase in relative intensity of the right shoulder of the envelope indicates that there are two (or more) unique bands in the muscovite spectrum, in turn indicating more than one symmetrically distinct OH group.

6.3.4. Possibility of symmetry lower than *C2/c*

The two sets of H-atom positions (Table 5-3-8) calculated from the structureenergy minimization are related to each other (in the original C2/c structure) by the *c*glide. This suggests that the true symmetry of muscovite is either C1 or C2. In the precession photos (Fig. 6-3), there are very weak (*h*0*l*) (*l*=odd) reflections violating the *c*glide restriction. Peak-profiles (Fig. 6-4 and 5) of these 'violating' reflections are slightly asymmetric but still well-defined. The presence of these reflections indicate that the space group symmetry of muscovite is C2 or C1 rather than C2/c. Similar violating reflections were observed by Schultz *et al.* (1989) on Weissenberg photographs of rose muscovite.

6.4. Discussion and Interpretation

FT IR PAS spectra give evidence that (at least) two symmetrically distinct OH groups, and therefore two unique H atom positions, exist in muscovite structure. The two H-atom positions can either be explained by a dynamic, positional disorder model in space group C2/c, or by a long-range order model in a subgroup of C2/c (C2 or C1). Weak reflections of hol (*l*=odd) observed on precession photos and on single-crystal diffractometer indicate the lack of *c*-glide symmetry that are necessary in the C2/c space group. Therefore, the true space group symmetry of muscovite should be C2 or C1 rather than C2/c. Further experiment, such as second-harmonic generation, is needed to determine if a centre of symmetry exists or not, so as to determine the exact symmetry of muscovite of C2 (no centre of symmetry) or C1 (with centre of symmetry).

It should be noted that the existence of h0l (l=odd) reflections had been explained (Schultz *et al.* 1989) not by the unique (C1 or C2) H-atom arrangement with respect to the other atoms, but by postulating partial trioctahedral character of the structure in which M(1) was partially occupied by Li in rose muscovite, with M(1') (the symmetry equivalent of M(1) in C2/c) empty. However, the concentration of Li in the (rose) muscovite sample was not sufficient to account for the observed scattering.

Keeping in mind that the M(1)-site, which is nominally vacant in dioctahedral mica (Fig. 6-9), is one of the potential directions in which the OH group can point, the residual electron density observed near the M(1)-site (Schultz *et al.* 1989, Güven 1971) may be accounted for by relaxing the symmetry of C2/c to C2 or C1 with respect to the

H positions.

6.5. Summary

There are two positions for H atom in the muscovite structure. The two positions can be represented by a split H-atom site model in space group C2/c. A subgroup of C2 or C1 for the overall structure is also possible. The occupancies of the two split-sites are approximately equal.

Coupled Rietveld--Static Structure-Energy Minimization Method

In Rietveld refinement, there are cases where the powder-diffraction data is of insufficient resolution to allow accurate refinement, or the starting model leads to convergence at a local minimum. As a result, stereo-chemistries that are crystal-chemically unreasonable may be generated. Soft constraints, in the form of prescribed bond-distances (Cartlidges & Meier 1984; McCusker *et al.* 1985; Bish & Von Dreele 1989) and angles (Marler *et al.* 1993), must be used in order to avoid such unreasonable results. Prescribing bond-length and bond-angle constraints is somewhat subjective, and removing these constraints as the Rietveld refinement progresses is often not successful (McCusker *et al.*
1985; Marler *et al.* 1993); thus it is possible to introduce subjective bias into the final result. The issue becomes more difficult when one wants to refine structures at very low or high temperatures (see, for example, Cartlidge & Meier 1984), since there are usually not sufficient empirical data to enable prescribing bond-length and angle constraints.

Calculation (Catlow & Price 1990; Burnham 1990) of crystal-structure arrangements using Static-Structure Energy Minimization (the SSEM method) has been fairly successful in recent years (Collins & Catlow 1992; Winkler *et al.* 1991; Purton & Catlow 1990; Dove 1989; Price *et al.* 1987; Sanders *et al.* 1985, see also Chapter 5). Current models involving electrostatic- and repulsive-interaction terms, with certain higher order corrections (see 4.1), are capable of predicting atomic positions with an accuracy of 1-3% for simple ordered structures (Purton & Catlow 1990). In more complicated structures, the differences tend to be larger than 5%. This problem with complicated structures is common to other simulation techniques such as Molecular Dynamics (MD). However, the problem can be ameliorated by introducing experimental constraints from diffraction experiments (Brünger *et al.* 1987; Fujinaga *et al.* 1989; Brünger & Karplus 1991) or NMR (van Gunsteren & Mark 1992).

Rietveld refinement using powder-diffraction data can potentially provide experimental constraints in computer simulation of crystal structures. At the same time, computer simulation is sufficiently accurate to constrain Rietveld refinement. This suggests that Rietveld refinement and computer simulation can be coupled together to enhance the effectiveness of the Rietveld method in dealing with complex structures while avoiding possible bias that can be introduced by using soft distance and angle constraints. As a first step towards this goal, the Rietveld method is to be coupled with SSEM such that Rietveld refinement of difficult structures at room temperature can be effectively constrained.

7.1. Rietveld and SSEM programs: modification in the present study

The Rietveld and the SSEM programs used here are LHPM3 and WMIN, respectively. LHPM3 was further modified to correct for sample-displacement error. The correction is of the form (Parrish *et al.* 1986)

$$\Delta 2\Theta = s \cdot \cos\theta / R$$

in which s and R (in mm) are the displacement of the sample surface from the focusing circle and the diffractometer radius, respectively, and $\Delta 2\Theta$ is in radians. The correction is applied to the positions of the calculated Bragg-reflections which, together with the corresponding intensities, are then used in the calculation of step intensities.

The SSEM program, WMIN, as modified in Chapter 4, was used in the coupling of the Rietveld and the SSEM methods.

7.2. Coupling Rietveld refinement with static-structure energy minimization

To couple the Rietveld and SSEM calculations, both quantities to be minimized are considered simultaneously in the form of a sum

$$E_{sum} = E_{EM} + W \cdot R_{wp}$$
 7-2

in which W is a weight (to be discussed later), E_{EM} is the static-structure energy, and R_{wp} is the weighted R-squared value (*c.f.* equation 2-13), usually formulated in Rietveld refinement as

$$R_{wp} = \frac{R}{\sum_{i} w_{i} Y_{io}} = \frac{\sum_{i} w_{i} (Y_{io} - Y_{ic})^{2}}{\sum_{i} w_{i} Y_{io}}$$
7-3

where Y_{io} and Y_{ic} are the observed and calculated step intensities, respectively, and w_i are the assigned weights. The use of R_{wp} , rather than R, is to ensure that the combined quantity is relatively independent of the absolute values of the raw step intensities in the powder-diffraction experiment.

The weight, W, in equation 7-2 scales R_{wp} with respect to the structure energy, E_{EM} . There is no theoretical justification for what form that W should take, or what value it should have. A pragmatic view suggests that W will vary with the adequacy of the potential model and the degree of resolution of the diffraction data. Work (Fujinaga *et al.* 1989) coupling single-crystal diffraction data with structure simulation (both SSEM and MD) has used the reciprocal of the square of the calculated structure factor as a weight. There was also the suggestion (Brünger *et al.* 1991) to use a weight such that the magnitudes of the first derivatives of R_{wp} with respect to the structural parameters be similar to those of the structure energy, E_{EM} . These approaches are either not applicable to powder-diffraction data, or are not sufficiently efficient and flexible. The form of the weight used in this work was determined by trial-and-error, using the coupled method and different weighing schemes to refine the structures of wellcharacterized single-phase olivine and pyroxene whose structures are easy to refine using the Rietveld method alone (see 3.1). It was found that R_{BRG} (the Bragg-R) makes a good weight. For multiphase refinement, the weight takes the form

$$W = {}^{1}R_{BRG} + {}^{2}R_{BRG} + \dots$$
 7-4

The use of R_{BRG} has evolved the weight W from the function of being a simple scaling factor, to enabling the refinement not only to consider the overall agreement between the observed and the calculated diffraction patterns, but to consider the agreement between the "observed" and calculated Bragg intensities as well, which may not always be implied by the consideration of R_{WP} (or R).

It may seem that the use of R_{BRG} as a weight will give less weight to powderdiffraction data (the Rietveld part) as the refinement progresses, as we expect a successful refinement to converge (giving smaller R's). However, as the CRSSEM method is developed mostly to work with refinements that initially converge into a false minimum (see examples later in the chapter), the R-values are small at the beginning of the CRSSEM refinement, and become larger as the refinement progresses, giving more weight to the powder data (the Rietveld part). The tendency R-values to increase in the CRSSEM refinement is caused by certain instrument-related factors (*e.g.* asymmetry that is more outstanding in high-resolution diffraction experiments) and non-periodical structural features (*e.g.* stacking disorder in layered structures) which cannot be adequately modeled in Rietveld method at present (see detailed discussion in the heulandite example). Therefore, the CRSSEM method actually seeks a balance between the two quantities in equation 7-2, E_{EM} and R_{WP} , while trying to obtain a smaller sum of the two quantities.

The combined quantity in equation 7-2 is minimized and the structure refined as outlined in Figure 7-1. An approximate structure model (usually refined using Rietveld method alone) is input to two functional blocks, R and W, respectively to calculate the two quantities, E_{EM} and R_{WP} , in equation 7-2. The static-structure energy, E_{EM} , is calculated in block W (implemented by the subroutine WCALC in WMIN). The core positions of the O atoms used in the calculation correspond to those of the input model, and the shellpositions are adjusted independent of (at least not directly related to) the powderdiffraction data. In the R-block, R_{wp} is calculated in the modified subroutine ITER of the Rietveld program, which can calculate the structure factors and evaluate the difference while keeping all instrumental and structural parameters fixed at the input values. The R_{BRG} , used as W in equation 7-2, is calculated for each call to ITER by a subroutine BRAGG written in this study. At fixed interval, the instrumental parameters for the Rietveld refinement are adjusted by the Rietveld program alone while keeping all structural parameters fixed. A sum, E_{sum} is then formed from the quantities E_{EM} and R_{wp} obtained from the two functional blocks. This sum will be the basis for the optimization routines residing in the program WMIN. When the modified Rosenbrock search routine is chosen, this sum will be minimized by adjusting the structural-parameters through repeated entries of the R and W blocks such that only the parameter shifts that lower E_{sum} , which contains contributions from the structure energy E_{EM} and the Rietveld difference R_{WP} , will be accepted. A cycle of refinement is completed when shifts for all structural

Figure 7-1. Schematic representation of the coupled Rietveld--static-structure energy minimization refinement method.

parameters are calculated. If any of these shifts is greater than certain limit (0.001 along any axes of the fractional coordinate system), the shifts are applied and a new cycle of refinement is started. Usually, only several cycles are needed to achieve convergence if the starting model is reasonably close to the final one.

If Newton's method of minimization is chosen, the first and second derivatives needed for the minimization will be calculated numerically, i.e., variations of the total energy corresponding to finite increments and decrements of structural parameters will be calculated by actually calling the R and W blocks. Optimization is done by solving for structural parameter shift, $\Delta \mathbf{p}$ ($\Delta \mathbf{p} = \Delta p_i$, i = 1 ... n in the equation):

$$\boldsymbol{B} \, \boldsymbol{\Delta} \boldsymbol{p} = -\boldsymbol{d} \tag{7-5}$$

in which $B_{ij} = \partial^2 E_{sum} / \partial p_i \partial p_j$, $d_i = \partial E_{sum} / \partial p_i$, $i,j = 1 \dots n$. This method is faster, but is more prone to the problem of optimization falling into local minima. The computer program had been set up in this study such that optimization can start with a Rosenbrock search and finish with searches using Newton's method.

7.3. Examples of structure refinement using the CRSSEM method

7.3.1. Minor phases in binary mixtures

It was shown in section 3.1. that when the minor phase is ~ 10 wt% or less, the refined structural parameters of the minor phase deviate significantly from the correct values. It is tempting to try to improve the refinement results using the Coupled Rietveld--

Static-Structure Energy Minimization (CRSSEM) method. Here, two cases are considered, one with a mixture of 10 wt% olivine and 90 wt% pyroxene, and the other with a mixture of 10 wt% pyroxene and 90 wt% olivine; the intensity data are from section 3.1. The coefficients used for the potential function in the SSEM calculation are listed in Table 7-1. The starting structure-models were those obtained by Rietveld refinement alone. Isomorphous replacement of Mg²⁺ by Fe²⁺ in olivine, and Ca²⁺ by Mg²⁺ and Fe²⁺ in pyroxene are not considered explicitly in the structure-energy calculation; the potential parameters for (Mg,Fe)-O and (Ca,Mg,Fe)-O atom pairs were those for Mg-O and Ca-O, respectively. In the minimization of E_{sum} (equation 7-2) with the Rosenbrock search, five stages were used in each cycle; the structure parameters were first adjusted one at a time (the exploratory search) to determine the direction of shift, followed by a vector search in which all parameters were adjusted at the same time in the direction determined in the exploratory search. Results of these refinements are listed in Table 7-2, where they are compared with the results of Rietveld refinement alone, and also the results of singlecrystal structure-refinement. A dramatic improvement (although similar improvement may also be achieved using Rietveld method with soft distance constraints) in the refined structure of olivine in the 10 wt% olivine - 90 wt% pyroxene mixture was obtained by the coupled method. This is most easily seen by comparing the Si-O distances (Table 7-2); the values are no longer obviously unrealistic, and are ordered in the same way as the single-crystal values. There is also an improvement in the structure refinement of the pyroxene in the 10 wt% pyroxene - 90 wt% olivine mixture, albeit not as dramatic as in the case of olivine. The short Si-O distances produced here are related to a deficiency in Table 7-1. POTENTIAL PARAMETERS USED IN THE STRUCTURE ENERGY CALCULATION OF OLIVINE AND PYROXENE

	λ (KCal/mol)	ρ (Å)	C(KCal/mol·Å ⁻⁶	Ref		
Si ⁴⁺ -O ²⁻ Ca ²⁺ -O ²⁻ Mg ²⁺ -O ²⁻ O ²⁻ -O ²⁻	29607.352 160461 32942 524946	0.3025 0.2516 0.2945 0.149	245.860 642.9	[1] [2] [3] [1]		
Bond-bendi	ing interaction** k _B (Kcal/	rad ²) Θ_0	(°)			
O ²⁻ -Si ⁴⁺ -O ²⁻	48.3631	109).47	[1]		
Shell-core i	interaction between	O-shell and O-c k _p (KCal/	ore*** \ ²)			
O _{core} ^{+0.86902} -0	-2.86902 Sshell	1728		[1]		

Short-range repulsion of Born/Buckingham-type potentials*

* cf. equations. 4-7 & 4-4; ** cf. equation 4-5; *** cf. equation. 4-6

[1] Sanders et al. (1984)

[2] Post & Burnham (1986)

[3] Price & Parker (1988)

TABLE 7-2. COMPARISON OF CRYSTAL-STRUCTURE REFINEMENTS BY THE RIETVELD METHOD AND BY THE COUPLED RIETVELD--STATIC-STRUCTURE ENERGY MINIMIZATION METHOD

		Olivine			Pyroxene		
	Rietveld method	CRSSEM	single crystal	Rietveld alone	CRSSEM method	single crystal	
a (Å) b (Å) c (Å) β (°)	4.767(2) 10.249(4) 6.000(2)	4.767(2) 10.249(4) 6.000(2)	4.764(1) 10.226(3) 6.004(2)	9.747(4) 8.914(3) 5.259(2) 105.90(3)	9.747(3) 8.914(4) 5.260(3) 105.90(4)	9.743(2) 8.916(2) 5.256(1) 105.88(2)	
Selected in	ıteratomic distar	ices (Å)					
Si-O1	1.71(9)	1.60(8)	1.620(2)	1.64(4)	1.52(5)	1.604(2)	
Si-02	1.82(3)	1.65(6)	1.653(2)	1.60(5)	1.50(5)	1.588(2)	
Si-O3a	1.86(4)	1.62(8)	1.637(2)	1.59(6)	1.62(7)	1.668(2)	
Si-O3b	1.86(4)	1.62(6)	1.637(2)	1.83(6)	1.69(6)	1.689(2)	

198

the current potential models when applied to the pyroxene structure. Calculation of the pyroxene structure by the SSEM method alone (Dove 1989) with the same potential model and the same parameterization gave even shorter Si-O distances.

7.3.2. Structure refinement of synthetic zeolite ZSM-23

The crystal structure of ZSM-23 was refined from synchrotron X-ray powderdiffraction data using the Rietveld method, together with 146 bond-distance and angle constraints (Marler *et al.* 1993). These constraints assumed a mean Si-O distance of 1.602 Å (this constraint itself is very material-dependent) and a mean Si-O-Si angle of 151° (*c.f.* the ZSM-22 structure; Marler 1987) as the corresponding ideal values in the ZSM-23 structure. The refinement converged to $R_{wp} = 0.085$ and $R_{BRG} = 0.132$. However, the constraints could not be removed as the refinement progressed.

In the present study, the same set of synchrotron data was used. The structure of Marler *et al.* (1993) was used as input to the coupled Rietveld--static-structure minimization procedure. Potential parameters were those that are relevant in Table 7-1, except that repulsion for the Si-O pair was calculated using the Born model (see equation 4-1) with the coefficients of Kunz & Armbruster (1992):

$$\label{eq:rho} \begin{split} \lambda_{si\cdot O} &= 399628.6 \ \text{KCal/mol} \\ \rho_{si\cdot O} &= 0.197 \ \text{\AA} \end{split}$$

The NH_4^+ and F^- ions were omitted from the structure-energy calculation. This is feasible because (1) the framework of the zeolite structure is neutral, and (2) the amount of NH_4F in the unit cell is very small. Therefore, the existence of NH_4F in the zeolite channel can be considered as a minor perturbation of the structure energy, and can be compensated, along with other insufficiencies in the potential model, by the pseudo-energy term from the Rietveld part of the coupled method.

The refinement results using the coupled method are shown in Tables 7-5, 7-6 and 7-7; the powder pattern is shown in Figure 7-2. There is a good fit between the observed and calculated patterns as indicated by the low R_{BRG} and the relatively low R_{wp} (there is a second unknown phase present, and this was not modelled). The corresponding R-values from the work of Marler *et al.* (1993) are rather different. Difference in R_{wp} and R_{exp} in between the two works may be explained by the different weighting schemes used in calculating these R-values. However, R_{BRG} is only slightly affected by the type of weighting scheme and its formulation has little variation between different Rietveld codes. As R_{BRG} is a measure of the correspondence between the calculated structure model and the observed data (the Bragg reflections in the powder-diffraction pattern), the lower R_{BRG} obtained in this study indicates that a better model was derived by the CRSSEM method.

The refined structure is slightly different from that of Marler *et al.* (1993) in terms of unit-cell parameters (Table 7-5) and atomic coordinates (Table 7-6). However, most of the interatomic distances and angles agree within 1σ (Table 7-7). Differences are observed in Si-O-Si angles and F-N distances. Whereas the lower ranges of Si-O-Si angles are similar in the two refinements, the range of angles is greater in the present refinement; many recent single-crystal structure-refinements of the ZSM series (van Koningsveld 1990; van Koningsveld *et al.* 1989, van Koningsveld *et al.* 1987) show Si-O-Si angles in the range of 140-176°, in good agreement with the present work.

	This work	Marler et al. (1993)
Wavelength (Å)	1.1999	1.1999
Profile range (°2 Θ)	5.80 - 61.385	5.80 - 61.385
step size (°2 Θ)	0.005	0.005
exclude regions ($^{\circ}2\Theta$)	16.6 - 17.5	16.6 - 17.5
-	20.0 - 21.0	20.0 - 21.0
a (Å)	11.1486(2)	11.129(1)
b (Å)	5.0330(1)	5.025(1)
c (Å)	21.5585(3)	21.519(1)
β (°)	89.838(1)	89.85(4)
R _{brg}	0.056	0.132
R _{wp}	0.189	0.085
R _e	0.065	0.033

TABLE 7-3. REFINEMENT DETAILS OF THE ZSM-23 STRUCTURE

TABLE	7-4.	THE	FINAL	ATOMIC	COORDINATES	OF	THE	ZSM-23	STRUCTURE
-------	------	-----	-------	--------	-------------	----	-----	--------	-----------

	Ţ	his work			Marler et	al. (1993)
Atom	Х	Y	Z	Х	Y	Z
SI1	008(4)-	.015(15)	.456(2)	-0.009(2)	+0.02(1)	0.4578(9)
SI2	.726(4) -	.082(13)	.425(2)	0.726(2)	0.082(8)	0.425(1)
SI3	.228(4) -	.114(13)	.384(2)	0.228(2)	0.112(8)	0.384(1)
SI4	.312(3)0		.251(2)	0.312(2)) ()	0.251(1)
SI5	.479(3)	.503(12)	.250(2)	0.476(2)	0.503(4)	0.249(1)
SI6	.348(4)	.393(13)	.435(2)	0.346(2)	0.390(8)	0.434(1)
SI7	.603(3)	.417(12)	.378(2)	0.600(2)	0.417(8)	0.378(1)
SI8	010(4) -	.099(14)	.044(2)	-0.010(2)	+0.10(1)	0.0422(9)
SI9	.727(4) -	.010(14)	.079(2)	0.726(2)	+0.012(9)	0.077(1)
SI10	.231(4) -	.076(13)	.120(2)	0.232(2)	+0.077(7)	0.118(1)
SI11	.355(4)	.424(14)	.063(2)	0.355(2)	0.424(8)	0.063(1)
SI12	.603(4)	.487(12)	.120(2)	0.603(2)	0.487(8)	0.120(1)
01	.012(7)	.270(22)	.489(4)	0.012(5)	0.27(1)	0.487(2)
02	.865(7)-	.020(24)	.424(3)	0.866(2)	+0.02(1)	0.422(2)
03	.093(7)-	.090(23)	.408(3)	0.093(3)	+0.09(1)	0.408(2)
04	.683(7)-	.040(24)	.495(3)	0.683(4)	-0.04(1)	0.495(1)
05	.655(7)	.125(21)	.383(7)	0.655(4)	0.122(9)	0.381(2)
06	.237(6)-	.050(25)	.312(4)	0.231(4)	-0.05(1)	0.311(1)
07	.315(7)	.092(19)	.419(4)	0.317(4)	0.085(9)	0.41((2)
08	.370(6)	.296(16)	.254(4)	0.368(3)) 0.292(4)	0.254(3)
09	.563(6)	.488(22)	.309(4)	0.564(4))0.49(1)	0.308(1)
010	.487(6)	.440(24)	.422(4)	0.486(2)) 0.44(1)	0.423(2)
011	.866(7)-	.069(23)	.079(3)	0.866(2)	+0.07(1)	0.079(2)
012	.102(7)-	.050(23)	.089(3)	0.100(3	+0.05(1)	0.089(2)
013	.680(7)-	.030(23)	.008(3)	0.679(4)	+0.03(1)	0.008(1)
014	.228(6)-	.030(21)	.192(4)	0.226(3)	-0.03(1)	0.192(1)
015	.553(7)	.440(21)	.189(4)	0.553(4)) 0.43(1)	0.189(1)
016	.496(7)	.460(23)	.073(4)	0.497(2)) 0.46(1)	0.071(2)
017	.706(7)	.283(20)	.103(3)	0.708(3) 0.28(1)	0.103(2)
018	.322(7)	.133(21)	.087(4)	0.322(4) 0.130(8)	0.086(2)
019	001(7)	.113(23)-	.012(4)	-0.001(5) 0.11(1) -	0.014(2)
020	.699(7)	.626(20)	.402(4)	0.701(3) 0.621(9)	0.401(2)
021	.271(7)	.587(19)	.394(4)	0.269(4) 0.584(8)	0.392(2)
022	.420(6)	.796(14)	.246(4)	0.422(2) 0.797(5)	0.246(3)
023	.652(7)	.785(21)	.119(4)	0.652(4) 0.786(9)	0.120(2)
024	.286(7)	.635(20)	.106(4)	0.285(4) 0.632(8)	0.106(2)
F	.933(7)	.557(19)	.215(4)	0.938(8) 0.55(3)	0.215(5)
Ν	.910(9)	.085(24)	.255(7)	0.89(1)	0.06(4)	0.261(9)

	This work	Marler et al. (1993)
Si-O	1.58(8) - 1.63(8)	1.59 - 1.60
<si-o></si-o>	1.59(1)	1.60
Si-Si	2.99(7) - 3.20(5)	3.00 - 3.15
<si-si></si-si>	3.03(1)	3.08
0-0	2.54(10) - 2.67(13)	2.56 - 2.65
<0-0>	2.60(1)	2.61
F-N	2.54(12) and 2.82(13)	2.74 and 2.76
O-Si-O	106(6) - 114(5)	106 - 112
<o-si-o></o-si-o>	109(1)	109
Si-O-Si	142(6) - 174(7)	140 - 159
<si-o-si></si-o-si>	152(1)	149

TABLE 7-5. RANGES OF DISTANCES (Å) AND BOND-ANGLES (°) OF ZSM-23

7.4. Summary

Coupled Rietveld--Static-Structure Energy Minimization (CRSSEM) refinement is a viable solution to the problem of crystal-structure refinement using powder-diffraction data when the latter is not of sufficient resolution to allow adequate structure refinement using the Rietveld method alone. Such situations can arise when the material of interest occurs as a minor phase in a mixture, or when the structure is very complex, such as those of the synthetic zeolites. The core of the coupled method is the minimization of the sum of two quantities: (1) the difference between the observed and calculated powderdiffraction patterns; (2) the static-structure energy. Such minimization scheme is hopefully a more objective solution to this problem than the use of distance and angle constraints. **Chapter 8**

Refining Crystal Structures of Boromuscovite Polytypes Using the CRSSEM Method

8.1. Boromuscovite: a new mineral

Boromuscovite was described as a new mineral species by Foord *et al.* (1991). It has an ideal formula $KAl_2(Si_3B)O_{10}(OH)_2$, and the chemical composition reported by Foord *et al.* (1991) is very close to that of the end-member; the key chemical feature is the occurrence of a significant amount of B at the tetrahedral site(s) of the structure. However, no crystal-structure refinement has yet been done because of the fine-grained nature of the mineral. Furthermore, boromuscovite occurs as a mixture of 1M and $2M_1$ polytypes, further complicating the problem of structural characterization.

Rietveld method is the ideal method for structure refinement of this new mineral, not only for the obvious reason that the mineral was a fine-grained powder in diffraction intensity- data collection, but also for the method's ability to simultaneously refine more than a single phase. With the development of the Coupled Rietveld--Static Structure-Energy Minimization (CRSSEM) method, the chance of success in refining simultaneously the structures of both polytypes is increased.

8.2. Experimental

The material used here is from Řečice granitic pegmatite, Czech Republic, supplied by Milan Novák at the Department of Mineralogy, Moravian Museum, Czech Republic.

8.2.1. Chemical analysis

Electron-microprobe analysis was done in wavelength-dispersion mode on a Cameca SX-50 instrument with a beam diameter of 5 μ m and an accelerating potential of 15 kV. Other experimental details are as described in section 3.1.1.

Quantitative ion-microprobe analysis for Li, Be and B was done by Luisa Ottolini at the CNR Centro di Studio per la Cristallochimica e la Cristallografia, Pavia, Italy. The instrument used is a CAMECA IMS 4F, using a primary beam of ${}^{16}O^{-}$ ions (5–15 µm diameter) at 12.5 keV and 5–10 nA current intensity. Secondary ions at masses 7 (Li), 9

(Be), 11 (B), and 30 (Si) as the reference isotope for the matrix, were collected under an ion-imaged field of 25 μ m diameter, contrast diaphragm of 400 μ m and field aperture of 1800 μ m. Analytical reproducibility was checked on a standard sample (natural Macusanirhyolite glass), resulting typically in a few percent variation over the span of a day. Energy filtering was used to monitor secondary ions: medium- to high-energy ions of ~100 \pm 25 eV energies were selected in this experimental configuration. This approach is very effective in minimizing matrix effects for the light lithophile elements, Li, Be and B, over a wide range of concentration (Ottolini *et al.* 1993). It is a particularly effective method for B, and careful experiments show that an accuracy of 3% relative is possible (Hawthorne *et al.* 1995). Further details of this method as applied to micas are given in Černý *et al.* (1995).

8.2.2. Powder-diffraction data collection

The intensity-data collection procedure was similar to that described in section 3.2.1. Details of the data collection are listed in Table 8-1. Powder-diffraction step-scan intensities are given in Appendix P-28.

8.3. Structure refinement of two polytypes of boromuscovite

The refinement used the muscovite structure of Richardson & Richardson (1982) as a starting model for the $2M_1$ polytype, and the structure of Sidorenko *et al.* (1975) for the 1M polytype. Initial refinement was done using the modified Rietveld program

	2 <i>M</i> ₁	1M	
<i>a</i> (Å)	5.090(1)	5.102(4)	
b (Å)	8.822(2)	8.788(7)	
<i>c</i> (Å)	19.819(5)	10.076(7)	
β (°)	95.62(1)	101.23(3)	
V (Å ³)	885.67	443.12	
2θ scan range (°)	17–122		
step interval (°20)	0.02		
integration time/step (s)	o (s) 20		
maximum intensity (counts)	ensity (counts) 1720		
Unique reflections	747	397	
Structural parameters	38	24	
Experimental parameters		12	
N-P	5177		
R _P	10.8		
R _{WP}	1	13.8	
R _{EXP}		7.9	
$R_{\rm BRG}$	3.8	3.8	

TABLE 8-1. INTENSITY DATA COLLECTION AND
DETAILS OF STRUCTURE REFINEMENT

LHPM3. Details of the Rietveld refinement are similar to those in 3.2.1., and are summarized in Table 8-1. During structure refinement, when the atomic coordinates of the minor phase (the 1*M* polytype) were fixed, the structure of the dominant $2M_1$ phase could be refined, but resulted in unrealistic *T*-O distances. When attempting to refine the structure of the minor 1*M* phase, the refinement did not converge. Computer simulation (SSEM) of the 1*M* structure suggested the presence of a mirror plane, and refinement in the space group C2/m (rather than C2 of the starting model) did converge. However, unrealistic *T*-O distances occurred in both phases.

At this stage, the CRSSEM method was used. The coefficients for the various potential functions (equations 4–3 to 4-8) are those used in Chapter 5. Isomorphous replacement, such as $B \rightarrow Si$ and $Al \rightarrow Si$, was not considered explicitly in the energy calculation, except that an effective charge of 3.75^+ (based on the chemical analysis) instead of 4⁺ was used for the *T* atoms in the calculation of Coulombic energy. The potential terms involving (Si,B,Al)–O, (Al,Mg)–O, (K,Na)–O were approximated using parameterizations for Si–O, Al–O and K–O, respectively. The isomorphous replacements can be compensated for by the Rietveld part of the CRSSEM method.

It should be emphasized here that the potential parameterization involves only Si, Al, K, H and O, and energy minimization alone would result in the muscovite structure. Thus information on the 'boromuscovite' character of the sample (*i.e.*, short T–O distances, low T-site scattering, smaller cell dimensions) come entirely from the Rietveld component of the CRSSEM procedure. However, in the absence of the constraint of the energy minimization, the Rietveld refinement alone resulted in impossible individual T–O distances. Hence, it is apparent that the constraints of the energy minimization play an important role in the extraction of the boromuscovite features of the sample from the X-ray data *via* Rietveld refinement.

8.4. Results

The chemical composition and unit formula of boromuscovite are listed in Table 8-2. The refined atomic positions are shown in Table 8-3, selected bond-distances and angles are listed in Table 8-4, and site occupancies are given in Table 8-5. The overall fit between the calculated and the observed diffraction patterns is shown in Figure 8-1.

The chemical composition is very similar to that reported by Foord *et al.* (1991). The structural formulae of boromuscovite, calculated on the basis of 12 [O+OH+F], is $(K_{0.89}Na_{0.01})(Al_{1.99}Li_{0.01})(Si_{3.10}B_{0.68}Al_{0.22})O_{10.0}[(OH)_{1.98}F_{0.02}]$. The cell dimensions for both $2M_1$ and 1M polytypes are similar to those given by Foord *et al.* (1991). Based on the refined cell-parameters and scale factors of the two polytypes in the powder, the relative weight percentage of the $2M_1$ polytype can be calculated from (*c.f.* eq. 2-18)

$$W_{2M_1} = \frac{S_{2M_1} (ZMV)_{2M_1}}{S_{2M_1} (ZMV)_{2M_1} + S_{1M} (ZMV)_{1M}} \cdot 100\%$$
 8-1

in which S, Z, M and V are the refined scale-factor, number of formula units in the unit cell, the mass of the formula unit, and the cell volume, respectively. The results of the present refinement give

	present work*	Foord et al.
(1991)		
SiO ₂	48.21	48.1
Al_2O_3	29.19	28.1
B_2O_3	6.12	7.0
FeO	0.04	0.1
MnO	_	0.08
MgO	0.03	0.15
BaO	0.11	
CaO	-	0.01
Li ₂ O	0.03	0.05
K ₂ O	10.93	11.0
Na ₂ O	0.06	
Rb ₂ O	0.03	0.52
Cs_2O	0.02	0.05
H ₂ O	4.61**	4.77
F	0.11	0.76
O=F	-0.05	0.32
Total	99.44	100.46

TABLE 8-2. CHEMICAL ANALYSIS (wt%) AND UNIT FORMULA OF BOROMUSCOVITE

A set of the set of

	present work*	Foord et al.
(1991)	-	
Si	3.10	3.06
Al	0.22	0.16
В	0.68	0.78
Al	1.99	1.94
Mg	-	0.01
Li	0.01	0.01
Ca		0.01
К	0.89	0.89
Rb	_	0.01
Na	0.01	
0	10	10
OH	1.98	2.02
F	0.02	0.16

TABLE 8-2. (CONTINUE)

* P, Ti, Sc, Sr, Zn, Be, Mn not detected

** estimated by stoichiometry

- = not detected

-- = not determined

	x	у	Z	Displacement factor
		$2M_1$ poly	type	
A1	0.251(3)	0.079(2)	-0.0002(7)	0.47
T1	0.442(3)	0.254(2)	0.1351(7)	0.12
T2	0.045(3)	0.426(2)	0.3640(7)	0.17
K	0	0.113(2)	1/4	0.26
0	0.039(5)	0.072(4)	0.4541(6)	0.35
01	0.385(5)	0.248(4)	0.0569(12)	0.37
O2	0.043(4)	0.438(3)	0.4466(13)	0.29
03	0.419(4)	0.090(3)	0.1655(10)	0.38
O4	0.229(6)	0.364(3)	0.1636(10)	0.68
05	0.270(5)	0.314(2)	0.3466(12)	0.32
		1 <i>M</i> poly	type	
Al	0	0.666(8)	0	0.62
Т	0.437(11)	0.674(5)	0.272(5)	0.12
K	1/2	0	1/2	0.26
OH	0.433(16)	0	0.100(8)	0.35
01	0.347(12)	0.715(6)	0.116(8)	0.37
O2	0.192(14)	0.726(7)	0.332(8)	0.68
O3	0.520(17)	1/2	0.587(9)	0.38

TABLE 8-3. FINAL ATOMIC COORDINATES OF BOROMUSCOVITEPOLYTYPES

2 <i>M</i> ₁ POLYTYPE					
T101	1.55(2)	T2-O2	1.64(2)		
T103	1.58(3)	T2–O3c	1.58(3)		
T104	1.58(3)	T2-O4e	1.56(3)		
T1–O5	1.57(2)	T2-O5	1.57(3)		
<t1-0></t1-0>	1.57	<t2o></t2o>	1.59		
0103	2.56(4)	O2-O3c	2.62(4)		
0104	2.53(3)	O2–O4e	2.56(3)		
0105	2.53(4)	O2–O5	2.63(3)		
O3–O4	2.58(4)	O3c-O4e	2.57(4)		
0305	2.56(4)	O3c-O5	2.62(4)		
04-05	2.61(4)	O4eO5	2.56(4)		
<0-0>T1	2.56	<0-0>T2	2.59		
01-T1-03	109.8(21)	O2-T2-O3c	108.9(17)		
O1–T1–O4	108.2(14)	O2-T2-O4e	106.1(14)		
01-T1-05	108.6(13)	O2-T2-O5	109.5(14)		
O3T1O4	109.4(13)	O3c-T2-O4e	109.8(16)		
O3T1O5	108.8(15)	O3c-T2-O5	112.5(15)		
04	112.0(16)	04e-T2-05	109.6(15)		
<0-T1-0>	109.5	<0-T2-0>	109.4		
Al01	1.96(3)	K–O3 x2	2.84(2)		
Al-O1a	1.98(3)	K–O4g x2	2.99(2)		
Al–O2b	1.91(2)	KO5 x2	2.92(2)		
Al-O2c	1.88(3)	<k-o<sub>inner></k-o<sub>	2.92		
Al-OHd	1.89(3)				
Al-OH	1.81(2)	K–O3f x2	3.25(2)		
<a10></a10>	1.90	K–O4 x2	3.14(2)		
		K–O5g x2	3.46(2)		
		<k-o<sub>outer></k-o<sub>	3.28		

TABLE 8-4. INTERATOMIC DISTANCES (Å) AND ANGLES (°) IN BOROMUSCOVITE

TABLE 8-4. (CONTINUE)							
1M POLYTYPE							
T-01	1.59(7)	Al-O1	1.97(6)				
T02	1.56(7)	Al-O1i	1.85(8)				
T–O2h	1.59(7)	AlOHj	1.84(6)				
T03	1.59(5)	<al-0></al-0>	1.89				
<to></to>	1.58						
01–02	2.46(9)	O1–T–O2	103(4)				
O1–O2h	2.57(10)	O1–T–O2h	108(4)				
01–03	2.60(10)	O1–T–O3	110(4)				
O2–O2h	2.59(2)	O2–T–O2h	110(4)				
O2O3	2.69(9)	O2TO3	118(5)				
O2h-O3	2.57(8)	O2h-T-O3	108(4)				
<0-0>T	2.56	<0-T-0>	109.5				
K–O2k x4	3.17(6)						
K–O21 x4	2.90(7)						
K–O3m x2	2.92(9)						
<ko></ko>	3.00						

a: 1/2--x, 1/2--y, -z; b: 1/2+x, 1/2--y, 1/2+z; c: 1/2--x, 1/2+y, 1/2--z; d: x, -y, -1/2+z; e: -x, y, 1/2--z; f: 1--x, y, 1/2--z; g: 1/2--x, -1/2+y, 1/2--z; h: 1/2+x, 1/2--y+1, z; i: 1/2--x, 1/2--y+1, -z; j: 1/2--x, 1/2+y, -z; k: x, 1--y, z; l: 1/2+x, 1/2+y, z; m: -1/2+x, -1/2+y, z.

.	Refined occupancy	Assigned from formula unit
	2 <i>M</i> ₁ po	lytype
Al	0.96(2) Al	1.99 A1
T1	0.78(3) Si + 0.22(3) B	3.10 Si + 0.22 Al + 0.68 B
Т2	0.72(3) Si + 0.28(3) B	
K	0.41(1) K	0.89 K
	1 <i>M</i> pol	lytype
Al	0.41(5) Al	1.99 A1
Т	0.75(13) Si + 0.25(13) B	3.10 Si + 0.22 Al + 0.68 B
K	0.20 K	0.89 K

TABLE 8-5. REFINED SITE-OCCUPANCIES AND ASSIGNEDSPECIES IN BOROMUSCOVITE POLYTYPES

Figure 8-1. Observed (A), calculated (B) and the difference (C) powder-diffraction patterns of boromuscovite.

218

 $W_{2M1} = 83 \text{ wt\%}$ and $W_{1M} = 100 - 83 = 17 \text{ wt\%}$.

This result differs significantly from that of Foord *et al.* (1991) who gave a 50:50 ratio of the two polytypes in the mixture from California based on visual estimation.

8.5. Discussion

In the $2M_1$ polytype, the $\langle TI-O \rangle$ distance is slightly shorter than the $\langle T2-O \rangle$ distance (Table 8-4). The difference arises from the different $T-O_{nbr}$ distances. The $TI-O_{nbr}$ is shorter, whereas $T2-O_{nbr}$ is greater than $T-O_{br}$, respectively. The $T-O_{br}$ distances are similar within individual polytypes and between polytypes, and are close to 1.57 Å. The refined T-site occupancies for (Si+Al) and B agree well with results of the chemical analysis. On a plot relating B-content and $\langle T-O \rangle$ distance (Fig. 8-2), the TI and T2 sites fall on the trend suggested by Fleet (1992). The $\langle T-O \rangle$ distance (1.58 Å) in the 1*M* polytype is equal to the average of those in the $2M_1$ polytype, indicating no preferred partitioning of B into either polytype. The refined T-site occupancy of (Si+Al) is not as reliable as those in the $2M_1$ polytype, as there was strong correlation between the site occupancy and scale factor during refinement.

8.6. Summary

(1) Boromuscovite from Řečice granitic pegmatite, Czech Republic is a mixture of 83 wt% $2M_1$ and 17 wt% 1M polytypes.

Figure 8-2. The relationship between $\langle T-O \rangle$ distances and B content; solid circle: boromuscovite $(2M_1)$; solid triangle: boromuscovite (1M); open circle: data points from Fleet (1992); line: linear regression of data points from Fleet (1992).

- (2) Crystal structures of both polytypes were successfully refined using the Coupled Rietveld--Static-Structure-Energy Minimization (CRSSEM) method. Simultaneous structure refinement of the two polytypes converged to $R_{wp} = 13.8\%$ ($R_{exp} = 7.9\%$), R_{BRG} ($2M_1$) = 3.8% and R_{BRG} (1M) = 3.8%.
- (3) The CRSSEM method allows much more accurate determination of modal amounts and crystal-structure details of mixtures of polytypes than has hitherto been possible.

Chapter 9

Conclusions and Potential Development

Some generalizations, based on the present work, can be made regarding the reliability and applicability of the Rietveld method in crystal-chemical studies of minerals.

The Rietveld method can refine crystal structures accurately within the level of the assigned precision. For single-phase anhydrous materials (without profound tendency of preferred orientation), such as olivine and diopside, the Rietveld method can give crystal structures statistically identical to those of single-crystal work (although of lower precision). For materials that tend to give strong preferred orientation, such as micas, a combination of careful sample preparation and a preferred-orientation correction (using the March model) will enable the Rietveld method to give structure refinements to the same reliability level as that of olivine and diopside. For materials that host species with large

thermal displacement (such as water molecules and charge-compensating cations in zeolites), structure refinement of the relatively rigid framework can still be successful. Refinement of cation site-occupancies by the Rietveld method, based on fixed isotropic thermal displacements, reproduces the results by single-crystal refinement and chemical analysis. The above-stated reliability applies to multi-phase Rietveld refinement, given that the minor phase is greater than 10 wt%.

The role of computer simulation in crystal-chemical studies of fine-grained materials is to assist in locating and determining the light elements, such as H, in the structure, although it may find other roles such as setting up a starting structure model of a new mineral species from the structure of a topologically similar mineral. With the combination of Rietveld refinement, computer simulation and spectroscopic studies, Hatom positions in the structure of powder materials can be determined.

The capability of the Rietveld method can be extended when it is coupled with computer simulation. The problem of insufficient experimental resolution (*e.g.* in crystal-structure studies of minor phases in mixtures and minerals with large complicated structures) can be ameliorated by considering inter-atomic interactions through computer simulation of the structure. The Coupled Rietveld--Static Structure-Energy Minimization (CRSSEM) method is most useful in determining similar structures co-existing in a powder mixture, such as a mixture of the $2M_1$ and 1M polytypes of a mica species. Determination of large zeolite structures, such as most of the synthetic zeolite structures, can be another area of application of the CRSSEM method.

The thesis work also identified areas for further work. In the Rietveld refinement,

unrealistic thermal-displacement parameters often occur even when only isotropic displacement factors are allowed to refine. Site occupancies tend to correlate strongly with thermal-displacement parameters, and hence reliable determination of displacement parameters is of vital interest to crystal-chemical studies of crystalline materials. Coupling Rietveld refinement with *Molecular Dynamics* (MD) may be an answer to the problem. Trajectories of individual atoms, in response to a given temperature and structural configuration, can be calculated explicitly based on current atomic-interaction models. These trajectories can serve as a basis of Rietveld refinement of displacement parameters. The advantage of dynamic coupling of MD with Rietveld refinement is that calculation of the trajectories and the refinement of displacement parameters, which can both be uncertain when being considered alone, will regulate each other to give results that are closer to the true values.
REFERENCES

- Abbott, R. N., Jr (1992) Hydrogen in minerals: a review of theoretical energy calculations. *Trend. Mineral.* **1**, 43-55
- Abbott, Jr. R. N., Post J. E., Burnham C. W. (1989) Treatment of hydroxyl in structureenergy calculations. *Am. Mineral.* 74, 141-150
- Abrahams, S. C. & Keve, E. T. (1971) Normal probability plot analysis of error in measured and derived quantities and standard deviations. *Acta Cryst.* A27, 157-165.
- Adams, J. M. (1983): Hydrogen atom positions in kaolinite by neutron profile refinement: Clays Clay Mineral. 31, 352-356
- Afonina, G.G., Makagon V. M., Smakin B. M., Glebov M. P. & Makrygin A. I. (1979) Effects of rubidium and cesium on the structure states of potash feldspars from rare-metal pegamatites. *Internat. Geology Rev.* 21, 597-604
- Albinati, A. & Willis B. T. M. (1982) The Rietveld method in neutron and X-ray powder diffraction. J. Appl. Cryst. 15, 361-374
- Baerlocher, Ch. (1986) Zeolite structure refinements using powder data. Zeolites 6, 325-333
- Bailey, S. W. (1969) Polytypism of trioctahedral 1:1 layer silicates. *Clays Clay Miner*. **17**, 355-357

Bailey, S. W. (1980) Structures of layer silicates. in S. W. Bailey & G. Brown ed. Crystal

Structures of Clay Minerals and Their X-ray Identification. Mineral. Soc. Monog. No. 5, London

- Bassett, W. A. (1960): Role of hydroxyl orientation in mica alteration. *Bullet. Geol. Soc. Amer.* **71**, 449-456
- Bathow, G., Freytag, E. & Haensel, R. (1966) Measurement of synchrotron radiation in the X-ray region. J. Appl. Phys. 36, 3449-3454
- Beeman, D. J. (1976) Some multistep methods for use in molecular dynamics calculations J. Compt. Phys. 20, 130-139
- Bell, R. G., Jackson R. A. & Catlow C. R. A. (1992) Löwenstein's rule in zeolite A: A computational study. Zeolite. 12, 870-871
- Bennett, J. M. & Kirchner, R. M. (1991): The structure of as-synthesized aluminophosphate APO_4 -16 determined by a new framework modelling method and Rietveld refinement of synchrotron powder diffraction data. *Zeolites.* **11**, 502-506.
- Bérar, J.-F. & Baldinozzi, G. (1993) Modelling of line-shape asymmetry in powder diffraction. J. Appl. Cryst. 26, 128-129
- Bérar, J.-F. & Lelann, P. (1991): E.S.D.'s and estimated probable error obtained in Rietveld refinements with local correlations. J. Appl. Crystallogr. 24, 1–5.

Berendsen, H. J. C., Postman J. P. M., Van Gunsteren W. F., DiNola A. & Haak J. R. J. J. Chem. Phys. 81, 3684-3690

Bertaut, F. (1952) L'energie electrostatique de reseaux ioniques. J. Phys. Radium 13, 499-505 Bertram, U. C., Heine V., Jones I.L., & Price G. D. (1990) Computer modelling of Al/Si ordering in sillimanite. *Phys. Chem. Minerals* **17**, 326-333

- Bhattacharya, A., Mohanty, L., Maji, A., Sen, S. K. & Raith, M. (1992): Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. *Contrib. Mineral. Petrol.* 111, 87-93
- Bish, D. L. (1995): Rietveld refinement of the kaolinite structure at 1.5 K. Clays Clay Minerals 41,738-744
- Bish, D. L. & Burnham C. W. (1980) Structure energy calculations on optimum distance model structures: application to the silicate olivines. *Am. Mineral.* **69**, 1102-1109
- Bish, D. L. & Burnham, C. W. (1992): Rietveld refinement of the crystal structure of fibrolitic sillimanite using neutron powder diffraction data. Am. Mineral. 77, 374-379.
- Bish, D.L. & Chipera, S.J. (1988): Problems and solutions in quantitative analysis of complex mixtures by X-ray powder diffraction. Adv. in X-ray Anal. 31, 295–308.
- Bish, D. L. & Howard, S.A. (1988): Quantitative phase analysis using Rietveld method.J. Appl. Crystallogr. 21, 86–91.
- Bish, D. L. & Johnston, C. T. (1993): Rietveld refinement and Fourier-transform infrared spectroscopic study of the dickite structure at low temperature. *Clays Clay Mineral.* 41, 297-304.
- Bish, D. L. & Post, J. E. (1987): Refinement of the sepiolite structure and location of tunnel water molecules using the Rietveld method: *Programs and Abstracts*, 24th

Annual Meeting, The Clay Minerals Society, Socorro, New Mexico, 33

- Bish, D. L. & Post, J. E. (1988): Quantitative analysis of geological materials using X-ray powder diffraction data and the Rietveld refinement method. *Geol. Soc. Am. Abstr. Programs* 20, A223.
- Bish, D. L. & Post, J.E. (1989): Thermal behaviour of complex, tunnel-structure manganese oxides. Am. Mineral. 74, 177-186
- Bish, D. L. & Post, J.E. (1993): Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am. Mineral. 78, 932–940.
- Bish, D. L. & Reynolds, D.C. Jr. (1989): Sample preparation for X-ray diffraction. Rev. Mineral. 20, 73-101.
- Bish, D. L. & von Dreele, R. B. (1989): Rietveld refinement of non-hydrogen atomic positions in kaolinite: Clays Clay Mineral. 37, 289-296
- Boeyens, J. C. A. and Gafner G. (1969) Direct summation of Madelung energies. Acta Cryst. A25, 411-414
- Born, M. & Huang K. (1954) Dynamical theory of crystal lattices. Oxford University Press, London
- Bone, M. & Landé, A. (1918): Uber die absolute berechnung der kristalleigenschaften mit hilfe bohrscher atommodelle. Sitzungfberichte der preussiscgen der Wissenschaften Berlin, 45, 1048-1068

Bone, M. & Mayer, J. E. (1932): Zur gittertheorie der ionenkristalle. Z. Phys. 75, 1-18
Brese, N. E. & O'Keeffe, M. (1991) Bond-valance parameters for solids. Acta Cryst. B47, 192-197

- Brindley, G. W. (1980) Order-disorder in clay mineral structures. in Crystal structures of clay minerals and their X-ray identification. 125-195. G. W. Bridley and G. Brown ed. Mineralogical Society, London
- Brown, A. & Edmonds, J. W. (1980) The fitting of powder diffraction profile to an analytical expression and the influence of line broadening factors. *Adv. X-ray Anal.*23, 361-
- Brown, I. D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. in Structure and bonding in crystals. Eds M. O'Keeffe & A. Navrotsky. Academic Press Toronto
- Brown, I. D. & Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. *Acta Cryst.* **B41**, 244-247
- Brown, I. D. & Shannon, R. D. (1973) Empirical bond-strength-bond-length curves for oxides. Acta Cryst. A29, 266-
- Brünger, A. T. & Karplus, M. (1991): Molecular dynamics simulation with experimental restraints. *Acc. Chem. Res.* 24, 54-61
- Brünger, A. T., Kuriyan, J. & Karplus, M. (1987). Crystallographic R factor refinement by molecular dynamics. *Science* **235**, 458-563
- Burnham, C. W. (1985) Mineral structure energetics & modelling using the ionic approximation. *Rev. Mineral.* 14, 347-338
- Burnham, C. W. (1990) The ionic Model: Perceptions and realities in mineralogy. Am. Mineral. 75, 443-463

Burns, P. C. & Fleet, M. E. (1990) Unit-cell dimensions and tetrahedral-site ordering in

synthetic gallium albite (NaGaSi₃O₈). Phys. Chem. Mineral. 17, 108-116

- Burns, P. C. & Hawthorne, F. C. (1994) Structure and hydrogen bonding in preobrazhenskite, a complex heteropolyhedral borate. *Can. Mineral.* **32**, 387-396
- Busing, W. R. (1970) An interpretation of the structures alkaline earth chlorite in terms of interionic forces. *Trans. Amer. Crystallogr. Assoc.* 6, 57-72
- Busing, W. R. (1981) WMIN, a computer program to model molecules and crystals in terms of potential energy functions. U.S. Nat'l Technical Info. Service, ORNL-5747
- Busing, W. R. (1990) X-ray diffraction study of disorder in allied spectra-1000 polyethene fibers. *Macromolecules* 23, 4608-4610
- Caglioti, G., Paoletti, A. & Ricci, F. P. (1958): Choice of collimators for a crystal spectrometer for neutron diffraction. *Nuclear Instrum.* **3**, 223-228
- Cartlidges, & Meier, W. M. (1984) Solid state transformations of synthetic CHA- and EAB-type zeolites in the sodium form. *Zeolites*. 4, 218-225
- Catlow, C. R. A. (1990) An introduction to computer modelling of condensed matter. NATO ASI Ser. 293, 1-28
- Catlow, C. R. A. Dixon, M. & Mackrodt, W. C. (1982) interionic potentials in ionic solids. In Catlow, C. R. A. & Mackrodt, W. C., Eds., Computer simulation of Solids, Springer-Verlag, Berlin, p. 115-161
- Catlow, C. R. A. & James, R. (1982) Disorder in TiO_{2-x}. Proc. *Royal Soc. London*, A384, 157-173

Catlow, C. R. A. & Price, G. D. (1990) Computer modelling of solid state inorganic

materials. Nature 347, 243-248

- Catlow, C. R. A., Thomas, J. M., Parker, S. C. & Jefferson, D. A. (1982) Simulating silicate structures and the structural chemistry of pyroxenoids. *Nature* **295**, 658-662
- Catti, M., Ferraris, G., Hull, S. & Pavese, A. (1994): Powder neutron diffraction study of 2M₁ muscovite at room pressure and at 2 GPa. *Eur. J. Mineral.* **6**, 171–178.
- Černý, P., Macek, J. J. (1972) The Tanco pegmatite at Bernic Lake, Manitoba. V, Coloured potassium feldspars. *Can. Mineral.* **11**, 679-689
- Černý, P., Pentinghaus, H., Macek, J. J. (1985) Rubidium microcline from Red Lake, northeastern Manitoba. *Bull. Geol. Soc. Finland* 57, 217-230
- Černý, P., Staněk, J., Novák, M., Baadsgaard, Rieder, M., Ottolini, L., Kavalová, M., and Chapman, R. (1995): Geochemical and structural evolution of micas in the Rožná and Dobrá Voda pegmatites, Czech Republic. *Mineral. and Petrol.* 55, 177-201
- Cheetham, A. K. & Wilkinson, A. T. (1993) Synchrotron X-ray and neutron diffraction studies in solid-state chemistry. *Angew. Chem. Int. Ed. Engl.* **31**, 1557-1570
- Choquet, M., Rousset, G. and Bertrand, L. (1986) Fourier-transform photoacoustic spectroscopy: a more complete method for quantitative analysis. *Can. J. Phys.* 64, 1081-1085
- Circone, S. & Navratsky, A. (1992) Substitution of ^[6,4]Al in phlogopite: high-temperature solution calorimetry, heat capacities, and thermodynamic properties of the phlogopite-eastonite join. *Am. Mineral.* 77, 1191-1205.
- Circone, S., Navratsky, A., Kirkpatrick, R. J., and Graham, C. M. (1991) Substitution of ^[6,4]Al in phlogopite: mica characterization, unit-cell variation, ²⁷Al and ²⁹Si MAS-

NMR spectroscopy, and Al-Si distribution in the tetrahedral sheet. *Am. Mineral.* **76**, 1485-1501.

- Collins, D. R. and Catlow, C. R. A. (1991) Energy minimized hydrogen-atom positions of kaolinite. *Acta Cryst.* **B47**, 678-682
- Collins, D. & Catlow, C. R. A. (1992) Computer simulation of structures and cohesive properties of micas. Am. Mineral. 77, 1172-1181
- Cromer, D.T. & Liberman, D. (1970): Relativistic calculation of anomalous scattering factors for X rays. J. Chem. Phys. 53, 1891–1898.
- Cromer, D.T. & Mann, J.B. (1968): X-ray scattering factors computed from numerical Hartree-Fock wave functions. *Acta Crystallogr.* A24, 321–324.
- David, W. I. F. (1986) Powder diffraction peak shapes. Parameterization of the pseudo-Voigt as a Voigt function. J. Appl. Cryst. 18, 461-466
- David, W. I. F. & Matthewman, J. C. (1985) Profile refinement of powder diffraction patterns using the Voigt function analysis. *Powd. Diffrac.* 1, 240-243
- Davis, B. L. (1986) A tubular aerosol suspension chamber fro the preparation of powder samples for X-ray diffraction analysis. *Powd. Diffrac.* **1**, 240-243
- Della, Ventura, G., Robert, J.L., Beny, J.M., Raudsepp, M. & Hawthorne, F.C. (1993a): The OH-F substitution in Ti-rich potassium-richterites: Rietveld structure refinement and FTIR and micro-Raman spectroscopic studies of synthetic amphiboles in the system K₂O-Na₂O-CaO-MgO-SiO₂-H₂O-HF. Am. Mineral. 78, 980–987.

Della, Ventura, G., Robert, J.L., Raudsepp, M. & Hawthorne, F.C. (1993b): Site

occupancies in monoclinic amphiboles: Rietveld structure refinement of synthetic nickel magnesium cobalt potassium richterite. *Am. Mineral.* **78**, 633–640.

- Dick, B. G. & Overhauser, A. w. (1958) Theory of the dielectric constants of alkali halide crystals. *Phys. Rew.* **112**, 90-113
- Dollase, W. A. (1986) Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. **19**, 267-272
- Dove, M. T. (1989)On the computer modelling of diopside: toward a transferable potential for silicate minerals. *Am. Mineral.* **74**, 774-779
- Durbin, J. & Watson, G.S. (1971): Testing for serial correlation in least-squares regression. III. *Biometrika* 58, 1–19.
- Elsasser, W. M. (1936) Diffraction of slow neutrons by crystalline substances. *Comptes* rendus 202, 1029-1030
- Ercit, T. S., Hawthorne, F. & Černý, P. (1985): The crystal structure of synthetic natrotantite. *Bull. Minéral.* **108**, 541-549
- Ewald, P. P. (1921) The calculation of optical and electrostatic lattice potentials. Ann. Phys. (Leipzig) 64, 253-287
- Farmer, V. C. & Russel, J. D. (1964) The infrared spectra of layer silicates. Spectrochimica Acta 20, 1149-1173
- Fenke D., Hunger M., and Pfeifer, H. (1991) Determination of nuclear distance and chemical shift anisotropy from 1H MAS NMR sideband patterns of surface OH groups. J. Magn. Reson. 95, 477-483

Finger, L. W. (1989) Synchrotron powder diffraction. Rev. Mineral. 20, 309-332.

Flack, H. D. & Vincent, M. G. (1980) Testing for serial correlation in intensity data. Acta Crsyst. A36, 495-496

- Fleet, M.E. (1992): Tetrahedral-site occupancies in reedmergnerite and synthetic boron albite (NaBSi₃O₈). Am. Mineral. 77, 76–84.
- Foord, E.E., Martin, R.F., Fitzpatrick, J.J., Taggart, J.E. & Crock, J.G. Jr. (1991):
 Boromuscovite, a new member of the mica group, from the Little Three mine pegmatite, Ramona district, San Diego, California. Am. Mineral. 76, 1998–2002.
- Friedrich, V. W. (1913) Eine neue interferenzerscheinung bei Röntgenstrahlen. Phys. Z. XIV, 317-319
- Fujinaga, M., Gros P. & van, Gunsteren W. F. (1989) Testing the method of crystallographic refinement using molecular dynamics. J. Appl. Cryst. 22, 1-8
- Galli, E., Gottardi, G., Mayer, H., Preisinger, A., and Passaglia, E. (1983): The structure of potassium-exchanged heulandite at 293, 397, and 593 K. *Acta Cryst.* **B39**, 189-197.

Gasperin,0 Par G. (1971) Structure critalline de RbAlSi₃O₈. Acta Cryst. B27, 854-855

Giese, R. F., Jr. (1971): Hydroxyl orientation in muscovite as indicated by electrostatic energy calculations. *Science* **172**, 263-264.

Giese, R. F., Jr.(1974): Surface energy calculations for muscovite. Nature 248, 580-581.

Giese, R. F., Jr. (1979) Hydroxyl orientations in 2:1 phyllosilicates. *Clays Clay Mineral*.
27, 213-223

Giese, R. F., Jr. (1984) Electrostatic energy models of micas. Rev. Mineral. **13**, 105-144 Gilbert, T. L. (1968) Soft-sphere model for closed-shell atoms and ions. *J. Chem. Phys.* 49, 2640-2642

- Gordiyenko, V. V. (1964) On rubidium microcline from pegmatite veins of the sodiumlithium type. Zapiski Vses. Min. Obsh. 93, 281-288
- Gordon, R. G. & Kim, Y. S. (1972) Theory for the forces between closed-shell atoms and molecules. J. Chem. Phys. 56, 3122-3133
- Groat, L.A. & Hawthorne, F.C. (1990): The crystal structure of nissonite. Am. Mineral. 75, 1170–1175.
- Gros, P., van, Gunsteren W. F. & Ho, IW. G. (1990) Inclusion of thermal motion in crystallographic structures by restrained dynamics. *Science* **249**, 1149-1152.
- Gunter, M. E., Armbruster, T., Kohler, T., Knowles, C. R. (1994): Crystal structure and optical properties of Na- and Pb-exchanged heulandite-group zeolite. *Am. Mineral.* 79, 675-682.
- Guo, J. & Green, T. H. (1990): Experimental study of barium partitioning between phlogopite and silicate liquid at upper-mantle pressure and temperature. *Lithos*, 24, 83-95.
- Güven, N (1971): The crystal structure of $2M_1$ phengite and $2M_1$ muscovite. Z. *Kristallogr.* **134**, 196-212.
- Güve, n N. (1988) Smectite. Rev. Miner. 19, 497-559.
- Hambley, T. W. & Taylor, J. C. (1984): Neutron diffraction studies on natural heulandite and partially dehydrated heulandite. J. Solid State Chem. 54, 1-9.
- Hamilton, W.C. & Abrahams, S.C. (1972): Normal probability plot analysis of small samples. *Acta Crystallogr.* A28, 215–218

Hawthorne, F.C. (1983a): Characterization of the average structure of natural and synthetic amphiboles. *Per. Mineral. (Roma)* **52**, 543–581.

Hawthorne, F.C. (1983b): Quantitative characterization of site occupancies in minerals. Am. Mineral. 68, 287–306.

Hawthorne, F. C. (1992): Bond topology, bond valance, and structure stability. in G. D. Price and N. L. Ross ed. The Stability of Minerals. Chapman & Hall, London.

- Hawthorne, F.C., Cooper, M., Bottazzi, P., Ottolini, L., Ercit, T.S. & Grew, E.S. (1995):
 Microanalysis of minerals for boron by SREF, SIMS and EMPA: a comparative study. *Can. Mineral.* 33, 389-397.
- Hawthorne, F. C. & Groat, L.A. (1985): The crystal structure of wroewolfeite, a mineral with [Cu₄ (OH)₆ (SO₄)(H₂ O)] sheets. Am. Mineral. **70**, 1050–1055.
- Hawthorne, F. C., Raudsepp, M., Williams, B.L. & Hartman, J.S. (1984): Characterization of cation ordering in synthetic amphiboles by Rietveld structure refinement and ²⁷Al and ²⁹Si MAS NMR spectroscopy. *GAC/MAC Program with abstracts*, **9**, 72.
- Hawthorne, F. C., Ungaretti, L., Oberti, R., Bottazzi, P. & Czamanske, G. (1993): Li: an important component in igneous alkali amphiboles. *Am. Mineral.* **78**, 733–745.
- Hazen, R. M. & Wones, D. R. (1972) The effect of cation substitutions on the physical properties of trioctahedral micas. *Am. Mineral.* 57, 103–129.
- Hehre, W. J., Radom, L., Schleyer, P. v.R. & Pople, J. A. (1985) Ab initio molecular orbital theory. John Willey & Sons, Toronto
- Hermann, H. and Ermrich, M. (1987): Microabsorption of X-ray intensity in randomly packed powder specimens. Acta Cryst. A43, 401-405.

- Hermansson, K., Knuts, S., Lindgren, J. (1991) The OH vibrational spectrum of liquid water from combined *ab initio* and Monte Carlo calculations. *J. Chem. Phys.*, **95**, 7486-7496
- Hess, A. C. & Saunders, V. R. (1992) Periodic ab initio Hartree-Fock calculations of the low-symmetry mineral kaolinite. J. Phys. Chem. 1992, 4367-4374
- Hewitt, D. A. & Wones, D. R. (1984) Experimental phase relations of the micas. Rev. Min. 13, 201-256
- Hill, R. J. (1984) X-ray powder diffraction profile refinement of synthetic hercynite. Am. Mineral. 69, 937-942
- Hill, R.J. & Flack, H.D. (1987): The use of the Durbin-Watson d-statistic in Rietveld analysis. J. Appl. Crystallogr. 20, 356–361.
- Hill, R. J. & Howard, (1985) Peak shape variation in fixed-length neutron powder diffraction and its effect on structure parameters obtained by Rietveld analysis. J. Appl. Cryst. 18, 173-180
- Hill, R.J. & Howard, C.J. (1986): A Computer program for Rietveld Analysis of fixedlength X-ray and neutron diffraction patterns. Australian Atomic Energy Commission, Lucas Heights Research Laboratories, Menai, New South Wales, Australia, Rep. M112.
- Hill, R. J. & Howard (1987): Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Crystl. 20, 467-474
- Hill, R. J. & Madsen, I. C. (1984) The effect of profile step counting time on the determination of crystal structure parameters by X-ray Rietveld analysis. J. Appl.

Cryst. 17, 297-306

- Hill, R. J. & Madsen, I. C. (1986) The effect of profile step width on the determination of crystal structure parameters and estimated standard deviations by X-ray Rietveld analysis. J. Appl. Crsyt. 19, 10-18
- Howard, C. J. (1982): Approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians. *J. Appl. Cryst.* **15**, 615-620.
- Howard, S. A. & Preston, K. D. (1989) Profile fitting of powder diffraction patterns. *Rev. Mineral.* **20**, 217-276
- Howard, S. A. & Snyder, R. L. (1989) The use of direct convolution products in profile and pattern fitting algorithms. I: development of the algorithms. J. Appl. Cryst. 22, 238-243
- Jackson, M. D. & Gordon, R. G. (1988) A MEG study of the olivine & spinel forms of Mg₂SiO₄. Phys. Chem. Mineral. 15, 514-520
- James, R. (1979): Disorder and non-stoichiometry in rutile and corundum structured metal oxides. United Kingdom Atomic Energy Authority Report, AERE–TP814.
- Jenkins, D. M. & Hawthorne, F. (1995) Synthesis and Rietveld refinement of amphibole along the join Ca₂Mg₅Si₈O₂₂F₂ - NaCa₂Mg₄Ga₃Si₆O₂₂F₂. *Can. Mineral.* **33**, 13-24.
- Johnston, C. T., Agnew, S. F., and Bish, D. L. (1990) Polarized single-crystal Fouriertransform infrared microscopy of Ouray dickite and Keokuk kaolinite. *Clays Clay Mineral.* 38, 373-358
- Jones, I.L., Heine, V., Leslie, M. & Price, G. D. (1990) A new approach to simulating disorder in crystals. *Phys. Chem. Minerals* 17, 238-245

- Joswig, W. & Drits, V. A. (1986) The orientation of the hydroxyl groups in dickite by Xray diffraction: N. Jb. Miner. Mh. 19-22
- Joswig, W., Fuess, H., Rothbauer, R., Takéuchi, Y., and Mason, S. A. (1980) A neutron diffraction study of a one-layer triclinic chlorite (penninite). *Am. Mineral.* **65**, 349-352
- Joswig, W., Takéuchi, Y., and Fuss, H. (1983) Neutron diffraction study on the orientation of hydroxyl groups in margarite. Zeit. Krist. 165, 295-303
- Karnin, W. -D. (1980) Petrographic and geochemical investigation on the tsaobimund pegmatite dyke, South West Africa/Namibia. *Neues Jahrb. Mineral., Monatsh.*, 193-205
- Kaszkur, Z. A., Jones, R. H., Waller, D., Catlow, C. R. A. & Thomas, J. M. (1993):
 Combined Rietveld-Molecular dynamics powder diffraction approach to the location of molecules in porous solids: application to 1,4-Dibromobutane in zeolite
 Y. J. Phys. Chem. 97, 426-431

Keene, H. B. (1913) On the transmission of X-rays through materials. Nature 91, 607

Keijser, Th. H. De., Mittemeijer E. J. & Rozendaal H. C. F. (1983) The determination of crystallite-size and lattice-strain parameters in conjunction with the profilerefinement method for the determination of crystal structures. J. Appl. Cryst. 16, 309-316

Khattak, C. P. & Cox, D. E. (1977): Profile analysis of X-ray powder diffractometer data: structural refinement of La_{0.75} Sr_{0.25} CrO₃. J. Appl. Crystallogr. **10**, 405-411.

Kittel, C. (1971) Introduction to solid state physics. 4th ed. John Willey & Sons, New

York, NY

- Klug, H. P. & Alexander, L. E. (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. John Wiley & Sons, New York.
- Koester, L. (1977): Neutron scattering lengths and fundamental neutron interactions. In: Springer Tracts in Modern Physics. 80 (Ed. W. S. Hohler) 1-55. Heidelberg: Springer.
- Kubicki, J. D. & Lasaga, A. C. (1992) Ab initio molecular dynamics simulations of melting in forsterite and MgSiO₃ perovskite. *Am. J. Sci.* **292**, 153-183
- Kunz, M. & Armbruster, T. (1992) Applications and limitations of the ionic potential model with experimentally derived ion-specific repulsion parameters. *Acta Cryst.* B48, 609-622
- Kushiro, I. (1972) Determination of liquidus relations in synthetic silicate systems with electron probe analysis: the system forsterite-diopside-silica at 1 atmosphere. Am.
 Mineral. 57, 1260-1271

Ladd, A. J. C. (1990) Molecular dynamics. NATO ASI Ser. 293, 55-82

- Langford, J. I. (1978) A rapid method for analyzing the breadths of diffraction and spectral lines using the Voigt function. J. Appl. Cryst. 11, 10-14
- Larson, A. C. & Von, Dreele R. B. (1988) GSAS generated structure analysis system. Laur 86-748. Los Alamos National Laboratory, Los Alamos, NM 87545
- Lasaga, A. C. (1980) The kinetic treatment of geochemical cycles. Geochimica Cosmochimica Acta 44, 815-828

Lewis, G. V. (1985) Interatomic potentials: Derivation of parameters for binary oxides and

their use in ternary oxides. Physica, 13113, 114-118

- Liang, & Sherriff, B. L. (1993) Lead exchange into zeolite and clay minerals: A ²⁹Si, ²⁷Al, ²³Na solid-state NMR study. *Geochimica Cosmochimica Acta* 57, 3885-3894.
- Madsen, I. C. & Hill, R. J. (1988) Effect of divergence and receiving slit dimensions on peak profile parameters in Rietveld analysis of X-ray diffraction data. J. Appl. Cryst. 21, 398-405
- Malmros, G. & Thomas, J. O. (1977) Least-squares structure refinements based on profile analysis of powder film intensity data measured on an automatic micro densitometer. J. Appl. Cryst. 10, 7-11
- Marler, B. (1987). Silica-ZSM-22: synthesis and single crystal structure refinement. Zeolites 7, 393-397
- Marler, B., Deroche, C., Gies, H., Fyfe, C. A., Grondey, H., Kokotailo, G. T., Feng, Y., Ernst, S., Weitkamp, J. & Cox, D. E. (1993). J. Appl. Cryst. 26, 636-644
- Martin, R. F. (1982) Quartz and feldspars. Mineral. Assoc. Canada Short Course Handbook 8,41-62
- Matsui, M. (1988) Molecular dynamics study of MgSiO₃ perovskite. *Phys. Chem. Minerals* 16, 234-238
- Matsui, M. & Busing, W. R. (1984a) Calculation of the elastic constants and high pressure properties of diopside, CaMgSi₂O₆. Am. Mineral. **69**, 1090-1095
- Matsui, M. & Busing, W. R. (1984b) Computational modelling of the structure and elastic constants of the olivine and spinel form of Mg₂SiO₄. *Phys. Chem. Minerals* **11**, 55-59

Matsui, M. & Price, G. D. (1991) Simulation of the premelting behaviour of MgSiO₃ perovskite at high pressures and temperatures. Nature **351**, 735-737

- Matsui, M. & Price, G. D. (1992) computer simulation of the MgSiO₃ polymorphs. *Phys. chem. Minerals* **18**, 365-372
- McCusker, L. B., Baerlocher, ch. & Nawaz, R. (1985) Rietveld refinement of the crystal structure of the new zeolite mineral gobbinsite. Z. Krist. 171, 281-289.
- Merkle, A. B. and Slaughter, M. (1968): Determination and refinement of the structure of heulandite. *Am. Mineral.* 53, 1121-1138.
- Merlino, S., Pasero, M., Artioli, G. & Khomyakov, A. P. (1994): Penkvilksite, a new kind of silicate structure: OD character, X-ray single-crystal (1*M*), and powder Rietveld (20) refinements of two MDO polytypes. *Am. Mineral.* 79, 1185-1193.
- Mitchell, D. P. & Powers, P. N. (1936) Bragg reflection of slow neutrons. Phys. Rev. 50, 486-487
- Miyamoto, M. (1988) Ion migration in MgSiO₃-perovskite and olivine by molecular dynamics calculation. *Phys. Chem. Minerals* **15**, 601-604
- Miyamoto, M. & Takeda, H. (1984) An attempt to simulate high pressure structure of Mg--silicates by an energy-minimization method. *Am. Mineral.* **69**, 711-718
- Muhlhausen, C. & Gordon, R. G. (1981) Electron-gas theory of ionic crystals, including many body effects. *Phys. Rev.* B23, 900-923.
- Murakami, T., Takéuchi, Y., Yamenaka, T. (1982) The transition of orthoenstatite to proenstatite and the structure at 1080 °C. Z. Kristallogr. 160, 299-312

Nakamoto, K., Margoshes, M. and Rundle, R. E. (1955) Stretching frequencies as a

function of distances in hydrogen bonds. J. Am. Chem. Soc. 77, 6480-6486 Nawaz, R. (1983) New data on gobbinsite and garronite. Mineral. Magz. 47, 567-568 Nawaz, R. and Malone, J. F. (1982) Gobbinsite, a new zeolite mineral from Co. Antrim,

N. Ireland. Mineral. Magz. 46, 365-369

Norg, A. G. & Stefanidis, T. (1983) Crystallographic studies of some olivine-related (Ni,Mg)₃(PO₄)₂ solid solutions. *Phys. Chem. Minerals* **10**, 10-15

- Oberti, R., Sardone, N., Hawthorne, F. C., Raudsepp, M., Turnock, A. C. (1995) Synthesis and crystal structure refinement of synthetic fluor-pargasite. *Can. Mineral.* 33, 25-31
- O'Connor, B.H. & Raven, M.D. (1988): Application of the Rietveld refinement procedure in assaying powdered mixtures. *Pow. Diff.* **3**, 2–6.
- Ohashi, Y. & Burnham, C. W. (1972) Electrostatic and repulsive energies of the M1 and M2 cation sites in pyroxenes. J. Geophys. Res. 77, 5761-5766
- Ottani, S., Riello, P. and Polizzi, S. (1993): Complete set of factors for absorption correction and air scattering subtraction in X-ray powder diffraction of loosely packed samples. *Powder Diffract.* **8**, 149-154.
- Ottolini, L. Bottazzi, P. & Vannucci, R. (1993): Quantification of lithium, beryllium and boron in silicates by secondary ion mass spectrometry using conventional energy filtering. *Anal. Chem.* 65, 1960–1968.
- Pacalo, R. E. G., Gasparik, T. (1990) reversals of the orthoenstatite-clinoenstatite transition at high pressures and high temperatures. J. Geophys. Res. 95, 15853-15858

Padlewski, S. Heine, V., & Price, G. D. (1992a) Atomic ordering around the oxygen vacancies in sillimanite. *Phys. Chem. Minerals* 18, 373-378

- Padlewski, S. Heine, V., & Price, G. D. (1992b) The energetics of interaction between oxygen vacancies in sillimanite: A model for the Mullite structure. *Phys. Chem. Minerals* 19, 196-202
- Parrish, W., Hart, M. & Huang, T. C. (1986). Synchrotron X-ray polycrystalline diffractometry. J. Appl. Cryst. 19, 92-100
- Pauling, L. (1929) The principles of determining the structure of complex ionic crystals.J. Am. Chem. Soc., 51, 1010-1026
- Pauling, L. (1960) The nature of the chemical bond, 3rd edn, Conell University Press, Ithaca, New York.
- Peterson, J. W., Chacko, T. & Kuehner, S. M. (1991): The effects of fluorine on the vapor-absent melting of phlogopite + quartz: implications for deep-crustal processes. *Am. Mineral.* **76**, 470-476.
- Peterson, R. C., Hill, R. J., and Gibbs, G. V. (1979) A molecular-orbital study of distributions in the layer structures of brucite, gibbsite and serpentine. *Can. Mineral.* 17, 703-711
- Pitschke, W., Hermann, H., and Mattern, N. (1993): The influence of surface roughness on diffracted X-ray intensities in Bragg-Brentano geometry and its effect on the structure determination by means of Rietveld analysis. *Powder Diffract.* **8**, 74-83.
- Pitschke, W., Mattern, N., Hermann, H. (1993): Incorporation of microabsorption corrections into Rietveld analysis. *Powder Diffract.* 8, 223-228.

Post, J. E. & Bish, D. L. (1988) Rietveld refinement of the toolorokite structure. Am. Mineral. 73, 861-869

- Post, J. E. & Bish, D. L. (1989): Rietveld refinement of crystal structures using powder X-ray diffraction data. *Rev. Mineral.* 20, 277-308
- Post, J.E. & Burnham, C.W. (1986): Ionic modelling of mineral structures and energies in the electron-gas approximation: TiO₂ polymorphs, quartz, forsterite, diopside.
 Am. Mineral. 71, 142–150.
- Post, J.E. & Burnham, C.W. (1987): Structure-energy calculation on low and high albite. Am. Mineral. 72, 507-514.
- Pouchou, J.L. & Pichoir, F. (1985): "PAP" φ(ρZ) procedure for improved quantitative microanalysis. *Microbeam Anal.*, 104–106.
- Price, G. D. & Parker, S. C. (1984) Computer simulation of the structural and physical properties of the olivine and spinel polyorphs of Mg₂SiO₄. *Phys. Chem. Minerals* 10, 209-216
- Price, G. D., Parker, S. C. & Leslie, M.(1987a) The lattice dynamic of forstorite. *Mineral*. *Magaz.* **51**, 157-170
- Price, G. D., Parker, S. C. & Leslie, M.(1987b) The lattice dynamic and thermaldynamics of the Mg₂SiO₄ polymorphs. *Phys. Chem. Minerals* **15**, 181-190
- Prince, E. (1981) Comparison of profile and integrated-intensity methods in powder refinement. J. Appl. Cryst. 14, 157-159
- Prost, R., Dameme, A., Huard, E., Driard, J. & Leydecker, J. P. (1989) Infrared study of structural OH in kaolinite, dickite, nacrite, and poorly crystalline kaoliniteat 5 to

600 K. Clays Clay Mineral. 37, 464-468

- Purton, J. and Catlow, C. R. A. (1990) Computer simulation of feldspar structures. Amer. Miner. 75, 1268-1273
- Rakovan, J. & Guggenheim, S. (1991): Rietveld refinement of a IIb clinochlore: Programs and Abstracts. 28th Annual Meting, The Clay Minerals Society, Houston, Texas, 132
- Raudsepp, M., Hawthorne, F. C. & Turnock, A. C. (1984): Derivation of site-occupancies in synthetic pyroxenes and amphiboles by Rietveld structure refinement. *Geol. Soc. Am. Abstr. Programs* 16, 630
- Raudsepp, M., Hawthorne, F.C. & Turnock, A.C. (1990a): Evaluation of the Rietveld method for the characterization of the fine-grained products of mineral synthesis: the diopside-hedenbergite join. *Can. Mineral.* 28, 93–109.
- Raudsepp, M., Hawthorne, F.C. & Turnock, A.C. (1990b): Crystal chemistry of synthetic pyroxenes on the join CaNaSi₂O₆-CaMgSi₂O₆ (diopside): A Rietveld structure refinement study. *Am. Mineral.* **75**, 1274–1281.
- Raudsepp, M., Turnock, A.C. & Hawthorne, F.C. (1987a): Characterization of cation ordering in synthetic scandium-fluo-eckermanite, indium-fluo-eckermanite, and scandium-fluo-nyboite by Rietveld structure refinement. *Am. Mineral.* **72**, 959–964.
- Raudsepp, M., Turnock, A.C. & Hawthorne, F.C., Sherriff, B.L. & Hartman, J.S. (1987b): Characterization of pargastic amphiboles (NaCa₂Mg₄M³⁺Si₆Al₂O₂₂(OH,F)₂; M³⁺ = Al,Cr,Ga,Sc,In) by infrared spectroscopy, Rietveld structure refinement, and ²⁷Al, ²⁹Si, and ¹⁹F MAS NMR spectroscopy. *Am. Mineral.* **72**, 580–593.

- Raudsepp, M., Turnock, A. C., and Hawthorne, F. C. (1987a): characterization of cation ordering in synthetic scandium-fluo-eckermanite, indium-fluo-eckermanite, and scandium-fluo-nyboite by Rietveld structure refinement. *Am. Mineral.* **72**, 959-964
- Raudsepp, M., Turnock, A. C., and Hawthorne, F. C., Sherriff, B. L., and Hartman, J. S. (1987b): Characterization of pargastic amphiboles (NaCa₂ Mg₄ M³⁺ Si₆ Al₂ O₂₂ (OH,F)₂; M³⁺ = Al,Cr,Ga,Sc,In) by infrared spectroscopy, Rietveld structure refinement, and ²⁷Al, ²⁹Si, and ¹⁹F MAS NMR spectroscopy. *Am. Mineral.* 72, 580-593
- Rayner, J. H. (1974): The crystal structure of phlogopite by neutron diffraction. *Mineral.Magaz.* 39, 850-856.
- Richardson, S.M. & Richardson, J.W., Jr. (1982): Crystal structure of pink muscovite from Archer's Post, Kenya: implications for reverse pleochroism in dioctohedral micas. *Am. Mineral.* 67, 69–75.
- Rietveld, H.M. (1967): Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151-152
- Rietveld, H.M. (1969): A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71.
- Robert, J.-L., Della Ventura, G., Raudsepp, M. & Hawthorne, F.C. (1993): Rietveld structure refinement of synthetic strontium-rich potassium-richterites. *Eur. J. Mineral.* 5, 199–206.
- Robert, J.-L., Hardy, M. & Sanz, J. (1995) Excess protons in synthetic micas with tetrahedrally coordinated divalent cations. *Eur. J. Mineral.* 7, 457-461

- Robert, J.-L. & Kodama, H. (1988) Generalization of the correlations between hydroxyl-stretching wavenumbers and composition of micas in the system K₂O-MgO-Al₂O₃-SiO₂-H₂O: a single model for trioctahedral and dioctahedral micas. *Am. J. Sci.* 288-A, 196-212.
- Rothbauer, R. von (1971): Unterschung eines 2M₁-muskovits mit neutronenstrahlen. Neues. Jahrb Mineral. Monat. 143-155.
- Rouxhet, P. G. (1970): Hydroxyl stretching bands in micas: a quantitative interpretation. *Clay Mineral.* **8**, 375-388.
- Rudulf, P. R. & Crowder, C. E. (1990): Structure refinement and water location in the very large-pore molecular sieve VPI-5 by X-ray Rietveld techniques. Zeolites. 10, 163-168
- Sabine, T. M. (1988): A reconciliation of extinction theories. Acta Cryst. A44, 368-373.
- Sabine, T. M., Von Dreele, R. B., Jorgensen, J.-E. (1988): Extinction in time-of-flight neutron powder diffraction. Acta Cryst. A44, 374-379.
- Sanders, M.J., Leslie, M. & Catlow, C.R.A. (1984): Interatomic potentials for SiO₂. J. Chem. Soc., Chem. Commun. 1271–1273.
- Sanz, J. and Robert, J.-L. (1992) Influence of structural factors on ²⁹Si and ²⁷Al NMR chemical shifts of phyllosilicates 2:1. *Phys. Chem. Minerals* **19**, 39-45.
- Sato, M., Kodama N. & Matsuda, S. (1981) An application of pattern fitting structure refinement to muscovite KAl₂(Si₃Al)O₁₀(OH)₂. Mineral. J. (Japan), **10**, 222-232
- Saul, P., Catlow, C. R. A. & Kendrick, J. (1985) Theoretical studies of protons in sodium hydroxide. *Philos. Mag.* B51, 107-117

- Schlenker, J. L., Pluth, J. J. & Smith, J. V. (1978) Positions of cations and molecules in zeolites with the mordenite-type framework. V dehydrated Rb-modenite. *Mat. Res. Bull.* 13, 77-82
- Schultz, P. K., Slade, P. K. & Tiekink, E. R. T. (1989): Refinement of a muscovite structure in C-1 symmetry. *Neues. Jahrb Mineral. Monat.* 121-129.
- Seifert, F. & Schreyer, W. (1971): Synthesis and stability of micas in the systems K₂O-MgO-SiO₂-H₂O and their relations to phlogopite. *Contr. Mineral. Petrol.* 30, 196-215.
- Sen, Gupta, P. K., Schlemper, E. O., Johns, W. D. & Ross, F. (1984) Hydrogen positions in dickite. *Clays Clay Mineral.* 32, 483-485
- Serratosa, J. M. & Bradley, W. F. (1958): Determination of the orientation of OH bond in layer silicates by infrared absorption. J. Phys. Chem. 62, 1164-1167.
- Shannon, R. D. (1979) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32 751-767
- Sherwood, P. M. A. (1972): Vibrational spectroscopy of solids. Cambridge University Press.
- Sidorenko, O.V., Zvyagin, B.B. & Soboleva, S.V. (1975): Crystal structure refinement for
 1M dioctahedral mica. Sov. Phys. Crystallogr. 20, 332–335.
- Smith, J. V. & Yoder, H. S. (1956) Experimental and theoretical studies of mica polymorphs. *Min. Mag.* 31, 209-234
- Smith, S. T., Snyder, R. L. & Brownwell, W. E. (1979) Minimization of preferred orientation in powders by spray drying. Adv. X-ray Anal. 22, 77-88

Snyder, R.L. & Bish, D.L. (1989): Quantitative analysis. Rev. Mineral. 20, 101-144.

Sowa, M. G. and Mantsch, H. H. (1994) FT-IR step-scan photoacoustic phase analysis and depth profiling of calcified tissue. *Appl. Spectr.* **48**, 316-319

Spencer, N. D. (1986) Listening in on solid materials. CHEMTECH, June, 378-384

Steele, D. (1971) Theory of vibrational spectroscopy. W. B. Saunders Company, Toronto.

Stout, G. H. & Jensen, L. H. (1968) X-ray structure determination. Macmillan PublishingCo. Inc. New York.

- Suitch, P & Young, R. A. (1983) Atomic positions in highly ordered kaolinite. Clays Clay Minerals. 5, 357-366
- Takeda, H & Ross, M. (1975): Mica polytypism: dissimilarities in the crystal structures of coexisting 1M and 2M₁ biotite. *Am. Mineral.* **60**, 1030-1040
- Thompson, J. G., Withers, R. L. and Fitzgerald, J. D. (1989) Beyond the limit of Rietveld refinement? Soc. Crystall., Australia, 16th meeting (abstract).
- Thompson, P., Cox, D. E., & Hastings, J. B. (1987): Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al₂O₃. J. Appl. Cryst., 20, 79-83.
- Thompson, P. & Wood, I. G. (1983) X-ray Rietveld refinement using Debye-Scherrer geometry. J. Appl. Cryst., 16, 458-472
- Toraga, H. (1986) Whole-pattern fitting without reference to a structure model: application to X-ray powder diffraction data. *J. Apll. Cryst.* **19**, 440-447

Tossell, J. A. (1980) calculation of bond distances and heats of formation for BeO, MgO,

SiO₂, TiO₂, FeO, and ZnO using the ionic model. Am. Mineral. 65, 163-173

Vakadinovic, D. & Edgar, A. D. (1993) Pase relations in the phlogopite-apatite system at

20 Kbar; implication for the fluorine in mantle melting. *Contrib. Mineral. Petrol.* **114**, 247-254

van Beest B. W. H., Kramer G. J. & Van Santen R. A. (1990) Phys. Rev. Lett. 60, 1955-

- Van Gunsteren, W. F. & Berendsen, H. J. (1990) Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. *Angew. Chem. Int. Ed. Engl.* 29, 992-1023
- van Gunsteren, W. F. & Mark, A. E. (1992). On the interpretation of biochemical data by molecular dynamics computer simulation. *Eur. J. Biochem.* **204**, 947-961
- van Koningsveld, N. (1990). High-temperature (350 K) orthorhombic framework structure of zeolite H-ZSM-5. Acta Cryst. B46, 731-735
- van Koningsveld, N., Tuinstra, F., van Bekkum, H. & Jansen, J. C. (1989). The location of p-xylene in a single crystal of H-ZSM-5 with a new, sorbate-induced, orthorhombic framework system. Acta Cryst. B45, 423-431
- van Koningsveld, N., van Bekkum, H. & Jansen, J. C. (1987). On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy. *Acta Cryst.* B43, 127-132
- Vedder, W. & McDonald, R. S. (1963): Vibrations of the OH ions in muscovite. J. Chem. Phys. 38, 1583-1590.
- Ventura, G. D, Robert, J-L, Raudsepp, M & Hawthorne F. C. (1993a): Site occupancies in monoclinic amphiboles: Rietveld structure refinement of synthetic nickel magnesium cobalt potassium richterite. *Am. Mineral.* **78**, 633-640

Ventura, G. D, Robert, J-L, Beny, J-M, Raudsepp, M & Hawthorne F. C. (1993b): The

OH-F substitution in Ti-rich potassium richterite: Rietveld structure refinement and FTIR and micro-Raman spectroscopic studies of synthetic amphibole in the system

K₂O-Na₂O-CaO-MgO-SiO₂-TiO₂-H₂O-HF. Am. Mineral. 78, 980-987.

von Dreele, R. B. (1989) Neutron powder diffraction. Rev. Mineral. 20, 333-369

- Vukadinovic, D. & Edgar, A. D. (1993) Phase relations in the phlogopite-apatite system at 20 kbar; implication for the role of fluorine in mantle melting. *Contrib. Mineral. Petrol.*, **114**, 247-254.
- Wada, N. & Kamitakahara, W. A. (1991): Inelastic neutron- and Raman-scattering studies of muscovite and vermiculite layered silicates. *Phys. Rev. B* 43, 2391-2397.
- Waldman, M. & Gordon, R. G. (1979) Scaled electron-gas approximation for intermolecular forces. J. Chem. Phys. 71, 1325-1329
- Walker, J. R. (1982) Molecular dynamic simulations of crystalline ionic materials. In Catlow, C. R. A. & Mackrodt, W. C. Eds., Computer simulation of solids. Springer-Verlag, New York, NY
- Walker, J. R. & Bish, D. L. (1992): Application of Rietveld refinement techniques to a disordered IIb Mg-chamosite. Clays Clay Mineral. 40, 319-322
- Wertheim, G. K., Butler, M. A., West, K. W. & Buchanan, D. N. E. (1974) Determination of the Gaussian and Lorentzian content of experimental line shapes. *Rev. Instr.* 45, 1369-1371
- Wiles, D. B. & Young, R. A. (1981) A new computer program for Rietveld analysis of X-ray powder diffraction patterns. J. Appl. Cryst. 14, 149-151

Williams, D. E. (1971) Accelerated convergence of crystal-lattice potential sums. Acta

Cryst. A27, 452-

- Winkler, B., Dove, M. T. & Leslie, M. (1991) Static lattice energy minimization and lattice dynamics calculations on aluminosilicate minerals. Am. Mineral. 76, 313-331
- Withers, R. L. & Thompson, J. G. (1993): Modulation wave approach to the structural parameterization and Rietveld refinement of low carnegieite. *Acta Cryst.* B49, 614-626
- Yau, J. K. & Howard, S. A. (1989) The use of direct convolution products in profile and pattern fitting algorithms. II: application of the algorithms. J. Appl. Cryst. 22, 244-251
- Young, R.A. (1980): Structural analysis from X-ray powder diffraction patterns with the Rietveld method. Symposium on Accuracy in Powder Diffraction, National Bureau of Standards, Gaithersburg, Maryland, 143–163.
- Young, R. A. (1988) Pressing the limits of Rietveld refinement. Australian J. Phys. 41, 297-310

Young, R. A. (1993): The Rietveld method. Oxford University Press, Oxford.

- Young, R. A. & Hewwat, A. W. (1988): Verification of the triclinic crystal structure of kaolinite. Clays Clay Mineral. 36, 225-232
- Young, R. A., Mackie, P. E. & von Dreele, R. B. (1977) Application of the pattern-fitting structure refinement method to X-ray powder diffractometer patterns. J. Appl. Crystallogr. 10, 262-269

Young, R. A., & Wiles, D. E. (1982) Profile shape function in rietveld refinement. J.

Appl. Crystallogr. 15, 430-438

Appendix P-1: step-intensity data of pure diopside

18.00	.05	138.00	р	ure diop	side				
26.	31.	32.	25.	27.	28.	30.	25.	27.	23.
35.	27.	32.	19.	23.	36.	23.	31.	29.	40.
32.	31.	35.	35.	39.	36.	34.	33.	27.	34.
33.	30.	30.	41.	53.	40.	55.	67.	92.	124.
124.	88.	63.	56.	50.	55.	48.	28.	25.	25.
31.	25.	26.	26.	28.	25.	25.	32.	26.	38.
24.	18.	18.	26.	25.	29.	27.	26.	30.	23.
18.	18.	27.	23.	29.	24.	30.	23.	24.	26.
25.	26.	20.	23.	21.	27.	29.	20.	21.	23.
18.	22.	24.	26.	13.	24.	30.	22.	21.	13.
35.	24.	30.	30.	30.	24.	23.	18.	20.	19.
23.	23.	29.	24.	22.	25.	28.	24.	18.	21.
36.	29.	24.	26.	41.	54.	81.	106.	92.	76.
51.	43.	36.	25.	31.	30.	34.	23.	17.	23.
28.	38.	29.	31.	26.	20.	25.	26.	23.	36.
37.	35.	25.	28.	36.	36.	24.	39.	30.	29.
27.	24.	27.	31.	32.	44.	40.	38.	40.	59.
78.	119.	177.	274.	340.	280.	201.	129.	92.	71.
62.	48.	49.	69.	25.	57.	62.	81.	85.	136.
277.	460.	676.	792.	830.	595.	369.	181.	135.	74.
60.	53.	44.	42.	23.	42.	41.	39.	41.	38.
38.	40.	53.	43.	63.	23.	38.	46.	32.	51.
54.	44.	47.	54.	56.	48.	71.	94.	119.	154.
177.	201.	231.	311.	451.	700.	1239.	1952.	2602.	2796.
2299.	1518.	918.	614.	508.	650.	912.	983.	940.	638.
401.	266.	179.	177.	212.	267.	383.	671.	902.	1046.
924.	664.	422.	240.	131.	104.	70.	55.	62.	65.
58.	56.	71.	83.	65.	60.	41.	50.	47.	32.
30.	32.	27.	40.	41.	38.	21.	34.	21.	29.
33.	24.	31.	21.	33.	21.	29.	26.	22.	28.
26.	33.	25.	28.	31.	23.	22.	21.	31.	31.
27.	24.	28.	32.	20.	32.	29.	33.	28.	38.
25.	24.	36.	29.	40.	46.	41.	42.	61.	59.
48.	54.	64.	60.	88.	95.	141.	182.	278.	465.
659.	752.	690.	536.	348.	261.	281.	334.	499.	869.
1197.	1383.	1460.	1592.	1576.	1409.	1130.	809.	531.	322.
186.	156.	113.	96.	73.	58.	74.	52.	42.	47.
34.	46.	50.	40.	36.	51.	28,	27.	44.	27.
31.	37.	28.	24.	19.	31.	29.	29.	27.	43.
27.	32.	52.	87.	72.	64.	61.	57.	41.	32.
33.	32.	23.	32.	33.	29.	40.	33.	22.	36.
48.	41.	37.	44.	45.	48.	30.	55.	54.	84.
127.	195.	328.	462.	512.	408.	316.	195.	131.	91.
68.	58.	50.	33.	49.	40.	30.	37.	34.	36.
29.	27.	31.	36.	27.	31.	39.	42.	44.	61.
63.	88.	148.	205.	275.	352.	292.	248.	219.	228.
268.	295.	288.	268.	205.	148.	83.	59.	68.	55.
56.	49.	57.	42.	50.	62.	98.	160.	217.	311.
380.	330.	309.	237.	193.	203.	271.	405.	602.	597.
515.	375.	268.	150.	126.	128.	134.	201.	275.	329.
292.	241.	195.	118.	99.	76.	57.	65.	69.	73.
55.	57.	75.	70.	74.	64.	72.	57.	47.	47.
47.	69.	63.	75.	99.	123.	205.	329.	488.	546.
496.	415.	284.	190.	165.	116.	131.	178.	187.	251.
347.	368.	332.	333.	307.	251.	220.	166.	115.	80.
75.	65.	59.	47.	49.	63.	38.	64.	78.	82.
99.	142.	208.	209.	182.	159.	101.	77.	67.	40.
55.	42.	46.	59.	43.	35.	33.	41.	28.	17.
28.	28.	30.	21.	30.	36.	29.	20.	39.	29.
16.	29.	33.	36.	33.	38.	27.	24.	32.	36.
28.	39.	28.	25.	17.	23.	27.	32.	36.	32.
28.	41.	36.	47.	44.	23.	30.	38.	46.	81.
58.	78.	69.	62.	60.	61.	40.	40.	43.	57.
60.	104.	139.	237.	246.	267.	231.	220.	170.	135.
101.	77.	62.	62.	60.	91.	107.	114	120.	93

74	62	50	36	12	37	10	3.8	11	37
24	40	31	24	28	42	28	30.	39	50
52	53	53	52	42	40	44	43	38	67
76.	100.	172.	264.	315.	414.	317.	235.	212.	135.
94	72.	61.	57.	44.	42.	38.	44.	36.	32.
25.	41.	47.	52.	69.	58.	72.	81.	61.	64.
62.	49.	41.	41.	31.	28.	32.	28.	24.	23.
28.	25.	32.	30.	37.	28.	29.	44.	50.	47.
58.	65.	77.	72.	66.	85.	102.	130.	172.	184.
142.	123.	141.	101.	106.	119.	133.	156.	174.	127.
140.	100.	82.	60.	45.	51.	65.	43.	40.	59.
44.	45.	40.	56.	64.	70.	97.	130.	151.	180.
272.	457.	559.	744.	743.	595.	535.	439.	344.	283.
279.	235.	223.	199.	144.	88.	75.	75.	66.	55.
54.	43.	43.	33.	39.	35.	38.	39.	34.	50.
54.	51.	64.	69.	97.	82.	62.	62.	61.	40.
39.	49.	25.	35.	34.	43.	30.	36.	41.	36.
70.	102.	121.	142.	126.	109.	94.	90.	54.	70.
77.	83.	103.	144.	150.	129.	123.	134.	98.	67.
63.	54.	70.	50.	48.	53.	60.	74.	97.	123.
179.	176.	162.	212.	245.	251.	263.	233.	212.	182.
150.	115.	96.	96.	83.	66.	72.	90.	112.	131.
110.	198.	249.	320.	279.	257.	252.	202.	155.	105.
96.	92.	71.	93.	96.	103.	107.	119.	111.	156.
157.	121.	113.	100.	89.	59.	43.	57.	45.	43.
45.	40.	42.	41.	51.	45.	51.	50.	49.	30.
54.	40.	65.	63.	63.	78.	70.	52.	49.	42.
46.	32.	41.	36.	43.	58.	83.	104.	81.	/8.
94.	89.	87.	/6.	76.	62.	52.	52.	53.	50.
45.	23.	40.	28.	70.	64. 405	95.	134.	136.	183.
203. 160	341.	434.	491.	431.	405.	338.	339.	288.	219.
109.	141.	151.	122.	101	104.	203.	271. E1	291.	304. E0
242. 56	220.	100.	103.	121.	102.	110	D1.	120	59. 02
90. 95	20.	JO. 71	52.	52	114.	110.	90. 22	130.	93. 77
43	49	60	69	107	4J. 83	40. 71	63	5J. 64	62
45.	35	33	30	25	35	29	22	25	21
27	25	28	23	27	24	27.	35	23.	34
24	23.	20.	23.	28	30	42	41	51	43
64.	64.	45.	48.	57.	55.	50.	50.	48.	52.
56.	82.	66.	100.	135.	166.	153.	180.	154.	176.
202.	223.	203.	230.	181.	172.	132.	135.	122.	107.
82.	100.	115.	104.	91.	73.	71.	72.	62.	45.
56.	52.	38.	30.	35.	31.	28.	22.	26.	33.
28.	27.	33.	21.	37.	41.	25.	24.	33.	34.
49.	71.	54.	43.	46.	64.	62.	68.	118.	135.
123.	117.	145.	98.	137.	126.	132.	176.	202.	190.
185.	163.	131.	166.	116.	100.	64.	65.	70.	44.
48.	44.	36.	46.	42.	42.	50.	47.	81.	73.
85.	94.	110.	131.	158.	115.	134.	139.	111.	98.
80.	67.	85.	62.	50.	54.	57.	44.	46.	57.
49.	48.	66.	80.	116.	157.	177.	184.	160.	142.
126.	121.	99.	82.	46.	42.	55.	34.	41.	40.
32.	33.	37.	50.	68.	57.	47.	44.	41.	31.
37.	32.	23.	30.	25.	31.	43.	35.	40.	32.
39.	34.	39.	49.	41.	50.	44.	50.	42.	38.
56.	45.	42.	56.	61. 21	/5.	11.	93.	65.	64.
60.	58.	59.	45.	31.	24.	41.	19.	30.	25.
28.	36.	43.	48.	34.	36.	32.	32.	36.	54.
37. 20	34.	29.	27.	42.	30.	41.	35.	41.	34.
30. 24	31.	29.	42.	23.	34.	23.	32.	∠3. 22	2/ •
33	34. 37	20. 31	20.	24. 20	∠⊃. ∧⊃	20.	აა. აი	44 · 76	20.
17	57.	21.	24. 51	59.	43.	J4. 70	30. 17	. OC //	20.
۰. ۵7	<u>л</u> ь.	72. 72	21. 27	16	20	16.	47. 19	44. 10	57. 51
15	24	15	22	16	20.	23	16	10. 31	24.
28	16	- J. 31	31	37	40	2J. 45	λ2 ΤΟ·	<u>10</u>	۵1. ۵1
58	70.	76.	69.	74.	75.	99	94	79	77
89.	77.	52.	54.	49.	52.	33.	39.	26.	30.
									•

· · · · ·

36	20	~~	~ ~	20	24	25	16	20	20
20.	20.	27.	23.	40.	34.	20.	10.	20.	29.
20.	33.	38.	40.	42.	38.	37.	34.	34.	21.
34. 11	20.	3∠. 27	29.	29. 21	24.	21.	21.	22.	
41.	29.	37.	31.	31. 10	40.	30.	20.	27.	20.
19.	27.	25.	20.	18.	29.	24.	35.	38.	32.
38.	38.	26.	24.	36.	38.	23.	27.	25.	20.
33.	42.	52.	46.	33.	39.	40.	34.	29.	27.
28.	23.	26.	.1د	28.	25.	28.	34.	31.	35.
20.	31.	29.	28.	25.	36.	35.	34.	35.	28.
36.	20.	21.	30.	25.	21.	22.	22.	30.	19.
34.	40.	26.	31.	25.	27.	35.	45.	41.	44.
45.	50.	54.	51.	67.	80.	64.	83.	57.	51.
72.	57.	64.	46.	50.	44.	56.	72.	51.	72.
95.	117.	154.	241.	209.	213.	151.	149.	178.	236.
275.	254.	214.	171.	137.	146.	152.	142.	124.	117.
119.	122.	145.	128.	123.	150.	109.	128.	108.	93.
101.	84.	95.	82.	77.	71.	51.	45.	45.	58.
36.	52.	37.	43.	47.	47.	49.	44.	43.	50.
60.	59.	70.	57.	86.	92.	78.	95.	59.	68.
72.	82.	79.	72.	69.	76.	82.	57.	75.	63.
46.	69.	53.	65.	49.	51.	74.	58.	52.	61.
88.	103.	110.	69.	47.	56.	73.	60.	50.	71.
41.	43.	42.	34.	28.	33.	32.	28.	28.	35.
25.	25.	28.	36.	29.	42.	43.	50.	52.	53.
62.	61.	45.	61.	34.	50.	33.	53.	43.	35.
34.	45.	38.	29.	27.	40.	38.	40.	47.	41.
41.	47.	49.	51.	48.	51.	58.	52.	38.	53.
55.	44.	56.	62.	74.	84.	76.	65.	50.	61.
64.	50.	66.	42.	51.	41.	40.	36.	41.	44.
48.	39.	38.	45.	43.	40.	52.	50.	60.	61.
47.	52.	55.	51.	68.	74.	67.	81.	66.	75.
76.	65.	82.	110.	85.	88.	70.	51.	55.	48.
58.	48.	50.	26.	43.	33.	34.	37.	30.	30.
24.	24.	29.	24.	37.	35.	50.	27.	39.	30.
34.	38.	46.	62.	72.	67.	67.	48.	41.	39.
44	49.	58.	37.	33.	39.	37.	32.	34.	35.
41	45	36	40.	39.	52	44	33.	37.	44
40	35.	35.	48	46	37.	51.	70.	75.	80.
79	61	52	56	42	72	70	51	43	47
40	24	40	36.	32	25.	40	49	40.	38.
35	45	37	47	64	50	44	40	46	46
52	43	56	72	62	54	73	55	58	79
85	105	80	73	72	65	89	79	78	75
62	65	61	40	38	49	51	45	35	54
34	28	28	21	26	26	23	30	22	16
31	14	20.	23	23	20.	23.	18	20	28
30	19	24.	25.	23.	20.	27.	17	20.	18
21	22	24	26	17	14	24.	27	20.	26
20	22.	34	20.	36	34	43	36	43	20.
26	37	53	42	44	53	46	41	38	39
30.	46	40		61	63	55	41	52	15
54	40. 61	42.	62	47	44	30	41.	16	4J. 25
12	301.	25	38	27	36	37	30	30.	31
92. 26	22.	19	20.	30	20.	31	34	20.	20
20.	23.	28	20.	25	27.	37	34.	37	12
37	52	45	36	40	37	37	34.	49	50
50	76	4J. 05	90.	49.	111		51	42.	9A
70	70. 07	100	97. QA	110.	96	72.	90	78	66
70	57. 60	100.	04.	214.	00.	100	112	105	111
79.	09.	74.	93. 77	07.	90. 97	123.	74	10J. 61	56
54. 11	0J. AC	/4. 51	11.	20. 12	40	40	74.	24	27
33	40.	22	40.	43.	40. 27	40.	20.	24.	27. 07
33. 33	. ac	23. 27	43.	20. no	، <i>ا</i> د دد	J/. AD	3∠. วว	33.	21.
	22.	<i>3∠</i> .	20. 05	∠d. 27		43. 75		36.	20.
20. 76	3U. 27	<u>2</u> 3.	4D. DE	27.	22.	20. 10	32.	10.	24.
⊿o. ว⊑	23.	∠ö. 20	20.	30.	∠⊥. ⊃1	17.	43. 27	10. 10.	21.
40. 22	20.	<u> </u>	<i>3∠</i> .	20.	J1. 20	20.	41.	40.	31. วว
J∠. >4	24.	30.	36.	28.	38.	20.	41.	30.	<u>.</u>
34.	29.	34.	20.	29.	36.	37.	42.	35.	41.
21.	36.	33.	31.	39.	42.	39.	40.	45.	48.

A3

>

55.	48.	54.	49.	40.	55.	55.	41.	41.	64.
45.	50.	39.	45.	36.	42.	49.	39.	41.	58.
40.	53.	58.	67.	76.	57.	41.	39.	48.	44.
33.	39.	51.	35.	40.	39.	46.	29.	28.	30.
32.	38.	32.	47.	49.	40.	36.	32.	45.	41.
25.	33.	34.	48.	36.	58.	51.	55.	59.	57.
72.	61.	58.	55.	40.	54.	48.	45.	56.	63.
60.	57.	57.	60.	39.	44.	48.	44.	46.	47.
47.	40.	45.	47.	35.	52.	46.	54.	58.	64.
62.	48.	46.	59.	47.	59.	37.	45.	57.	59.
67.	59.	60.	65.	57.	76.	80.	74.	70.	47.
42.	47.	36.	37.	46.	38.	45.	54.	47.	38.
36.	31.	37.	31.	39.	26.	26.	29.	30.	50.
39.	47.	50.	55.	44.	67.	39.	39.	39.	35.
39.	46.	44.	47.	34.	38.	48.	59.	32.	43.
34.	28.	33.	31.	31.	31.	39.	34.	33.	26.
32.	29.	21.	23.	39.	27.	37.	26.	35.	26.
32.	30.	27.	26.	32.	28.	24.	30.	28.	33.
22.	30.	29.	25.	25.	34.	24.	33.	36.	27.
25.	33.	30.	26.	31.	14.	30.	33.	23.	23.
33.	27.	25.	32.	27.	27.	29.	40.	41.	38.
42.	38.	46.	39.	36.	29.	32.	28.	36.	27.
36.	37.	42.	33.	34.	36.	27.	34.	32.	35.
35.	42.	45.	37.	32.	39.	47.	37.	35.	56.
42.	61.	41.	43.	45.	41.	38.	46.	34.	37.
47.	34.	39.	57.	50.	59.	64.	48.	54.	52.
42.	52.	52.	66.	66.	76.	72.	75.	65.	73.
56.	52.	49.	45.	69.	51.	49.	45.	61.	54.
71.	58.	51.	56.	54.	47.	53.	49.	67.	48.
56.	49.	64.	52.	45.	43.	48.	51.	58.	35.
47.	56.	46.	59.	46.	51.	47.	59.	68.	59.
66.	62.	66.	68.	74.	63.	60.	52.	52.	54.
65.	58.	66.	51.	75.	63.	61.	76.	68.	71.
59.	44.	58.	52.	37.	53.	39.	46.	47.	57.
50.	41.	34.	44.	41.	43.	38.	41.	52.	31.
28.	39.	31.	54.	44.	41.	41.	45.	53.	36.
49.	33.	42.	52.	33.	42.	35.	34.	44.	33.
31.									

Statistical and

Appendix P-2: step-intensity data of the 10 wt% olivine mixture of OI+Py

16.0000	.05001	36.0000	1	0%-olivi	ne mixtu	re			
38.	30.	35.	31.	36.	31.	26.	42.	31.	38.
34.	31.	40.	33.	31.	25.	33.	31.	20.	23.
41.	29.	37.	34.	36.	40.	46.	43.	48.	58.
78.	54.	42.	36.	43.	49.	31.	33.	42.	25.
26.	36.	40.	36.	27.	35.	32.	36.	30.	34.
24	33.	37.	26.	36.	24.	32.	26.	39.	30.
41	37	43	35	40	27	27	36	45	34
37	33	38	20	40	38	55	11	71	104
101	111	90. 91	57	40. 75	50.	57	62	37	50
121.	22	27	27.	75.	36	36	33	37.	20.
27.	32.	27.	23.	22.	30.	JU. 17	25.	33.	24
20.	29.	21.	20.	24.	20.	21.	20.	30.	54.
32.	34.	32.	20.	30.	30.	31.	32.	31.	19.
27.	33.	36.	29.	28.	38.	22.	33.	30.	44.
22.	39.	30.	39.	41.	59.	67.	104.	114.	139.
116.	101.	70.	/1.	50.	35.	51.	28.	41.	29.
30.	38.	26.	35.	30.	41.	42.	44.	46.	55.
68.	60.	49.	39.	43.	67.	51.	86.	13.	98.
91.	64.	34.	41.	39.	35.	40.	30.	32.	27.
34.	17.	33.	35.	35.	40.	42.	53.	58.	11.
100.	88.	88.	83.	62.	45.	56.	37.	36.	34.
32.	22.	31.	28.	37.	38.	40.	31.	47.	55.
76.	103.	158.	214.	284.	350.	330.	290.	192.	126.
79.	74.	64.	45.	58.	62.	76.	56.	93.	122.
177.	317.	445.	611.	661.	702.	601.	445.	253.	150.
99.	85.	51.	54.	55.	52.	49.	36.	33.	42.
38.	40.	45.	55.	56.	59.	49.	44.	54.	47.
45.	47.	66.	57.	50.	63.	61.	98.	106.	152.
162.	178.	232.	257.	349.	524.	881.	1415.	2044.	2626.
2824.	2581.	1980.	1280.	801.	727.	723.	820.	863.	874.
694.	505.	354.	269.	203.	219.	325.	513.	713.	889.
927.	863.	718.	515.	341.	235.	159.	108.	106.	70.
79.	76.	71.	57.	71.	71.	69.	58.	44.	52.
61.	50.	57.	68.	82.	129.	145.	181.	169.	117.
97.	86.	52.	44.	42.	39.	42.	42.	33.	40.
40.	33.	36.	36.	36.	31.	39.	32.	33.	33.
34.	26.	38.	33.	32.	33.	33.	27.	26.	51.
36.	37.	36.	37.	44.	44.	35.	51.	58.	50.
54.	60.	51.	71.	78.	109.	122.	164.	249.	358.
511.	670.	686.	653.	566.	474.	395.	373.	520.	721.
1017.	1348.	1539.	1663.	1708.	1574.	1521.	1323.	995.	729.
435.	266.	197.	130.	116.	91.	112.	104.	143.	168.
232.	254.	228.	204.	140.	112.	87.	67.	60.	43.
42.	37.	34.	42.	29.	37.	46.	39.	36.	30.
42.	48.	65.	69.	52.	94	78.	76.	65.	56.
53.	47.	51.	48.	60.	59.	61.	65.	63.	41.
42.	58.	63.	55.	42.	57.	57.	73.	87.	89.
125.	176.	269.	353.	455.	452.	454.	353.	263.	170.
135.	121	118.	121.	148.	133.	121.	111.	97.	105.
97	84	87	103	69	67	76	60	82	66
78	99.	130	156	217	289	298	321	301	251
291	334	329	331	285	2020	180	125	86	67
68	68	60	70	205.	106	126	1/3	194	283
338	349	334	298	253	246	287	350	154.	539
500.	490	130	270.	200.	106	171	196	216	252.
263	263	200	272.	105	133	0/ 1/1.	77	210.	231.
203.	205.	209.	230.	193.	107	94.	64	71.	/3.
52. AG	07.	70	05.	112	107.	104	204.	150	42.
40. EOE	450	206	. <i>בכ</i> דדר	113.	170	154.	JZ7. 105	434.	499.
202.	472.	300.	611.	220. 371	1/0. 371	100. 216	100. 012	224. 172	200. 101
JZZ.	.00C	.00C. Tr	411, 75	، ۱۱ د ۲۸	J/I.	572'	41J. CO	1/3.	121.
97. 105	72. 107	/3. 1Er	104	04. 035	40.	33. 155	00.	13.	94. CA
105.	12/ .	120.	194.	∠35. [7	187.	123.	133.	96.	64. SC
13.	66.	5/.	63.	5/.	/3.	36. Sr	3/.	30.	36.
34.	31.	31.	38.	32.	33.	25.	39.	34.	37.
28.	42.	4J.	39.	43.	35.	28.	31.	4/.	39.

43	20	20	24	30	20	22	E 1	27	40
41.	29.	30.	34.	39.	30.	23.	51.	57.	40.
<u></u>	47.	40.	29.	44.	39.	35.	51.	59.	87.
83.	88.	99.	94.	/6.	/5.	49.	47.	29.	63. 207
67.	101.	14/.	195.	217.	260.	274.	243.	234.	207.
160.	131.	105.	91.	83.	100.	118.	128.	127.	120.
131.	119.	81.	69.	58.	63.	62.	68.	55.	58.
39.	41.	45.	36.	40.	36.	25.	43.	35.	42.
68.	62.	70.	66.	49.	58.	59.	60.	93.	70.
95.	131.	220.	336.	450.	487.	469.	476.	360.	310.
269.	179.	122.	105.	86.	82.	77.	78.	68.	60.
40.	51.	63.	47.	71.	83.	66.	89.	82.	83.
65.	55.	61.	57.	48.	43.	37.	32.	33.	37.
32.	34.	51.	28.	41.	39.	49.	39.	36.	66.
65.	92.	92.	90.	95.	107.	121.	143.	191.	181.
189.	190.	164.	140.	117.	145.	136.	137.	163.	156.
154.	137.	115.	102.	76.	76.	77.	66.	59.	70.
79.	88.	76.	87.	80	98.	112.	106.	169.	194.
275	422	588	735	833	769	751	636	558	429
380	358	294	213	194	153	123	109	73	42J.
500.	550. 60	204.	52	63	133.	50	57	63	59
59. 59	70	70.	22.	0.0.	03.	100	70	63.	50.
52.	70. 60	07. 5 <i>C</i>	69.	94.	64.	100.	79.	60	59.
60.	60.	. DC	64.	64. 155	63.	02.	50.	68.	58.
62.	//.	110.	134.	155.	158.	130.	129.	88.	82.
12.	91.	87.	133.	1/5.	166.	166.	145.	122.	113.
100.	72.	61.	41.	54.	62.	93.	71.	110.	137.
178.	183.	184.	242.	258.	287.	306.	268.	235.	230.
227.	146.	152.	128.	112.	108.	125.	112.	130.	160.
169.	232.	305.	345.	331.	328.	335.	349.	270.	227.
182.	181.	134.	124.	147.	114.	136.	128.	130.	161.
151.	187.	176.	165.	160.	144.	114.	102.	117.	114.
90.	70.	60.	63.	54.	69.	73.	62.	43.	61.
50.	53.	55.	76.	71.	73.	62.	67.	69.	60.
56.	58.	45.	60.	45.	71.	83.	79.	104.	119.
93.	103.	105.	86.	80.	81.	83.	70.	93.	73.
64.	65.	65.	60.	63.	74.	80.	96.	176.	151.
198.	314.	394.	433.	478.	471.	415.	347.	358	292.
230	175	160	157	166	186	238	318	330	346
280.	264	263	226	179	157	133	103	103	77
103	01	60	106	100	101.	139	155	160	137
105.	102	09. 07	100.	76	54.	130.	177.	100. 63	57.
EV.	102.	27.		70.	03.	39.	77.	33.	JJ. 07
24,	55. (1	12.	13.	90.	81. 20	20	00. DO	40.	/0.
13.	61.	40.	43.	48.	39.	39.	38.	43.	31.
26.	46.	32.	42.	31.	51.	47.	48.	45.	64.
58.	61.	52.	65.	58.	51.	51.	40.	55.	64.
61.	78.	66.	55.	61.	50.	54.	50.	54.	64.
61.	72.	83.	85.	125.	177.	185.	174.	186.	203.
231.	250.	237.	216.	225.	190.	178.	160.	160.	138.
124.	113.	131.	127.	152.	111.	102.	99.	82.	78.
56.	56.	47.	56.	45.	30.	37.	36.	41.	36.
47.	41.	31.	28.	30.	41.	45.	37.	45.	50.
54.	72.	60.	64.	60.	80.	84.	96.	88.	130.
151.	142.	155.	137.	130.	150.	162.	172.	180.	248.
240.	224.	207.	193.	159.	136.	130.	91.	72.	68.
76.	72.	59.	64.	66	60.	82.	67.	84	92.
105	129	132	130	146	155	134	144	123	154
119	127	110	101	82	86	65	60	68	58
60	±27.	70	201.	102.	153	104	161	103	161
161	145	122	02.	102.	100.	194.	101.	105.	101.
101.	143.	122.	90. (7	94. 76	51.	64. EA	60. EE	47. E1	40.
47. EO	47.	42	21	70. 22	. 60	24.	55.	51.	01. EE
50.	40.	42.	51.	55.	57.	57.	50.	44.	55.
62.	5/.	50.	69.	56.	44.	60.	5/.	43.	5/.
48.	55.	51.	58.	/5.	79.	81.	109.	99.	86.
8/.	12.	63.	52.	59.	58.	34.	17.	28.	35.
36.	44.	32.	42.	33.	36.	31.	40.	44.	39.
46.	30.	33.	37.	33.	46.	29.	35.	47.	52.
46.	51.	46.	56.	61.	44.	43.	54.	36.	37.
37.	46.	35.	50.	40.	51.	28.	30.	36.	45.
30.	29.	43.	39.	38.	39.	59.	41.	52.	52.
52.	68.	64.	79.	80.	84.	94.	90.	63.	50.
55.	58.	56.	43.	47.	44	36.	26.	31.	29.
--------------	----------	-------------	-------	------	-----------	------	------------	------	----------------
20	4 5	20.	26.	2.4	27	20.	24	20	
50.	4	55.	. د د	24.	21.	20.	54.	20.	41.
34.	46.	40.	32.	48.	43.	60.	41.	45.	56.
65.	72.	93.	87.	97.	95	119.	114.	104.	96
02.	00	20.	67	E 2	· · · ·		47		
92.	90.	79.	o/.	53.	60.	65.	4/.	41.	44.
37.	32.	42.	36.	28.	35.	46.	48.	42.	33.
51	43	50	28	66	55	49	41	58	52
		50.	50.	00.	55.	42.	41.	50.	12.
51.	52.	43.	36.	38.	39.	39.	35.	48.	38.
36.	34.	43.	39.	36.	38.	35.	44.	42.	39.
43	24	27	41	45	20	20	4.4	40	27
43.	24.	57.	41.	4J.	50.	29.	44.	42.	27.
51.	44.	39.	42.	22.	30.	40.	29.	28.	46.
46.	62.	64.	63.	56.	55.	66.	47.	49.	50.
41	C 1	27	20	10	40	25	E 1	45	C1
41.	51.	57.	30.	45.	43.	33.	51.	45.	51.
48.	43.	45.	39.	41.	50.	35.	50.	26.	47.
38.	32.	36	38.	39	27	29	41	29	41
21	20.	20.	20.	41	20	50	£ .	10	
51.	50.	29.	20.	41.	59.	50.	52.	40.	51.
45.	64.	64.	64.	71.	83.	96.	92.	90.	75.
76	83	75	62	54	70	74	53	86	01
101	134	130	202.	24.	220	0.44	157	200.	21.
121.	124.	112.	205.	244.	239.	241.	157.	200.	248.
301.	307.	274.	266.	196.	174.	180.	173.	163.	187.
1/9	155	153	188	204	1.82	122	134	161	131
112.	100	110.	1100.	204.	102.	133.	134.	101.	131.
116.	102.	113.	110.	108.	11.	63.	65.	58.	62.
44.	58.	51.	50.	49.	46.	36.	54.	59.	66.
70	73	73	92	94	90	85	Ω 1	75	76
		70.	52.	74.	20.	05.	01.	15.	70.
6/.	90.	78.	65.	76.	88.	11.	/6.	63.	80.
65.	54.	70.	70.	60.	54.	53.	61.	82.	86.
87	110	aa	Q1	84	70	63	99	80	01
67.	112.		01.	04.	70.	0.0.	00.	09.	01.
53.	49.	46.	38.	49.	44.	56.	43.	28.	40.
32.	32.	33.	44.	39.	45.	57.	48.	53.	66.
49	68	70	65	17	61	51	54	50	42
		10.	0,00	47.	01.	J1.	54.	59.	42.
48.	43.	43.	39.	43.	50.	43.	55.	57.	60.
60.	51.	61.	61.	45.	62.	61.	60.	69.	64.
59	63	70	66	75	111	05	88	68	65
		70.		75.	111.	22.	00.	60.	0.0.
64.	11.	61.	70.	51.	55.	38.	46.	54.	64.
59.	49.	60.	40.	59.	65.	49.	57.	72.	68.
61	88	61	66	70	73	00	96	00	01
01.	00.	01.	00.	70.	73.	02.	00.	50.	01.
90.	98.	105.	114.	104.	102.	68.	85.	60.	62.
78,	73.	54.	60.	50.	41.	43.	46.	38.	44.
50	13	40	40	20	45	20	22	4.4	41
50.	43.	40.	43.	20.	40.	50.	55.	44.	41.
38.	40.	59.	64.	65.	58.	84.	59.	51.	47.
55.	58.	49.	55.	64.	41.	47	57.	44	52
50	45	41	10	E 0	20	(F	57.	57	<u> </u>
50.	45.	41.	40.	50.	50.	65.	57.	57.	οΖ.
55.	42.	51.	42.	52.	65.	57.	89.	87.	100.
84.	75.	66.	80.	61.	76.	55.	57.	66.	64.
40	50	47	50	47	40	40	57	C 1	(7
40.	50.	47.	50.	47.	43.	43.	55.	51.	67.
56.	63.	53.	46.	50.	68.	59.	53.	59.	62.
50.	51.	52.	66.	73.	60.	62.	58.	63.	92.
00	110	110	110	101	106	04	114	100	124
30.	110.	119.	110.	101.	100.	94.	114.	109.	124.
95.	95.	75.	69.	84.	65.	67.	58.	67.	49.
42.	51.	50.	38.	36.	61.	42.	28.	40.	35.
26	25	21	24	201	22	20	20.	17	25.
20.	55.	21.	J4.	44.	55.	20.	52.	41.	20.
34.	34.	22.	27.	24.	24.	30.	27.	30.	27.
37.	41.	31.	43.	35.	36.	30.	32	45	33
26	4.2	40	2 4	E 0	50.	E 0	4.4	5.4	20.
50.	42.	40.	54.	54.	52.	52.	44.	24.	30.
54.	45.	57.	54.	50.	59.	51.	51.	56.	44.
54.	45.	52.	64 -	70.	67.	56.	53.	70.	64
C1	<u> </u>	75	57	~~··	сл. Гл	40		22.	59.
01.	64.	15.	D7.+	63.	53.	48.	47.	37.	59.
67.	59.	45.	44.	33.	40.	41.	51.	38.	47.
39.	33.	36.	35.	31.	40.	36.	32.	40	42
12	47	27.	40	40	10	20	A A	22.	1 C. • A *7
40.	47.	57.	40.	4U.	40.	30.	44.	33.	4/.
46.	45.	59.	41.	50.	53.	66.	56.	64.	66.
63 .	71.	75	91	110	90	107	105	87	63
07	110		105	100	104	100	100.	07.	22.
97.	TTQ.	84.	125.	T0A'	124.	102.	85.	92.	93.
80.	85.	85.	77.	97.	99.	80.	133.	137.	120.
115	103	106	93	99	91	108	91	71	70
22.		200.	23.	50		100.	21.		10.
сo.	ວຽ.	64.	47.	5V.	50.	50.	48.	54.	41.
43.	50.	41.	40.	51.	40.	47.	28.	32.	42.
46.	38.	36	30	38	50	49	37	42	34
50	40	20,	20.	20.	20.	25.	27.	40	J.1. 77
ο υ .	40.	<u>ک</u> ۲.	55.	33.	41.	35.	∠ŏ.	44.	31.

42.	31.	27.	29.	33.	38.	38.	37.	36.	42.
29.	45.	37.	41.	46.	44.	44.	49.	47.	42.
44.	44.	39.	41.	41.	52.	40.	39.	41.	43.
45.	37.	39.	32.	33.	38.	39.	28.	35.	31.
35.	40.	51.	47.	43.	33.	47.	49.	52.	45.
54.	47.	46.	44.	42.	40.	47.	55.	70.	53.
67.	67.	65.	55.	57.	55.	52.	44.	63.	41.
67.	55.	67.	76.	86.	66.	49.	52.	40.	61.
53.	47.	50.	62.	71.	55.	60.	41.	53.	41.
48.	49.	46.	45.	43.	62.	33.	42.	39.	51.
33.	45.	52.	61.	53.	59.	61.	62.	60.	82.
76.	69.	74.	54.	57.	66.	74.	73.	72.	78.
92.	60.	72.	80.	64.	80.	53.	56.	57.	49.
68.	46.	65.	54.	71.	60.	69.	65.	63.	66.
82.	82.	63.	62.	64.	61.	58.	57.	61.	65.
73.	59.	67.	58.	73.	79.	79.	91.	78.	60.
54.	70.	44.	49.	60.	49.	64.	60.	54.	53.
34.	47.	45.	35.	25.	36.	53.	33.	61.	56.
55.	53.	60.	68.	68.	63.	50.	60.	58.	54.
62.	46.	53.	49.	59.	68.	57.	58.	52.	55.
50.	50.	58.	46.	43.	30.	45.	46.	56.	39.
50.	51.	47.	48.	47.	51.	53.	39.	43.	49.
45.	44.	37.	39.	38.	34.	49.	33.	40.	52.
53.	37.	47.	40.	36.	38.	41.	31.	48.	29.
34.	33.	40.	37.	44.	50.	35.	32.	35.	39.
43.	43.	36.	43.	38.	46.	43.	42.	39.	50.
55.	55.	48.	39.	41.	35.	53.	39.	46.	49.
55.	61.	52.	58.	53.	47.	49.	49.	54.	45.
48.	43.	45.	51.	58.	38.	44.	57.	50.	54.
65.	53.	65.	47.	60.	61.	50.	47.	47.	43.
56.	58.	59.	60.	61.	68.	69.	61.	63.	65.
62.	60.	67.	74.	82.	79.	84.	77.	79.	81.
70.	62.	56.	62.	51.	68.	58.	64.	71.	62.
61.	64.	64.	51.	53.	61.	64.	59.	69.	79.
69.	80.	68.	49.	56.	71.	66.	68.	53.	57.
64.	86.	51.	82.	71.	84.	72.	66.	77.	82.
78.	83.	70.	85.	91.	87.	79.	74.	77.	71.
76.	83.	65.	91.	77.	98.	77.	95.	87.	62.
59.									

Appendix P-3: step-intensity data of the 20 wt% olivine mixture of OI+Py

16.00	.05	136.00	20	0% olivin	ne mixtui	re			
33.	33.	40.	40.	31.	44.	25.	36.	37.	27.
39.	41.	40.	32.	26.	25.	36.	29.	33.	35.
54.	42.	40.	53.	64.	59.	83.	84.	112.	126.
96.	63.	41.	36.	37.	41.	31.	32.	36.	33.
35.	25.	28.	32.	45.	44.	24.	32.	43.	22.
27.	43.	23.	24.	26.	29.	41.	41.	39.	33.
39.	37.	45.	22.	41.	31.	29.	39.	40.	44.
38.	42.	39.	39.	47.	50.	37.	76.	97.	114.
88.	96.	98.	80.	70.	54.	56.	44.	43.	33.
30.	29.	38.	32.	31.	35.	33.	31.	27.	36.
31.	41.	32.	22.	35.	30.	24.	32.	32.	35.
29.	31.	37.	34.	40.	21.	30.	29.	28.	29.
26.	32.	45.	50.	27.	31.	30.	31. 102	41.	30.
41.	145		27. 60	13.	107.	180.	193.	231.	220.
190.	27	79.	46	40.	49.	Ω4. Ω/	101	102	112
40. 87	57.	55	40. 54	42. 56	62	93	101.	98	67
65	51	34	26	40	43	37	31	31	31
45	33.	36.	41	33.	54	57.	110.	124.	136.
157.	172.	121.	115.	100.	73.	52.	34.	34.	33.
34.	36.	42.	39.	44.	37.	40.	35.	66.	52.
107.	113.	189.	270.	271.	286.	268.	191.	132.	90.
79.	69.	38.	57.	44.	46.	72.	83.	98.	168.
270.	433.	534.	631.	644.	595.	474.	276.	159.	97.
79.	63.	57.	50.	52.	42.	28.	55.	39.	38.
51.	36.	41.	63.	44.	62.	42.	45.	57.	42.
41.	43.	59.	48.	51.	83.	76.	96.	140.	117.
177.	213.	276.	386.	504.	836.	1261.	1761.	2116.	2426.
2181.	1858.	1238.	854.	667.	645.	741.	929.	986.	727.
503.	339.	227.	220.	202.	261.	437.	652.	758.	929.
915.	768.	591.	364.	239.	156.	122.	83.	73.	72.
75.	74.	85.	91.	75.	65.	58.	49.	44.	55.
55.	55.	90.	126.	224.	259.	311.	354.	266.	220.
108.	86.	64. DC	57.	45.	43.	33.	38.	30.	44.
40.	30. 27	22.	39.	32.	30. 27	42.	23.	37.	36
34. 30	57. 50	34.	30.	40	J7. 46	55.	40	42.	63
50	- 0C - 66		24. 83	100	40.	137	19/	299	⊿19
512	662	629	579	441	346	318	293	544	825
1101	1375	1604	1829.	1762	1710	1517.	1168.	769.	517.
340.	202.	158.	133.	128.	95.	135.	174.	295.	338.
404.	432.	393.	286.	205.	134.	94.	68.	75.	50.
49.	48.	45.	38.	48.	46.	48.	43.	43.	56.
44.	62.	60.	73.	81.	70.	75.	71.	63.	58.
56.	43.	55.	61.	84.	78.	96.	86.	76.	93.
69.	61.	57.	54.	59.	65.	86.	98.	117.	112.
162.	222.	290.	387.	476,	436.	371.	225.	179.	144.
134.	147.	179.	203.	201.	195.	194.	150.	141.	154.
182.	175.	192.	134.	112.	100.	63.	74.	68.	65.
97.	97.	143.	247.	230.	272.	314.	279.	239.	214.
280.	289.	321.	275.	211.	139.	144.	98.	82.	62.
49.	/6.	//.	89.	90.	11/.	162.	204.	285.	303.
323.	315.	281.	215.	217.	210.	289.	420.	483.	233.
480.	404.	308.	210.	10/.	100	159.	204.	449. cc	200.
209. 67	213. QA	210. 01	±39. 07	12U. 00	70	13.	/ L . 5 /	40	70. 50
0/. 50	04. 67	51.	01. QC	00. 109	19.	202	34. 302	40. 373	720 730
422	300.	376 376	254	184	134	151	1/2	275	409. 256
310	322.	355	254.	104. 311	303	270	204	148	120
86	76	48	66	511.	45	52	48	42	64
101	138	164.	221.	205	140.	116.	120.	93.	75.
71	65.	77.	60.	74.	71.	46.	54.	34.	37.
29	31.	29.	33.	36.	33.	37.	29.	26.	36.
2.4	30.	39.	36.	42.	41.	25.	44.	42.	31.

41	3.8	17	32	43	38	51	54.	60.	74.
54.	61.	50.	45.	42.	42.	58.	42.	63.	72.
88.	95.	79.	64.	55.	59.	43.	52.	70.	66.
76.	107.	145.	218.	202.	249.	250.	230.	186.	173.
127.	87.	76.	79.	71.	130.	117.	129.	114.	127.
108.	97.	63.	52.	73.	68.	64.	57.	50.	52.
53.	46.	37.	46.	37.	45.	31.	40.	50.	53.
60.	56.	84.	72.	60.	77.	79.	87.	102.	108.
126.	194.	318.	405.	523.	615.	634.	544.	379.	335.
274.	211.	184.	158.	135.	89. 60	90.	/S.	74. 69	70. 68
60.	40. 5Ω	39. 63	74.	60. 53	34	40	29	33	36
36	31	32	34	46	43	45.	37.	56.	76.
55.	63.	75.	87.	111.	121.	160.	183.	177.	224.
208.	159,	133.	117.	112.	96.	157.	158.	177.	158.
124.	103.	102.	72.	83.	70.	70.	72.	79.	89.
95.	92.	133.	117.	125.	120.	146.	141.	168.	231.
341.	500.	606.	751.	813.	803.	684.	555.	441.	386.
316.	235.	199.	196.	154.	126.	112.	91.	71.	91.
64.	55.	78.	65.	69.	62.	58.	56.	73.	71.
86.	69.	82.	102.	101.	84.	69.	85.	78.	63.
/1.	66. 05	69. 110	/1.	/1.	100	80. 104	71. 07	74.	65
73.	80, 07	119.	110.	139	167	148	126	125	105
91	54	58	57	13J. 69	68.	63.	90.	106	141.
135.	161.	203.	220.	238.	224.	268.	249.	241.	204.
180.	160.	141.	131.	127.	109.	136.	130.	139.	148.
176.	253.	252.	291.	360.	342.	352.	313.	301.	236.
222.	187.	149.	143.	116.	140.	131.	131.	198.	179.
227.	242.	245.	234.	219.	204.	173.	137.	114.	105.
92.	76.	56.	78.	73.	66.	52.	92.	43.	51.
80.	62.	65.	83.	80.	12.	80.	70.	54.	61.
55.	44.	43.	55.	48.	66.	/4.	91.	94.	95. 67
84. 54	93.	107.	100.	100.	94. 95	92.	91. 105	140	181
24,	379	39. 436	406	426	458	400	335	288	278.
184	161	132	147.	176.	166.	212.	266.	280.	2.44.
269.	247.	225.	194.	135.	135.	127.	127.	110.	123.
121.	108.	121.	105.	128.	118.	152.	149.	113.	134.
128.	113.	104.	70.	71.	58.	47.	59.	48.	59.
55.	59.	70.	83.	88.	94.	68.	87.	76.	67.
55.	52.	43.	33.	34.	39.	40.	31.	39.	41.
34.	47.	42.	37.	47.	47.	64.	94.	91.	85.
92.	134.	99.	83.	78.	81.	55.	/8.	55.	56.
87.	57.	65.	102	5/.	5⊥. 172	49.	48.	201	102
263	232	243	103.	182	183	180	145	135	127.
141	139	150.	149.	119.	129.	118.	101.	94.	84.
71.	46.	44.	45.	65.	48.	46.	43.	41.	34.
42.	43.	43.	37.	50.	43.	54.	47.	48.	57.
62.	87.	71.	70.	67.	68.	65.	108.	128.	137.
119.	118.	127.	125.	140.	139.	148.	165.	207.	229.
237.	190.	181.	158.	152.	136.	94.	68.	69.	55.
58.	50.	54.	64.	49.	63.	70.	73.	103.	79.
113.	95.	121.	144.	152.	155.	136.	148.	137.	136.
121.	79.	102.	91.	85.	64. 165	66. 207	80.	13.	65. 160
63. 140	61. 127	69. 110	93.	11/.	105.	207.	199.	170.	100.
140.	57	119.	0J. 55	6J. 55	50	49. 59	44. 63	46	54
52	50	38	39	40.	42.	46.	50.	60.	68.
53.	49.	66.	50.	57.	54.	51.	57.	50.	62.
60.	65.	49.	57.	68.	77.	79.	91.	88.	67.
78.	53.	54.	45.	47.	40.	39.	27.	38.	35.
34.	29.	35.	37.	38.	34.	32.	39.	30.	42.
37.	47.	53.	31.	43.	48.	42.	51.	39.	40.
58.	46.	65.	40.	49.	66.	45.	50.	40.	48.
39.	43.	47.	35.	45.	32.	36.	44.	33.	36.
36.	36.	42.	32.	45.	41.	59. 70	50.	45.	44.
52.	ნ∠,	5/.	11.	54.	70.	78.	10.	03.	07.

59.	58.	48.	48.	39.	45.	36.	41.	38.	29.
50.	38.	27	28.	32.	32.	34.	42.	36.	31.
56	46	62	52	48	59	62	62	54	75
71	40.	74	92.	10.	110	102.	102.	07	88
/4.	84.	74.	90.	21.	112.	122.	100.	27.	00.
11.	88.	83.	70.	49.	53.	57.	61.	67.	41.
43.	49.	49.	44.	44.	53.	59.	51.	43.	43.
57.	55.	42.	56.	45.	49.	56.	57.	52.	45.
44	43	47	38.	39	36	56.	34.	33.	52.
45	15.	50	20	51	45	40	37	4.4	40
40.	40.	50.	54.	71.	45.	42.	57.	44.	40.
38.	41.	29.	28.	40.	48.	39.	40.	40.	35.
48.	52.	38.	35.	39.	34.	44.	39.	29.	42.
52.	54.	71.	44.	49.	52.	44.	41.	53.	56.
45	33	40	44	45	49	57	47	58	59
	65	10.	50	40	20	20	41	41	32.
55.	05.	43.	52.	40.	59.	10.	41.	41.	32.
39.	29.	34.	22.	24.	29.	18.	30.	30.	33.
35.	41.	51.	49.	31.	46.	46.	47.	50.	60.
70.	57.	62.	71.	83.	106.	94.	80.	78.	96.
90.	89.	80.	67.	68.	74.	66.	101.	78.	95.
134	145	213	238	2/3	215	195	196	195	2/3
134.	140.	213.	200.	111	150	150.	101	175	120
202.	202.	240.	200.	104.	150.	100.	101.	170.	139.
137.	146.	179.	159.	162.	1/2.	142.	132.	114.	128.
112	114.	103.	88.	78.	88.	79.	81.	71.	61.
60.	46.	53.	42.	57.	50.	57.	40.	58.	62.
63	85.	85.	80.	114.	99.	92.	83.	76.	88.
70	76	75	03	71	01	72	70	55	72
72.	70.	7.J.	65.	, <u>,</u> ,	(7	(7	70.	22.	07
13.	70.	20.	64.	83.	67.	67.	74.	12.	80.
100.	94.	108.	91.	98.	72.	81.	118.	72.	78.
59.	69.	39.	63.	40.	64.	60.	42.	49.	34.
25.	40.	27.	34.	49.	39.	49.	49.	70.	73.
69	60	69	50	46	50.	55	58.	58.	48.
36	42	41	54	61	50.	70	50.	68	77
30.	42.	41.	74.	01. CT	52.	70.	50	00. CC	
70.	65.	64.	/0.	67.	67.	56.	59.	56.	66.
54.	65.	81.	57.	79.	98.	87.	83.	67.	66.
52.	68.	68.	58.	65.	48.	45.	53.	53.	48.
49.	46.	50.	62.	60.	53.	58.	55.	54.	57.
71	69	49	71	71	88	78	83	76	88
00	101	00	112	104	04	05	72	70	10
00.	101.	52.	111.	104.	04.	0	13.	70.	40.
//.	50.	67.	66.	43.	47.	50.	5/.	34.	22.
39.	44.	55.	31.	52.	39.	57.	52.	37.	44.
44.	58.	49.	60.	76.	63.	63.	47.	57.	59.
62.	61.	54.	37.	53.	48.	44.	47.	41.	40.
55	65	33	53	50	58	47	46	56	74
55.	60	60	55. EC	50.	50.	70	70	00.	96
52.	00.	00.		59.	J9.	14.	12.	50.	00.
82.	69.	64.	67.	56.	/8.	50.	54.	66.	58.
57.	55.	44.	67.	47.	49.	44.	39.	38.	55.
49.	55.	54.	57.	57.	81.	55.	53.	57.	56.
62.	51.	70.	56.	54.	57.	70.	60.	75.	82.
95	101	104	108	88	89	108	86	95	92
75	75	74	£00.	71	62	61	62	51	66
7	15.	74.	00.	/±.	02.	21.	02.	51.	00.
33.	46.	40.	43.	48.	52.	37.	32.	34.	29.
41.	35.	30.	35.	25.	27.	42.	29.	36.	26.
23.	24.	35.	38.	27.	36.	34.	30.	29.	28.
33.	38.	2.4	28.	36.	45.	46.	43.	43.	35.
42	36	30	42	36	44	52	45	46	38
72.		57.	12.	50.		52 ·		40.	40
36.	47.	34.	6c.	50.	60.	51.	57.	47.	49.
66.	67.	51.	52.	62.	60.	59.	60.	6/.	63.
58.	59.	59.	75.	56.	42.	42.	55.	63.	43.
53.	46.	34.	39.	42.	44.	36.	49.	46.	43.
51	39	36	41	32	44	36	42	51	43.
10	50.	50.	44	36	20	50.	51	52	51
40.	50.	74.	44.	.00	20.		74.	36. CC	
64.	62.	48.	49.	49.	42.	48.	68.	66.	62.
79.	81.	83.	99.	108.	124.	102.	109.	89.	90.
82.	107.	98.	97.	101.	92.	101.	85.	74.	83.
77.	93.	85.	79.	71.	95.	95.	111.	115.	73.
90	82	88	78	90	93	86	104	80	60
10.	52. E7	71	, U . E E	66	23 · 70	۸1 الا	F0-1.	50. 57	10
4/.	2/.	11.	22.	00.	40.	41.	50.	57.	40.
36.	44.	45.	31.	44.	51.	31.	42.	38	38.
41.	56.	42.	43.	49.	51.	38.	45.	46.	46.
36.	29.	33.	41.	56.	40.	42.	29.	44.	37.

37.	44.	37.	32.	27.	24.	27.	25.	27.	34.
39.	37.	38.	35.	41.	34.	45.	49.	51.	42.
35.	33.	36.	34.	34.	45.	40.	41.	45.	39.
47.	46.	46.	36.	48.	38.	35.	36.	38.	43.
40.	40.	36.	38.	49.	38.	47.	55.	51.	49.
53.	65.	73.	58.	73.	47.	58.	50.	64.	65.
71.	61.	49.	56.	46.	39.	41.	57.	43.	63.
67.	60.	76.	74.	91.	65.	51.	53.	52.	43.
48.	48.	58.	65.	53.	50.	66.	63.	51.	44.
56.	50.	56.	43.	58.	69.	63.	57.	63.	41.
38.	44.	37.	58.	47.	56.	56.	58.	74.	68.
76.	57.	67.	56.	54.	58.	67.	68.	75.	70.
72.	67.	60.	60.	61.	59.	51.	68.	63.	64.
69.	70.	67.	53.	83.	67.	50.	65.	64.	76.
63.	71.	73.	57.	67.	57.	48.	52.	61.	70.
63.	66.	62.	59.	68.	81.	81.	89.	63.	73.
58.	49.	45.	41.	59.	46.	62.	59.	55.	46.
42.	48.	36.	34.	38.	32.	43.	38.	51.	46.
55.	45.	50.	42.	64.	76.	44.	55.	52.	56.
69.	57.	58.	72.	78.	70.	48.	51.	52.1	61.
46.	53.	67.	56.	55.	42.	44.	56.	34.	49.
44.	48.	38.	54.	31.	37.	54.	63.	44.	50.
49.	51.	52.	40.	48.	42.	37.	43.	42.	48.
39.	48.	41.	48.	48.	45.	44.	38.	55.	37.
35.	40.	44.	38.	32.	47.	46.	55.	40.	35.
44.	47.	37.	40.	56.	41.	57.	48.	47.	52.
52.	57.	51.	51.	53.	44.	49.	55.	52.	45.
56.	43.	52.	56.	39.	55.	41.	39.	38.	43.
42.	48.	41.	52.	44.	62.	46.	55.	56.	61.
76.	52.	55.	66.	70.	55.	55.	51.	57.	65.
45.	69.	71.	49.	63.	62.	63.	71.	59.	56.
56.	54.	55.	74.	94.	89.	62.	91.	59.	68.
73.	70.	70.	69.	34.	60.	61.	53.	56.	61.
55.	46.	62.	64.	52.	63.	74.	82.	63.	63.
77.	51.	68.	50.	55.	50.	61.	55.	76.	66.
66.	55.	74	70.	88.	70.	59.	71.	86.	86.
101.	76.	90.	78.	66.	66.	67.	77.	82.	64.
71.	63.	85.	75.	81.	88.	96.	101.	112.	76.
61.			= .						

Appendix P-4: step-intensity data of the 30 wt% olivine mixture of OI+Py

19.00	139.00	.05	3(0% olivi	ne mixtu:	re			
38.	42.	47.	31.	22.	42.	44.	39.	49.	33.
41.	46.	38.	36.	43.	41.	57.	55.	76.	89.
84.	102.	70.	63.	63.	61.	51.	42.	41.	45.
36.	33.	38.	34.	34.	37.	41.	31.	29.	34.
34.	42.	37.	32.	33.	36.	30.	29.	31.	34.
32.	26.	41.	38.	36.	41.	38.	26.	38.	33.
28.	23.	40.	33.	39.	32.	30.	31.	33.	47.
47.	54.	66.	66.	111.	155.	220.	358.	415.	414.
291.	244.	130.	109.	79.	53.	42.	60.	39.	49.
42.	40.	46.	48.	53.	73.	104.	147.	174.	161.
122.	108.	65.	61.	50.	64.	81.	85.	97.	79.
62.	42.	38.	51.	44.	48.	40.	39.	30.	45.
40.	43.	41.	43.	65.	52.	75.	104.	171.	219.
238.	239.	244.	163.	123.	86.	68.	71.	44.	43.
35.	33.	35.	40.	47.	37.	36.	48.	54.	62.
59.	109.	160.	234.	268.	266.	204.	149.	99.	87.
69.	59.	62.	44.	57.	53.	59.	69.	87.	142.
188	347.	534	646.	561.	497.	365.	218.	122.	98.
68.	46.	54.	45.	51.	44.	41.	43.	42.	55.
47.	31.	57.	61.	55.	57.	52.	59.	53.	43.
55.	57.	53.	52.	76.	66.	74.	93.	104.	117.
152	210	262	306	445.	691.	1029.	1515.	2057.	2332.
2097	1649	1055.	681.	460.	557.	667.	775.	715.	546.
338	262	182	176	185	202.	265.	503.	672.	721.
757	599	464	291	153.	131.	96.	78.	81.	65.
53	63	64	74	<u>- 55</u> .	61	56.	56	44	70.
86	89	107	162	287	425	495	555.	460	313.
190	111	207.	65	51	53	44	36	35.	31
41	30	33	44	39	35.	35.	33.	40	20
30	30.	34	35	39.	43	35	32	39	29
45	28	54.	43	37.	31	51	42	62	47
	62	70	78	98	109	131	178	289	424
531	648	566	503	366	346	319	220	455	751
1004	1040.	1514	1762	1920	1690	1427	1004	676	/18
202	103	1514.	1202.	1029.	1090.	1927.	237	454	410.
607	195.	570	273	200	120.	134	100	82	68
57	64	30 770.	375.	200.	56	34.	38	43	45
J7.	04. 50	53.	4J. 64	45.	76	101	67	51	4J. 61
42. 51	50.	03.	69	90.	117	127	122	107	72
71	54.	20.	60	69.	110	100	122.	130	120
172	202	220	363	301	405	302.	238	150	120.
157	203.	320.	204	201.	201	301	230.	253	201
15/.	212.	204.	107	JOZ.	321.	201.	240.	63	204.
J10. 03	291.	200.	107.	140.	109.	272	250	210	194
22.	102.	143.	109.	155	113	111	230.	210.	104. 63
220.	270.	2,54.	115	153	10/	258	251	70.	317
40.	71.	03.	107	155.	173	230.	301	126	J17.
207.	202.	243.	197.	101.	105	100	160	420.	400.
300.	200.	214.	104.	104	105.	129.	67	71	220.
240.	204.	101.	113.	204.	91. 90	57	52	11.	50
12.	01. 60	64. 57	72.	110	107	170	204	44.	424
441	277	27.	212	110.	176	172.	294.	420.	424.
441.	377. DOE	200.	213.	102.	130.	123.	165	1201.	205.
522.	200.	301.	309.	202.	24J. 41	55	105.	56	91.
6U. OF	29.	42.		107	41.	134		20.	67
00.	132.	100.	191.	192.	140. 66	134.	47	55	41
20.	30.	42	70.	70.	36	24.	30	20.	41.
39. Sr	30.	42.	40.	22.	3 0 .	27.	30. 21	37.	∠⊃. ∧∩
35.	43.	32.	37.	18. 17	31. EC	20.	31. 75	29. (E	42.70
35.	42.	4/.	3/.	42.	50.	01. F1	/5.	0D.	10.
/1.	51.	62.	56.	4D. 50	43.	D1. 11	43.	66.	13.
b3.	12.	11.	8∠. 170	50.	٥/٠ ٦٦٥	41.	42.	44	40.
69.	101.	14/.	1/0.	тап.	23U.	∠J8. 110	171.	104.	109.
114.	84.	95.	5J.	53. EC	133.	119.	134.	104.	136.
85.	61,	62.	53.	59.	61.	/1.	/1.	6/.	b/.

63	55	50	40	41	16	40	52	5.8	4.6
05.	55.		4.2.	- 1 -	40.	42.	52.	100.	
51.	70.	54.	/9.	53.	73.	86.	93.	108.	127.
161.	259.	394.	585.	737.	758.	700.	513.	462.	385.
220	246	220	202	160	107	07	103	70	70
330.	240.	230.	202.	100.	107.	97.	105.	10.	70.
59.	58.	55.	62.	75.	87.	87.	76.	85.	78.
64	55	40	17	42	20	20	20	40	34
04.	55.	72.	47.	72.	57.			-0.	
41.	38.	23.	29.	30.	39.	46.	4/.	48.	58.
76	71	8.2	115.	108.	129	166	186.	200.	209.
10.	4 77 75	1.0	207	100.	110	100.	100	107	
167.	1/3.	142.	107.	106.	112.	137.	1221	127.	700.
114.	121.	74.	71.	80.	64.	72.	74.	77.	111.
100	1 (7	1/2	1 47	160	120	140	151	170	201
120.	167.	102.	147.	100.	139.	149.	104.	170.	201.
298.	416.	550.	682.	623.	661.	572.	392.	324.	315.
254	200	1.82	151	125	101	87	85	86	87
234.	200.	102.	1	123.	101.		05.	00.	
6/.	12.	70.	64.	62.	11.	67.	11.	80.	12.
77.	86.	54.	93.	92.	95.	92.	80.	73.	93.
00	00	0.0	100	77	00	00	06	9.4	70
00.	90.	90.	100.	11.	00.	00.	00.	04.	19.
103.	109.	130.	116.	111.	99.	94.	80.	68.	60.
5.8	80	101	110	112	1/1	116	116	82	70
.01	02.	101.	112.	112.	111,	110.	110.	105	100
64.	67.	60.	61.	63.	/5.	/4.	13.	105.	120.
134.	166.	165.	184.	214.	249.	238.	214.	190.	192.
170	120	140	100	117	1 7 7	110	140	1 (0	150
172.	120.	148.	130.	11/.	123.	112.	140.	100.	109.
209.	244.	286.	365.	318.	322.	358.	340.	318.	280.
246	217	166	1/8	162	126	152	128	158	215
240.	217.	100.	140.	102.	120.	1.72.	120.	150.	210.
224.	263.	340.	294.	263.	276.	234.	161.	153.	132.
86	79	78.	77.	65.	54.	68.	71.	66.	78.
	70		()	02.	00	C A	5.6	<u> </u>	50.
6/.	70.	66.	69.	82.	86.	64.	50.	68.	53.
50.	58.	58.	47.	68.	59.	71.	71.	76.	78.
72	01	00	0.6	103	01	69	76	60	5.0
15.	01.	05.	50.	103.	91.	00.	70.	09.	10.
59.	58.	57.	68.	55.	61.	86.	113.	130.	171.
156	276	341	394	348	310	282	277	247	1.80
130.	270.	1 2 2 1 4	354.	540.	510.	102.	277.	241.	100.
160.	118.	133.	125.	115.	161.	183.	220.	243.	255.
203.	199.	179.	152.	161.	141.	161.	180.	159.	181.
100	1 5 7	1 2 2	110	104	1 2 2	1(2	150	165	1 4 5
100.	155.	132.	110.	124.	100.	103.	152.	102.	140.
121.	104.	82.	81.	72.	67.	53.	48.	51.	61.
55	75	75	85	87	80	99	75	75	55
JJ.	75.	12.	05.	07.	00.		15.	15.	
58.	63.	49.	47.	35.	30.	44.	41.	55.	41.
54	45	42	45	52.	49	79.	124	168.	141.
117	1 7 7	1 15	140	100	00	0.0	70	01	
113.	137.	140.	148,	132.	88.	86.	75.	91.	89.
68.	72.	61.	50.	64.	51.	56.	50.	50.	59.
60	61	70	00	115	135	163	150	150	170
00.	01.	70.	02.	112.	100.	103.	1	177.	170.
196.	196.	177.	214.	149.	171.	172.	145.	137.	147.
154	172	154	177	147	152.	108.	106.	98.	77.
134.	172.	101.		207.	1.52.0	100,	100.	24	40
65.	55.	5/.	52.	36.	44.	40.	44.	34.	40.
42.	43.	39.	32.	50.	45.	41.	72.	61.	80.
63	61	7 C	05	70	71	71	0.4	112	100
0.5.	01.	/0.	0	19.	11.	71.	94.	114.	144.
138.	150.	111.	99.	109.	110.	122.	163.	186.	199.
165	163.	153.	121.	137.	120.	109.	76.	56.	46.
202.	40	2001	221.		- E 0 . E 1		(0	00	20.
30.	49.	22.	22.	οZ.	21.	02.	60.	00.	00.
90.	95.	128.	124.	120.	120.	134.	126.	111.	107.
118	82	97	64	90	68	61	53	74	70
110.	02.	22.0	7.	20.		101.		110	70.
70.	12.	93.	78.	96.	148.	1/1.	1/1.	149.	155.
110.	128.	115.	77.	72.	62.	56.	47.	47.	44.
47	E 0	4.0	50	c 7	60	50	C 1	4.4	= 2
47.	50.	40.		57.	02.	.00	71.	44.	14.
50.	63.	49.	45.	40.	45.	60.	56.	69.	59.
40	53	61	67	45	48	45	19	50	41
	55.	01.		-J.	40.				
55.	50.	56.	48.	60.	86.	84.	6/.	6/.	/1.
64.	69.	50.	67.	30.	44.	46.	33.	28.	32.
20	27.	20	20	40	A C	24	27	20.	22.
34.	57.	32.	20.	40.	40.	50.	57.	50.	34.
46.	47.	35.	34.	32.	37.	32.	44.	40.	48.
56	52	48	72	5.8	37	ΔQ	62	50	50
50.	54.	-0.	14.		57.	32.	02.	- VC -	
50.	37.	34.	30.	43.	32.	35.	33.	31.	34.
35	35	34	40	40.	39.	40.	41.	46.	44
62.	C 1		<u> </u>	77	07	<u> </u>	<u> </u>		
62.	01.	00.	0/.	70.	Ø/.	63.	0Ζ.	. Co	/ D .
76.	82.	66.	49.	48.	55.	47.	59.	34.	29.
13	A 1	36	20	37	23	36	20	Λ1	51
47.	41.	JU.	JZ .	57.	JJ.	50.	54.	47.	24.
57.	4/.	51.	42.	60.	54.	47.	59.	60.	69.
83	72	76.	97.	86.	96.	96.	122.	89.	95.
01	70	05		E /	67	<i>c</i> .c		67	20.
αT'	18.	85.	11.	54.	ю/.	66.	6 8.	ъ/.	12.
65	50	64	5.0	18	60	66	61	67	56

	C D	FP	67	10		20	17	40	10
66.	53.	57.	5/+	6/.	5/.	39.	41.	49.	40.
40.	35.	34.	49.	48.	49.	57.	46.	54.	57.
60	72	60	12	33	20	50	13	28	28
00.	15.	00.	41.	JJ.	50.	JU.		20.	20.
43.	44.	33.	45.	j.	33.	43.	44.	42.	36.
43.	38.	45.	41.	30.	44.	37.	38.	26.	41.
20	50.	47	50	E 1	20	42	51	51	37
29.	20.	4/.	20.	21.	29.	43.	51.	JI.	57.
41.	38.	48.	40.	33.	59.	64.	12.	68.	70.
50.	53	55.	45	45.	29	51.	41.	42.	22.
20.		20.	2.	40		10	24	27	50
30.	48.	39.	36.	49.	42.	19.	24.	21.	52.
37.	38.	40.	35.	50.	51.	41.	48.	55.	55.
72	60	83	73	89	88	82	98	73	81
12.		70		70		07	70	00	01
85.	69.	79.	6/.	19.	60.	87.	19.	80.	91.
106.	123.	144.	193.	166.	160.	172.	142.	177.	181.
100	243	103	176	137	131	1/2	117	156	110
102.	243.	1/5.	110.	107.	101.	105	1 1 1 1	100.	
106.	128	129.	118.	138.	157.	125.	111.	100.	89.
108.	95.	85.	86.	67.	81.	60.	52.	44.	45.
60	55	40	36	50	54	51	40	67	68
02.	55.	42.	50.	JO.	54.	51.		07. CT	00.
85.	63.	89.	88.	80.	86.	90.	11.	65.	19.
75.	66.	62.	59.	76.	76.	70.	74.	79.	63.
50	61	50	56	AC	60	67	68	70	87
59.	04.	59.		40.	02.		100.	10.	0-1.
83.	100.	84.	86.	79.	87.	104.	130.	127.	83.
70.	70.	70.	69.	74.	61.	55.	39.	39.	30.
43	30	46	28	15	57	57	57	61	70
45.	55.	40.	20.	4.7.	51.	57.	57.		10.
65.	65.	13.	57.	63.	49.	57.	60.	45.	50.
40.	48.	50.	55.	52.	81.	89.	74.	75.	87.
00	6.9	Q 1	65	5.8	53	64	72	66	70
30.	00.	01.	05.	50.		01.	(2)	60.	
49.	55.	53.	/1.	97.	91.	93.	63.	65.	56.
40.	60.	59.	60.	60.	58.	48.	38.	62.	48.
65	4.4	4.0	57	17	57	51	55	53	63
03.	44.	40.	J 1 .	97.	27.	51.	22.	100	05.
54.	61.	55.	65.	/1.	84.	90.	92.	100.	84.
83.	55.	69.	90.	97.	81.	70.	60.	59.	71.
60	6.4	51	61	A A	17	52	48	50	43
02.	04.		01.	44.		52.	40,	50.	
32.	30.	41.	43.	38.	42.	41.	60.	36.	4i.
41.	41.	58.	61.	54.	59.	60.	62.	58.	46.
67	60	50	40	A 6	1.6	45	36	56	43
57.	02.	50.	49.	44.	40.		50.	20.	
41.	40.	35.	50.	52.	49.	51.	58.	63.	55.
70.	61.	58.	75.	62.	52.	65.	87.	78.	88.
73	49	63	75	55	72	61	49	55.	43.
75.		00. ()	, J.	55.	2.	ст. СГ	r -	55,	
65.	62.	62.	51.	65.	34.	55.	53.	55.	¢Ζ.
55.	53.	54.	47.	49.	75.	75.	54.	51.	48.
39	60	62	68	43	52	60.	58.	53.	81.
01	00.	02.	00. 00	70	01	102	100	70	73
91.	90.	82.	02.	76.	Ci.	105.	100.	12.	13.
69.	57.	68.	60.	58.	59.	60.	63.	56.	47.
50	49	41	33	36	37	23.	38.	33.	28.
20.	12.	30	22.	20.	2	22.	27	20.	200
36.	38.	30.	33.	37.	32.	41.	57.	57.	23.
33.	25.	34.	24.	36.	26.	35.	31.	41.	31.
17	13	45	3.4	33	4.4	39	43	33	43
47.		7.2.	40	22.	20	52.	10.	40	E 7
43.	33.	34.	40.	39.	40.	52.	47.	40.	- 26
42.	56.	44.	52.	53.	47.	43.	51.	39.	61.
77.	69.	72.	72.	51.	60.	73.	55.	65.	68.
72	<u> </u>	7.4	()	40	E C	26	12	61	63
13.	68.	74.	02.	49.	20.	55.	43.	04.	05.
47.	63.	57.	36.	43.	55.	39.	49.	61.	50.
29	55.	34.	38.	46.	42.	48.	53.	44.	41.
25	50	66	74	6.4	63	66	37	51	17
35.	50.	00.	7 4 .	04.	00.	00.	57.	51.	
50.	56.	82.	66.	55.	51.	41.	68.	64.	12.
67.	82.	103.	94.	95.	95.	74.	83.	98.	94.
0.2	05	00	0.4	20	00	90	68	78	75
93.	05.	09.	24.	09.	20.	20.	00.	100	1.1.
11.	65.	83.	83.	87.	79.	97.	90.	100.	94.
83.	89.	70.	83.	80.	82.	86.	81.	76.	55.
50	Б.Л.	56	50	13	20	53	20	40	40
50.	74.	.01		40.	. در ل مد				
49.	42.	43.	48.	47.	42.	46.	44.	4/.	. ز ز
46.	48.	46.	51.	49.	74.	58.	49.	56.	38.
30	27	4.4	20	22	17	48	41	30	3.8
J4.	57.	44.	52.			40.	31.		
28.	28.	29.	39.	26.	2	28.	31.	<i>33</i> .	47.
49.	58.	37.	54.	41.	36.	43.	57.	41.	43.
17	50.	<u>A</u> A	21	11	30	48	51	36	<u> </u>
41.	· · ·	44.	، <u>د</u> د	41.	20.	40.	21.	50.	
53.	34.	51.	J4.	43.	29.	45.	36.	53.	42.
33.	38.	42.	47.	34.	41.	44.	41.	52.	48,
62	57	52	5.0	50	45	58	47	52	54
U2 +	21.	. بر ر	JU.	. v د	-0.		- / -		22.

66.	51.	48.	52.	38.	49.	53.	47.	42.	52.
58.	62.	54.	68.	61.	80.	54.	52.	45.	48.
40.	41.	62.	61.	52.	45.	47.	69.	53.	53.
63.	59.	49.	48.	47.	52.	51.	55.	57.	72.
43.	45.	61.	43.	55.	45.	49.	69.	53.	58.
67.	70.	57.	67.	66.	91.	74.	74.	53.	90.
78.	67.	69.	68.	59.	62.	62.	58.	55.	66.
54.	71.	64.	69.	73.	54.	55.	60.	64.	69.
75.	81.	53.	64.	60.	56.	67.	57.	56.	67.
61.	71.	59.	56.	56.	75.	77.	69	58.	65.
37.	62.	39.	46.	40.	47.	41.	49.	42.	40.
51.	36.	45.	35.	35.	45.	46.	35.	30.	41.
46.	35.	55.	61.	63.	53.	48.	45.	54.	57.
68	84	76.	74.	65.	60.	66.	53.	59.	44.
55.	46.	56.	59.	58.	55.	48.	40.	44.	39.
30.	40.	38.	43.	47.	49.	57.	41.	53.	47.
64	46	55.	43.	43.	39.	50.	50.	46.	58.
51.	58.	46.	52.	49.	51.	45.	39.	33.	45.
49	36.	34.	56.	51.	45.	54.	46.	46.	64.
40.	63.	63.	51.	66.	58.	57.	54.	51.	52.
56	48	54.	64.	56.	40.	51.	66.	45.	54.
58.	42.	51.	53.	45.	60.	50.	48.	49.	47.
45.	45.	35.	48	52.	55.	53.	68.	57.	60.
58.	54.	69.	60.	60.	52.	72.	51.	56.	58.
54.	86.	84.	62.	67.	73.	57.	58.	72.	63.
68.	54.	45.	61.	71.	96.	75.	78.	64.	63.
71.	66.	42.	52.	47.	56.	61.	59.	64.	54.
59.	69.	79.	61.	55.	48.	53.	76.	63.	73.
64.	80.	49.	58.	50.	46.	43.	54.	60.	53.
66.	77.	85.	73.	75.	86.	93.	82.	90.	83.
65.	79.	74.	83.	78.	90.	77.	80.	88.	90.
83.	59.	79.	76.	88.	88.	91.	89.	83.	89.
89.	78.	62.	74.	84.	90.	99.	100.	112.	73.
79.	65.	78.	57.	69.	61.	62.	64.	72.	75.
64	75	70	68.	55	54	56.	72.	57.	62.
46	52	44	60.	46.	49.	49.	47.	46.	62.
44	37.	40.	53.	48.	42.	44.	52.	48.	46
55.	41.	40.	37.	43.	38.	48.	49.	52.	56.
45			57.	1		10.			201
-J.									

Appendix P-5: step-intensity data of the 40 wt% olivine mixture of OI+Py

19.00	.05	139.00		40% oliv	ine mixt	ure			
87.	78.	87.	78.	74.	74.	84.	88.	76.	66.
87.	94.	81.	88.	75.	85.	98.	134.	128.	135.
156.	150.	119.	119.	74.	103.	82.	92.	75.	80.
80.	67.	81.	85.	74.	76.	75.	81.	67.	64.
55.	73.	56.	73.	73.	63.	67.	52.	63.	62.
69.	53.	75.	80.	62.	62.	65.	72.	67.	/1.
84.	57.	77.	78.	72.	58.	61.	61.	76.	72.
110.	102.	141.	184.	223.	327.	435.	577.	670.	642.
609.	435.	287.	173.	151.	98.	83.	78.	82.	//.
68.	80.	92.	99.	82.	149.	189.	237.	270.	285.
259.	199.	170.	11/.	111.	136.	144.	139.	132.	104.
96.	93.	/6.	74.	6U. 00	62.	/5.	80. 101	, עכ סדר	200
/5.	/3.	85.	86. 51E	83.	120.	143.	102.	270.	380. 77
414.	432.	282.	313. 71	232.	64	1JJ. 61	87	78	78
10.	164	222	275	334	317	302	248	162	153
131	104.	2J7. Q5	275. 95	73	103	95	106	116.	172.
703	476	627	697	728	665	506.	318.	220.	151.
126	470.	85.	91.	65.	75.	65.	72.	80.	64.
58.	73.	73.	85.	78.	65.	66.	84.	78.	79.
69.	81.	84.	91.	112.	90.	100.	125.	179.	174.
224.	291.	401.	488.	655.	916.	1474.	2051.	2590.	2965.
2764.	2212.	1607.	1110.	884.	830.	929.	936.	951.	779.
610.	433.	323.	254.	292.	276.	421.	617.	791.	899.
938.	890.	697.	460.	326.	200.	166.	115.	99.	105.
96.	114.	110.	121.	112.	85.	105.	97.	92.	114.
107.	150.	207.	291.	473.	694.	784.	853.	777.	622.
434.	244.	169.	137.	122.	100.	80.	75.	80.	80.
79.	60.	61.	57.	71.	62.	63.	68.	62.	78.
66.	62.	70.	58.	45.	51.	59.	65.	4/.	/8.
67.	69.	47.	64.	54.	/8.	/1.	84.	105.	92.
97.	99.	114.	136.	134.	153.	195.	534	766	400.
58/. 1777	834.	837.	770.	299.	400.	495.	1976	1247	2002.
13/3.	1/1/.	2223.	2007.	2805.	2020.	2340.	1070.	689	912
1076	1275	1100	237. 817	601	437	317	199	155	125.
86	95	69	75	78	70	66.	61.	66.	74.
73	91	118	103	124	114.	113.	116.	83.	92.
103.	92.	105.	121.	138.	194.	186.	191.	181.	145.
136.	116.	90.	110.	120.	141.	186.	204.	213.	211.
215.	302.	391.	459.	511.	553.	451.	381.	298.	222.
322.	349.	445.	478.	564.	542.	470.	483.	387.	415.
416.	404.	441.	337.	319.	192.	154.	127.	125.	107.
104.	149.	190.	257.	295.	329.	344.	341.	303.	312.
325.	350.	351.	279.	260.	208.	156.	129.	109.	86.
100.	107.	144.	181.	234.	290.	351.	350.	380.	391.
393.	370.	355.	287.	233.	249.	326.	446.	489.	594.
578.	453.	406.	293.	192.	174.	199.	228.	248.	330.
311.	307.	264.	212.	173.	144.	129.	132.	118.	123.
104.	112.	129.	102.	97.	101.	87.	11.	85.	83.
83.	102.	103.	119.	132.	219.	268.	3/4.	478.	580.
532.	4/3.	408.	389.	257.	231.	204.	226.	305.	140
408.	430.	467.	413.	415.	393.	302.	200.	210.	140.
11/.	90.	100.	09. 015	100	84. 107	- 22. 103	111	128	111
144.	140.	234.	213.	190.	197.	102	84	82	64
57	120.	56	141.	51	55	65	43	58	48.
57. AT		53	56	51. 55	55	60 60	4J.	56	56
Δ9 	57	67.	51	52	70.	86.	110.	95.	127.
117	117	111.	67	77	82.	92.	79.	95.	85.
107.	112	119.	120.	95.	95.	80.	77.	74.	79.
87	119.	171.	203.	270.	319.	265.	244.	239.	216.
162.	125.	99.	112.	115.	145.	179.	156.	176.	183.
175.	102.	98.	111.	101.	90.	100.	113.	109.	106.

1.05	05	0.0	76	77	65	63	5.8	70	76
IO2.	00.	99.	70.		0	0.0.0	107	10.	101
69.	96.	79.	103.	109.	92.	97.	127.	1/4.	184.
202	200	675	754	962	1115	1108	949	839.	698.
292.	590.		754.	202.	1110.	1100.	557	1 4 2	1 7 1
593.	533.	418.	366.	271.	224.	1/8.	154.	143.	131.
108	104	94	89.	107.	90.	112.	115.	108.	100.
100.	101.	~	()		10	16	65	56	63
97.	97.	14.	69.	63.	49.	40.	05.	50.	03.
60.	57.	63.	48.	51.	66.	59.	74.	65.	91.
05	126	115	151	177	104	262	315	278	352
95.	1301	110.	131.	1//.	194.	202.	515.	270.	104
287.	260.	232.	205.	155.	187.	191.	240.	243.	184.
163	177	128	129	100	102	107	101.	120.	156.
105.	111.	120.	127.	100.	102.	200	241	200.	200
187.	188.	228.	219.	251.	251.	222.	241.	200.	280.
371.	550.	762.	846.	938.	977.	856.	765.	616.	560.
450	240	200	0 47	100	104	152	100	110	120
458.	340.	299.	247.	102.	104.	100.	122.	110.	120.
150.	108.	105.	109.	109.	120.	116.	120.	140.	117.
102	100	110	1 7 3	120	126	110	93	110	129
105.	109.	110.	123.	120.	120.	150.	145	174	120
138.	158.	148.	163.	148.	105.	157.	145.	1/4.	138.
120	165	152	179	136	153.	133.	137.	105.	104.
127.	105.	152.	115.	100.	100	150	100	124	100
79.	11/.	121.	165.	152.	104.	152.	100.	134.	100.
95.	95.	99.	92.	86.	89.	97.	117.	139.	151.
105	220	122	254	207	203	310	330	288	268
192.	229.	223.	2.54.	297.	295.	510.	105	200.	200.
260.	246.	227.	233.	213.	206.	167.	195.	224.	214.
271	324	394	473	500.	568.	611.	608.	528.	518.
211.	524.	5,57.	373.	000.	210	011	336	204	250
401.	405.	302.	289.	238.	210.	211.	220.	284.	250.
346	386.	477.	502.	458.	436.	413.	306.	268.	231.
175	100.	117	100	104	0.2	0.0	107	70	117
1/5.	139.	113.	120.	124.	92.	50.	107.	70.	117.
103.	92.	91.	97.	97.	96.	87.	90.	86.	85.
0.0	03	61	80	73	91	93	101	103	110.
00.	0.5.	04.		10.	155	124	1101.	100.	100
123.	129.	143.	150.	133.	155.	134.	116.	133.	120.
88	95	76	78.	93.	110.	122.	126.	170.	203.
00.	22.	200	10.	170	450	ACC	206	245	205
248.	341.	390.	461.	4/0.	400.	400.	290.	545.	291.
235.	187.	198.	166.	175.	249.	289.	268.	321.	350.
202	200	206	250	320	227	269	260	299	243
307.	323.	200.	200.	225.	221.	2020	200.	2001	210.
282.	263.	240.	233.	215.	228.	288.	266.	221.	232.
214	169	169	133	114	89.	75.	67.	88.	83.
211.	100.	-00-	100	100	1 2 7	100	120	110	111
94.	108.	90.	108.	123.	137.	102.	130.	119.	111.
87.	74.	85.	77.	78.	65.	68.	60.	63.	66.
60	77	00	07	00	110	137	166	215	218
66.	11.	99.	07.	90.	119.	157.	100.	100	120,
239.	250.	231.	256.	219.	192.	159.	116.	128.	138.
120	100	90	77	85	75	83.	75.	85.	72.
127.	100.		1.0	103.	100	107	220	100	220
88.	91.	111.	140.	151.	189.	18/.	220.	190.	239.
254.	274.	276.	255.	262.	238.	221.	208.	203.	232.
222	220	250	252	213	220	206	178	165	128
255.	250.	2.12.	435.	213.	220.	200.	170.	- C D .	100
114.	96.	86.	63.	73.	62.	66.	5/.	53.	68.
57	56.	60.	55.	62.	91.	100.	100.	87.	96.
110	111	114	100	0.5	103	1.05	116	1/1	1.81
110.	111.	114.	102.	91.	105.	105.	110.	141.	101.
195.	188.	156.	183.	176.	187.	176.	186.	245.	259.
278	2/9	205	216	188	163.	156.	99.	86.	83.
270.	24J.	205.	210.	100.	00.	100	106	1 2 2	133
78.	81.	88.	69.	64.	92.	102.	100.	123.	155.
133.	167.	189.	213.	173.	171.	181.	200.	196.	176.
168	131	121	140	131	96	115.	101.	94.	105.
100.	1.51.	121.	140.	151.	170	210.	2020	257	170
101.	118.	97.	128.	150.	179.	210.	208.	237.	1/0.
168.	167.	188.	154.	110.	90.	78.	69.	85.	62.
200.	<u> </u>	C 4	0.2	70	70	03	Q1	77	75
12.	60.	64.	95.	/0.	19.	25.	01.	11.	100
78.	74.	74.	67.	76.	88.	93.	92.	86.	109.
01	79	82	78	78	87	67	84	76.	92
01.	10.	52.	70.	/0.	100	0	101	110	0.
64.	/1.	65.	75.	97.	102.	82.	124.	113.	90.
77	87.	74.	66.	61.	49.	63.	52.	56.	49.
E 2	E.2	12	Ē 2.	17	60	10	55	٨Q	56
53.	23.	43.	٠ ۲۷	47	02.	44.	55.		
55.	56.	54.	45.	54.	34.	59.	57.	17.	48.
70	102	107	109	9.0	97	87	86.	92	65.
10.	102.	107	109.	50.				~~~	
61.	71.	67.	45.	50.	56.	4/.	41.	6Z.	4/.
55	53	51	65.	67.	72.	66.	77.	70.	75.
55.		74.	110	07	1 1 1	111	105	104	103
84.	81.	79.	110.	97.	121.	114.	102.	104.	102.
122.	126.	97.	87.	89.	74.	96.	86.	75.	74.
70	<u> </u>	57	E 4	53	60	60	67	77	103
70.	. CO	57.	24.		04.	09.	07.		±00.
94.	98.	86.	99.	90.	95.	92.	82.	/4.	93.
116	124	125	123	116.	130.	128.	153.	138.	139.
100	100	127.	100		110	120.		102	100
120.	120.	99.	103.	84.	110.	90.	97.	103.	103.
100.	97.	77.	100.	95.	101.	110.	89.	87.	101.

89	82	9.8	103	81	75	77	82	77.	54.
75	52.	50. E0	205,	7 /	75.	75	72	97	80
75.	J/.	59.	. 30	74.	11.	15.	75.	02.	00.
94.	13.	79.	82.	53.	63.	48.	55.	40.	69.
63.	69.	55.	75.	70.	72.	73.	66.	68.	//.
68.	58.	47.	46.	60.	59.	49.	61.	40.	66.
79.	70.	85.	89.	92.	78.	78.	74.	68.	74.
11	19	61	5.8	90	87	94	119	90	95
44.	45.	01.	04	90.	70	70	40	50.	40
83.	94.	87.	84.	84.	78.	12.	02.	59.	49.
54.	53.	56.	59.	49.	59.	43.	42.	53.	49.
42.	70.	47.	58.	59.	73.	74.	71.	81.	76.
79.	103.	124.	119,	115.	126.	119.	123.	132.	125.
122	112	114	101	102	104	139	107	116	150
175	100	121	241	2020	242	240	2071	120.	250.
162.	188.	231.	241.	247.	242.	240.	231.	229.	200.
286.	335.	291.	252.	209.	191.	1//.	203.	213.	190.
197.	200.	199.	198.	208.	193.	184.	160.	153.	150.
157.	116.	119.	122.	109.	108.	78.	80.	73.	71.
80	71	79	66.	72.	57.	69.	73.	82.	83.
00.	100	02	124	114	115	117	111	100	07
90.	100.	22.	124.	114.	11	11/.	111.	100.	100
97.	95.	97.	94.	107.	104.	96.	99.	97.	109.
99.	77.	95.	97.	89.	91.	76.	103.	102.	124.
121.	129.	123.	143.	135.	152.	166.	202.	156.	138.
134.	113.	114.	111.	100.	91.	84.	89.	70.	66.
19	60	69	63	58	69	73	75	75	94
40. 04	09.	05.	00.		70	73.	, , ,	07	04
84.	80.	89.	92.	84.	12.	12.	00.	07.	04.
78.	78.	/6.	95.	104.	103.	13/.	114.	105.	124.
113.	115.	117.	104.	115.	91.	96.	80.	75.	81.
81.	76.	81.	94.	118.	101.	103.	95.	99.	72.
68	78	90	69.	89.	74.	77.	83.	83.	74.
77	67	75	06	00	70	70	70	80	89
11.	07.	7.5.	100.	117	107	10.	104	115	100.
91.	70.	94.	100.	11/.	107.	111.	104.	112.	121.
111.	126.	132.	130.	146.	133.	113.	117.	90.	113.
95.	96.	92.	86.	79.	71.	89.	84.	76.	53.
66	67.	77.	75.	73.	68.	49.	64.	53.	60.
55	88	77	80	97	92	75	79	87	102
55.	00.	07	70	70	76	70	67	70	66
97.	94.	07.	19.	79.	70.	79.	107.	70.	00.
66.	69.	/4.	69.	95.	/1.	88.	105.	95.	97.
101.	88.	91.	98.	95.	69.	108.	118.	128.	116.
122.	118.	92.	96.	92.	94.	106.	84.	83.	105.
89.	102.	87.	75.	89.	94.	88.	70.	87.	81.
70	85	80	71	67	79	70	96	51	96
70.	01	00.	06	07.	01	01	00	70	05
19.	81.	01.	00.	91,	01.	91.	105.	10.	110
118.	152.	129.	135.	126.	11/.	115.	105.	136.	118.
108.	86.	93.	91.	76.	76.	86.	80.	82.	86.
75.	61.	64.	70.	47.	49.	47.	55.	61.	36.
47	55.	62.	49.	33.	57.	48.	48.	47.	61.
۸1 ۸1	11	41	62	58	46	54	54	68	66
71.0	41.	41.	52. E/	50.	10. E0	40	66	55.	50. 50
67.	62.	65.	50.	52.	59.	40.	60.	55.	52.
45.	72.	61.	66.	80.	81.	70.	64.	56.	52.
69.	52.	75.	84.	77.	74.	71.	67.	81.	75.
101.	97.	110.	100.	89.	100.	93.	100.	87.	109.
103.	103.	108.	106.	89.	83.	81.	78.	72.	70.
71	2001	63	77	71	64	77	60	78	73
71.	22.	0J.		74.	70	77.	77	20.	75.
18.	76.	50.	58.	12.	19.	75.	11.	62.	70.
92.	109.	98.	122.	96.	81.	71.	96.	89.	87.
88.	100.	90.	68.	75.	70.	94.	88.	107.	100.
104.	120.	141.	157.	178.	154.	137.	126.	133.	123.
125	143	132	132	136	121	137.	109.	120.	122.
110	110	100	104	100.	112	157	136	155	131
110.	114.	100.	114 +	122.	112.	104.	100.	00 • C C T	7.)T.
132.	T00.	131.	116.	13/.	112.	126.	123.	88.	94
86.	75.	90.	92.	93.	56.	59.	61.	61.	62.
59.	64.	57.	66.	58.	70.	55.	60.	73.	67.
60.	74.	70.	73.	90.	93.	78.	92.	77.	67.
75	60	77	50	20.	71	50	55	57	63
73.	40	27	, LO .	10.	14.	.ور دي	۰ د ر ۸۸	54. E.C	75
50.	40.	37.	45.	40.	52.	43.	44.	JU.	75.
67.	73.	65.	12	60.	19.	/6.	79.	57.	/8.
70.	61.	72.	61.	54.	68.	68.	63.	82.	56.
73.	70.	59.	54.	45.	49.	55.	44.	60.	61.
46	56.	58.	41.	56.	55.	73.	51.	71.	69.
54	92	86	70	58	62	64	65	73	80
74.	24.		<i>i</i> U .	. oc	02.	04.	·	15.	00.

62	77	83	68	56	61	66.	69.	66.	59.
50	89	97	87	98	74	81.	81.	66.	62.
61	64	70	80	87	83	106	89.	83.	88.
82	68	72	85.	84.	82.	90.	82.	72.	98.
71	88	77	78	69	75	83.	90.	102.	106.
97	103	105	100	98	113	109.	115.	117.	107.
100	120	125	99.	100	113	91	83	94	99
100.	97	103	89	103	118	86	101	81.	84.
20.	97.	ŭQ.	106	98	90	91	97	103.	77
00. 02	97	82	74	85	90	87	90.	90	90.
90. 80	70	65	77.	53	68	89	57	77	69
54	69	66	60	43	61	63	69.	65.	67
70	69	79	76	99	01.	84	91	100	90
95	109	101	111	112	91	77	106	88.	80
74	205. Q1	74	111. Q7	97	72	66	62	56	63
/4.	65	64	64	56	76	73	80	74	81
92.	101	04. 91	70	64	60 60	57	92	77	72
77	86	89	69	69	80.	71	57.	58.	47
68	69	69	57	78	90	78	69	64	76
72	91	87	97	96	78	73.	72.	84.	82.
86	78	78	80	95	78	87	79.	82.	87.
80. 88	102	88	74	68	86	51	61	66	66.
62	72	79	74.	90.	75	83	99	88	92
02. QQ	103	93	113	124	104	97	91	81	79
99.	103.	80	120	424.	89	108	87	95	95
90.	92	87	79	71	102	89	107	94	84
00.	95.	99.	80	59	85	82	92	83	81
29. 89	82	94	76	83	78	102	82.	99.	96.
0 <i>0</i> ,	75	98	93	84	86	96	81	89	101
20. 20	111	104	111	132	105	122	109	135	116
136	101	104.	111.	132.	124	108	120	114	117
113	101.	105.	128	107	129.	116	124	93	109
170	117	120.	120.	113	140	170	138	130	128
120.	123	102	109	107	87	87	100.	90	112
111	104	102.	1105.	112	107.	79	116	07	70
111.	104.	57. 67	70	01	70	94	83	78	57
00. 71	7J. 01	67	70. QE	70	, U . 67	73	55	66	71
/ I . 6 E	63	07. 00	57 57	20. 83	65	63	55. 65	89	, T , 88
00. 0E	03.	00.	. ۱۰	03,	0	0	0	09.	00.
00.									

Appendix P-6: step-intensity data of the 50 wt% olivine mixture of Ol+Py

16.00	.05	136.00	5(0% olivine	e mixtu	re			
104.	90.	81.	96.	92.	93.	113.	69.	97.	90.
98.	95.	84.	104.	99.	83.	121.	86.	82.	110.
109.	136.	116.	122.	161.	219.	341.	409.	4/4.	385.
304.	184.	130.	120.	114.	90.	99.	101.	9.7 .	85.
78.	77.	82.	105.	79.	96.	91.	83.	/1.	90.
73.	78.	86.	87.	80.	80.	/5.	85.	82.	102.
98.	88.	85.	//.	102.	98.	83.	01.	02.	91.
91.	82.	101.	82.	96.	83.	89.	112.	40.	101.
1/9.	157.	155.	101.	115.	114.	100.	79	0J. 81	60 60
87.	79.	104.	02.		72.	75	70.	79	73
85. 72	/0.	59.	82	70. 85	70.	73.	68	96	74.
73. Q1	0J. 77	71	69	90	78.	85.	83.	89.	105.
103	144	167	223.	246.	400.	655.	911.	1105.	1061.
771	471	352.	183.	165.	120.	107.	97.	99.	79.
102.	92.	101.	108.	131.	170.	233.	322.	393.	359.
346.	227.	147.	105.	114.	129.	119.	145.	135.	113.
87.	79.	62.	62.	62.	72.	74.	55.	67.	75.
73.	82.	103.	73.	117.	125.	192.	261.	382.	516.
607.	501.	516.	416.	294.	226.	140.	117.	82.	104.
78.	74.	82.	70.	70.	88.	88.	106.	83.	98.
100.	149.	208.	269.	325.	385.	298.	216.	156.	122.
109.	83.	66.	87.	83.	89.	102.	96.	147.	174.
254.	423.	564.	826.	791.	669.	451.	278.	152.	123.
97.	86.	73.	71.	70.	68.	68.	91.	66.	12.
72.	92.	90.	66.	11.	64.	/6.	69. 120	93.	84. 176
88.	85.	93.	104.	114.	113.	1405	130.	100.	2001
251.	299.	388.	530.	654. 500	932. 637	1405. QAD	2090.	2030. 981	747
2662.	1/83.	1170.	124.	202.	258	380	571	840	1050
204. 1010	519.	200.	330	225.	177	146	122	109	90.
1010.	111	100.	113	140	113	92	106.	114.	139.
1/9	209	235	386.	615.	982.	1267.	1368.	1032.	698.
413.	266	145.	130.	131.	98.	98.	82.	99.	82.
86.	75.	69.	69.	64.	60.	62.	80.	54.	74.
59.	58.	85.	70.	85.	75.	60.	68.	73.	66.
77.	79.	83.	64.	72.	74.	83.	70.	86.	90.
96.	93.	118.	133.	140.	171.	195.	242.	350.	463.
589.	747.	741.	693.	541.	433.	400.	478.	669.	956.
1370.	1819.	2409.	2775.	2963.	2948.	2474.	1688.	1097.	634.
445.	347.	302.	240.	273.	309.	405.	569.	895.	1332.
1633.	1683.	1363.	1120.	705.	430.	306.	223.	163.	126.
116.	92.	100.	99.	84.	14.	19.	8∠. 122	8∠. 100	103.
77.	96.	122.	131.	127.	134.	145.	132.	123.	93. 159
103.	116.	125.	101.	∠33. 13E	207.	293.	202.	230.	130. 270
14/.	22.	111.	103.	566	1/1.	416	304	270.	243
203.	274.	503.	430. 670	735	739	584	472	456.	562.
668	719	634	506	350	235	166.	138.	112.	104.
135	143	172.	246	337.	320.	357.	340.	266.	266.
288	345.	328.	326.	230.	204.	148.	113.	113.	99.
107.	135.	154.	222.	301.	371.	429.	459.	432.	466.
445.	381.	293.	278.	228.	209.	282.	396.	481.	524.
496.	407.	304.	227.	161.	161.	171.	202.	247.	279.
316.	281.	250.	184.	136.	129.	124.	131.	113.	112.
122.	129.	132.	105.	109.	122.	76.	74.	83.	89.
87.	92.	88.	115.	135.	178.	244.	359.	516.	594.
554.	522.	432.	309.	226.	225.	208.	200.	248.	374.
401.	390.	372.	339.	321.	361.	293.	226.	216.	108.
95.	98	72.	71.	68.	79.	82.	80.	92.	84.
149.	166.	212.	241.	223.	187.	157.	122.	TOO'	102.
111.	135.	122.	110.	123.	104.	104.	/5.	90. 53	70. 19
64.	54.	54. ED	5/.	52.	43.71	40.	74.		40. 50
46.	51.	52.	4/.		1 ± •	60.	47.		

()		60	F 0	()	77	105	138	1 47	116
63.	66.	62.	59.	02.	11.	105.	130.	147.	101
158.	110.	123.	98.	00.	97.	77. 71	20.	01 01	70
145.	131.	125.	92.	101.	88.	/1.	74.	01.	201
85.	124.	154.	226.	2/4.	319.	320.	243.	213.	201.
149.	126.	98.	110.	126.	1/9.	194.	211.	201.	184.
163.	127.	107.	98.	95.	90.	123.	127.	160.	146.
133.	109.	86.	111.	76.	69.	65.	83.	81.	97.
104.	102.	112.	111.	120.	128.	150.	150.	212.	255.
298.	459.	667.	1096.	1338.	1505.	1336.	1122.	961.	807.
670.	525.	449.	405.	296.	254.	231.	197.	155.	165.
99.	114.	106.	102.	106.	108.	99.	111.	103.	88.
74.	79.	73.	66.	84.	76.	66.	52.	53.	54.
69.	57.	61.	67.	62.	60.	68.	76.	68.	80.
107.	118.	136.	166.	185.	244.	328.	375.	375.	347.
335.	294.	236.	166.	168.	154.	196.	202.	234.	192.
178.	141.	128.	107.	101.	103.	122.	99.	143.	212.
226.	325.	351.	334.	325.	279.	280.	224.	235.	274.
340.	510.	694.	888.	915.	916.	898.	770.	634.	522.
419.	323.	277.	229.	213.	157.	148.	143.	128.	131.
132.	123.	119.	120.	115.	124.	143.	145.	139.	170.
124	135.	132.	136.	163.	128.	115.	106.	124.	126.
169	174	216.	207.	178.	188.	204.	199.	162.	143.
135	139.	152.	159.	159.	143.	117.	122.	107.	81.
101	80	107	149.	177.	180.	154.	145.	114.	97.
83	108	82	81	96	117.	107.	129.	131.	172.
188	225	212	208	269	299.	297.	298.	242.	298.
252	255	257	257	211	239	230	233.	243.	275.
230	3.91	434	505	589	587	682	649.	626.	593.
520.	305	303	307	275	236	221	209.	250.	308.
223.	393.	525.	694	619	628	494	426	316	263.
392.	400.	150	1004.	130	120	137	101	129	101
100.	100.	104	104	139.	111	85	94	78	65
90.	100.	104.	104.	90.	111.	105	118	115	123
12.	100	14.	120	30.	120	154	115	130	11/
124.	102.	140.	139.	14/.	130.	107	134	169	200
107.	82.	87.	92.	99.	90.	107.	350	383	305
242.	319.	412.	480.	540. 165	204.	409.	222	300.	312
204.	170.	158.	130.	100.	202.	230.	322.	331	380
314.	350.	261.	228.	201.	∠cs.	273.	369.	221.	220.
299.	212.	258.	234.	251.	232.	200.	240.	220.	229.
214.	159.	137.	133.	93.	83.	100.	04.	114	07.
98.	90.	98.	130.	120.	120.	122.	94. 60	. 114.	5J.
85.	/4.	95.	61.	100	100	100	225	200	335
79.	86.	90.	98.	102.	122.	162.	162	135	142
311.	329.	295.	514.	271.	221.	100.	76	71	81
112.	107.	103.	92.	13.	160	10/	101	200	210
11.	90.	114.	125.	141.	100.	2104.	102	194	210.
234.	223.	221.	222.	105.	213.	210.	102.	163	153
274.	∠ <u></u>	270.	211.	220.	201.	63	58	55	59
129.	93.	107.	04.	67.	02.	112	112	107	117
61.	20.	0J. 110	0U.	100.	51. 111	112 · 00	115	159	134
92.	108.	119.	117.	140	111.	153	102	203	222
150.	107	141.	102.	140.	120.	100	100	50	222.
260.	197.	198.	191.	120.	100	109.	130	123	1/3
12.	83.	64.	88.	170	109.	124.	157	173	140
133.	143.	144.	165.	178.	170.	107.	171.	175.	100.
151.	161.	154.	129.	134.	99.	129.	99.	100	100.
112.	106.	124.	129.	168.	201.	278.	220.	100.	192.
192.	185.	152.	126.	106.	93.	100.	00.	73.	04.
58.	67.	65.	93.	90.	82.	95.	70.	83.	92. 117
91.	95.	65.	86.	/6.	85.	15.	71.	TO0.	11/.
76.	86.	80.	81.	84.	86.	16.	95.	84. 115	93. 70
64.	76.	73.	69.	79.	91.	106.	105.	112.	12.
100.	96.	90.	89.	72.	45.	48.	43.	48.	49.
50.	53.	49.	58.	55.	52.	41.	44.	55.	38.
55.	60.	47.	61.	58.	69.	ьU.	53.	. נס	70.
84.	112.	117.	108.	103.	120.	98.	100.	12.	נאס. בי
70.	73.	47.	61.	57.	/8.	58.	5J.	دری مح	23.
53.	64.	52.	62.	63.	01.	/5.	82.	13.	101
80.	87.	83.	110.	98.	141.	123.	104.	111.	133.

107	136	100	105	20	107	97	96	84	71
127.	100.	122.	T00.	09. ()	107.	07.		04.	
78.	59.	78.	/8.	62.	68.	/4.	87.	92.	97.
119.	87.	91.	88.	99.	102.	77.	106.	90.	96.
86.	140.	128.	120.	122.	147.	143.	126.	146.	113.
122.	114.	115.	115.	96.	122.	90.	105.	125.	118.
118	113	97	100.	126.	105	126.	137.	138.	100.
111	110.	1 2 2	100.	102	205.	70	67	76	100.
111.	92.	122.	92.	103.	83.	70.	67.	76.	74.
83.	63.	86.	50.	86.	108.	90.	88.	93.	87.
91.	96.	87.	95.	69.	56.	71.	75.	73.	61.
72.	77.	82.	97.	76.	74.	59.	81.	83.	72.
54	60	69	52	50	64	62	51	50.	63
70	£1	111	105	02	75	70	71	60	60.
19.	01.	111.	105.	52.	75.	10.	105	100.	110
61.	54.	64.	82.	81.	93.	114.	125.	126.	112.
117.	95.	107.	100.	96.	101.	75.	63.	75.	58.
45.	49.	50.	66.	52.	51.	46.	45.	56.	54.
45.	45.	56.	64.	68.	71.	66.	63.	67.	82.
85	106	108	117	102	137	143	130	124	116
120	140	1 47	100	102.	117	742.	110	127.	1()
139.	140.	147.	132.	103.	11/.	95.	118.	137.	163.
151.	205.	201.	267.	276.	241.	190.	194.	197.	235.
252.	252.	261.	217.	176.	173.	163.	190.	166.	163.
188.	192.	202.	194.	203.	180.	171.	163.	159.	138.
150	97	120	97	93	109	90	60	74	70
100.	<i>C N</i>	120.	57.	05.	57	01	02.	04	,0.
69.	04.	07.	23.	00.	27.	91.	0	04.	94.
114.	116.	107.	106.	112.	133.	127.	111.	94.	92.
96.	86.	107.	88.	78.	98.	91.	91.	78.	79.
67.	81.	101.	82.	84.	88.	96.	99.	93.	98.
134	124	126	108	131	168	164	229	204	182.
1/3	133	111	120	134	127	101	71	75	65
142.	133.	111.	. 20.	134.	127.	101.	71.	7.5. OF	70.
62.	59.	59.	60.	57.	79.	62.	/5.	85.	13.
103.	83.	97.	95.	66.	11.	81.	63.	67.	65.
73.	77.	86.	106.	114.	129.	154.	148.	125.	105.
101.	107.	115.	130.	123.	105.	86.	87.	84.	82.
101	03	86	88	111	138	1/3	104	105	87
101.	95.	00.	00.		100.	145.	104.	105.	67.
83.	85.	90.	97.	70.	20.	05.	02.	00.	00.
79.	88.	90.	85.	79.	/6.	88.	82	80.	88.
76.	85.	93.	97.	92.	110.	115.	137.	145.	126.
123.	105.	136.	141.	109.	127.	117.	111.	96.	81.
96.	101.	98.	95.	76.	103.	88.	98.	79.	67.
50	75	80	82	79	65	75	51	50	65
	7J. Ex	74	02.	102	0.0.	75.	71	20.	106
<u>ьт</u> .	54.	74.	91.	102.	04.	79.	/1.	09.	100.
71.	89.	75.	81.	79.	82.	70.	68.	16.	/1.
60.	70.	72.	59.	90.	87.	67.	80.	89.	109.
91.	103.	87.	91.	76.	88.	100.	102.	116.	107.
103.	89.	62.	87.	80.	87.	109.	83.	97.	92.
Q1	108	106	101	97	70	79	82	78	102
70	100.	100.	101.	27.	05	72.	02.	20.	102.
19.	93.	/5.	86.	80.	85.	/0.	87.	02.	00.
90.	95.	91.	75.	69.	70.	85.	87.	96.	94.
106.	136.	148.	112.	105.	89.	102.	128.	122.	125.
107.	103.	116.	76.	82.	66.	81.	103.	68.	61.
64.	73.	48.	55.	55.	60.	60.	52.	52.	45.
18	54	44	57	47	53	42	45	48	62
40. cr	54.		17.		63		71	70	62.
55.	50.	53.	43.	65.	03.	04.	/1.	70.	65.
66.	8.	67.	79.	63.	68.	54.	64.	66.	59.
66.	65.	54.	68.	67.	71.	68.	79.	70.	72.
61.	71.	71.	83.	63.	77.	67.	79.	88.	100.
123	107	111	99	98	95	116.	99	102	79.
120.	107.	112	117	00	02	76	05	£1	05
95.	103.	112.	11/.	90.	03.	70.	00.	01.	oj. 70
106.	85.	89.	78.	78.	57.	83.	88.	98.	79.
82.	65.	61.	71.	77.	82.	90.	86.	80.	94.
105.	137.	132.	129.	118.	95.	78.	93.	92.	102.
109.	104.	105.	92.	105.	63.	86.	87.	85.	94.
- qq	105	102	177	122	106	105	122	118	130
105	100.	102.	110	107	100.	111	100	100.	110.
125.	130.	130.	110.	100.	129.	114.	149.	103.	112.
108.	104.	121.	114	118.	120.	124.	140.	130.	115.
121.	98.	127.	135.	118.	129.	119.	106.	98.	97.
87.	81.	73.	84.	86.	67.	73.	57.	75.	73.
47	68	61	79	54.	65.	70.	44.	60.	81.
Ω.ς.	71	02.	77.	101	ат. 27	106	82	96	74
00.	71. 71	26.	70	101.	20	100.	65. 6E	50. EC	/ U .
66.	/ 1 .	87.	13.	20.	oy.	JU.		20,	01.

77. $80.$ $75.$ $83.$ $85.$ $70.$ $72.$ $76.$ $80.$ $70.$ $81.$ $74.$ $80.$ $65.$ $63.$ $57.$ $81.$ $79.$ $63.$ $59.$ $69.$ $62.$ $53.$ $53.$ $50.$ $56.$ $58.$ $65.$ $62.$ $55.$ $56.$ $67.$ $51.$ $49.$ $60.$ $57.$ $68.$ $55.$ $79.$ $62.$ $73.$ $69.$ $75.$ $81.$ $65.$ $54.$ $54.$ $66.$ $83.$ $76.$ $71.$ $66.$ $80.$ $94.$ $97.$ $88.$ $93.$ $88.$ $61.$ $64.$ $63.$ $72.$ $70.$ $81.$ $80.$ $96.$ $88.$ $115.$ $94.$ $101.$ $87.$ $73.$ $78.$ $98.$ $87.$ $80.$ $103.$ $87.$ $82.$ $79.$ $79.$ $85.$ $86.$ $82.$ $73.$ $81.$ $80.$ $87.$ $88.$ $90.$ $107.$ $99.$ $99.$ $105.$ $103.$ $109.$ $110.$ $110.$ $107.$ $113.$ $106.$ $110.$ $111.$ $115.$ $109.$ $100.$ $110.$ $118.$ $97.$ $105.$ $100.$ $103.$ $113.$ $147.$ $125.$ $126.$ $103.$ $92.$ $87.$ $101.$ $96.$ $99.$ $116.$ $103.$ $131.$ $98.$ $91.$ $107.$ $94.$ $88.$ $75.$ $94.$ $77.$ $106.$ 89	46.	56.	52.	58.	62.	46.	65.	50.	73.	67.
81. $74.$ $80.$ $65.$ $63.$ $57.$ $81.$ $79.$ $63.$ $59.$ $69.$ $62.$ $53.$ $53.$ $50.$ $56.$ $58.$ $65.$ $62.$ $55.$ $73.$ $60.$ $68.$ $65.$ $63.$ $71.$ $71.$ $68.$ $88.$ $85.$ $73.$ $69.$ $75.$ $81.$ $65.$ $54.$ $54.$ $66.$ $83.$ $76.$ $71.$ $66.$ $80.$ $94.$ $97.$ $88.$ $93.$ $88.$ $61.$ $64.$ $63.$ $72.$ $70.$ $81.$ $80.$ $96.$ $88.$ $115.$ $94.$ $101.$ $87.$ $73.$ $78.$ $98.$ $87.$ $80.$ $103.$ $87.$ $92.$ $79.$ $79.$ $85.$ $86.$ $82.$ $73.$ $81.$ $80.$ $87.$ $98.$ $90.$ $107.$ $99.$ $99.$ $105.$ $103.$ $109.$ $116.$ $110.$ $117.$ $113.$ $106.$ $110.$ $111.$ $115.$ $109.$ $100.$ $110.$ $118.$ $97.$ $105.$ $100.$ $103.$ $113.$ $147.$ $125.$ $126.$ $103.$ $92.$ $87.$ $101.$ $96.$ $99.$ $116.$ $103.$ $131.$ $98.$ $91.$ $107.$ $94.$ $88.$ $77.$ $73.$ $62.$ $63.$ $62.$ $58.$ $69.$ $55.$ $67.$ $65.$ $99.$ $122.$ $141.$ $128.$	77.	80.	75.	83.	85.	70.	72.	76.	80.	70.
69.62.53.53.50.56.58.65.62.55.56.67.51.49.60.57.68.55.79.62.73.69.75.81.65.54.54.66.83.76.71.66.80.94.97.88.93.88.61.64.63.72.70.81.80.96.88.115.94.101.87.73.78.98.87.80.103.87.92.79.79.85.86.82.73.81.80.87.88.90.107.99.99.105.103.109.116.110.107.113.106.110.111.115.109.100.110.118.97.105.100.103.131.98.91.107.94.88.75.94.77.106.91.96.88.78.71.90.70.56.64.71.63.70.77.52.63.67.65.66.86.77.99.88.104.80.85.77.85.99.122.141.128.116.105.85.89.73.88.65.70.87.74.66.83.77.72.92.103.115.89.92.119.91.84.	81.	74.	80.	65.	63.	57.	81.	79.	63.	59.
56.67.51.49.60.57.68.55.79.62.73.60.68.65.63.71.71.68.88.85.73.60.68.65.54.54.66.83.76.71.66.80.94.97.88.93.88.61.64.63.72.70.81.80.96.88.115.94.101.87.73.78.98.87.80.103.87.92.79.79.85.86.82.73.81.80.87.88.90.107.99.99.105.103.109.116.110.107.113.106.110.111.115.109.100.110.118.97.105.100.103.113.147.125.126.103.92.87.101.96.99.116.103.131.98.91.107.94.88.75.94.77.106.91.96.88.77.65.67.65.66.82.73.88.104.80.85.77.65.99.122.141.128.116.105.85.89.96.89.94.86.92.86.89.89.73.88.65.70.87.74.66.83.77.72. <td>69.</td> <td>62.</td> <td>53.</td> <td>53.</td> <td>50.</td> <td>56.</td> <td>58.</td> <td>65.</td> <td>62.</td> <td>55.</td>	69.	62.	53.	53.	50.	56.	58.	65.	62.	55.
73.60.68.65.63.71.71.68.88.85.73.69.75.81.65.54.54.66.83.76.71.66.80.94.97.88.93.88.61.64.63.72.70.81.80.96.88.115.94.101.87.73.78.98.87.80.103.87.92.79.79.85.86.82.73.81.80.87.88.90.107.99.99.105.103.109.116.110.107.113.106.110.111.115.109.100.110.118.97.105.100.103.131.98.91.107.94.88.75.94.77.106.91.96.88.78.77.90.70.56.64.71.63.70.77.72.63.67.65.66.86.77.99.88.104.80.85.77.85.99.122.141.128.116.105.85.89.96.89.94.86.92.86.89.73.88.65.70.87.74.66.83.77.72.92.103.115.89.92.119.91.84.64.67.80.	56.	67.	51.	49.	60.	57.	68.	55.	79.	62.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73.	60.	68.	65.	63.	71.	71.	68.	88.	85.
71.66.80.94.97.88.93.88.61.64.63.72.70.81.80.96.88.115.94.101.87.73.78.98.87.80.103.87.92.79.79.85.86.82.73.81.80.87.88.90.107.99.99.105.103.109.116.110.107.113.106.110.111.115.109.100.110.118.97.105.100.103.113.147.125.126.103.92.87.101.96.99.116.103.131.98.91.107.94.88.75.94.77.106.91.96.88.78.71.90.70.56.64.71.63.70.77.52.63.67.47.73.62.63.62.58.69.55.67.65.66.86.77.99.88.104.80.85.70.89.94.86.92.86.89.89.73.88.65.70.87.74.66.83.77.72.92.103.115.89.92.119.91.84.64.67.80.87.73.75.103.91.81.88.72.	73.	69.	75.	81.	65.	54.	54.	66.	83.	76.
63.72.70.81.80.96.88.115.94.101.87.73.78.98.87.80.103.87.92.79.79.85.86.82.73.81.80.87.88.90.107.99.99.105.103.109.116.110.107.113.106.110.111.115.109.100.110.118.97.105.100.103.113.147.125.126.103.92.87.101.96.99.116.103.131.98.91.107.94.88.75.94.77.106.91.96.88.78.71.90.70.56.64.71.63.70.77.52.63.67.66.86.77.99.88.104.80.85.77.85.99.122.141.128.116.105.85.89.96.89.94.86.92.86.89.89.73.88.65.70.75.78.79.92.80.89.91.83.73.87.92.119.91.84.64.67.80.87.73.75.103.91.81.88.72.50.71.78.89.70.75.78.79.92.80. </td <td>71.</td> <td>66.</td> <td>80.</td> <td>94.</td> <td>97.</td> <td>88.</td> <td>93.</td> <td>88.</td> <td>61.</td> <td>64.</td>	71.	66.	80.	94.	97.	88.	93.	88.	61.	64.
87. $73.$ $78.$ $98.$ $87.$ $80.$ $103.$ $87.$ $92.$ $79.$ $79.$ $85.$ $86.$ $82.$ $73.$ $81.$ $80.$ $87.$ $88.$ $90.$ $107.$ $99.$ $99.$ $105.$ $103.$ $109.$ $116.$ $110.$ $117.$ $113.$ $106.$ $110.$ $111.$ $115.$ $109.$ $100.$ $110.$ $118.$ $97.$ $105.$ $100.$ $103.$ $113.$ $147.$ $125.$ $126.$ $103.$ $92.$ $87.$ $101.$ $96.$ $99.$ $116.$ $103.$ $131.$ $98.$ $91.$ $107.$ $94.$ $88.$ $75.$ $94.$ $77.$ $106.$ $91.$ $96.$ $88.$ $78.$ $71.$ $90.$ $70.$ $56.$ $64.$ $71.$ $63.$ $70.$ $77.$ $52.$ $63.$ $67.$ $47.$ $73.$ $62.$ $63.$ $62.$ $58.$ $69.$ $55.$ $67.$ $65.$ $99.$ $122.$ $141.$ $128.$ $116.$ $105.$ $85.$ $89.$ $96.$ $89.$ $94.$ $86.$ $92.$ $86.$ $89.$ $89.$ $73.$ $88.$ $65.$ $70.$ $87.$ $74.$ $66.$ $83.$ $77.$ $72.$ $92.$ $103.$ $115.$ $89.$ $92.$ $119.$ $91.$ $84.$ $64.$ $67.$ $80.$ $87.$ $73.$ $75.$ $103.$ $91.$ $81.$ $88.$	63.	72.	70.	81.	80.	96.	88.	115.	94.	101.
79.85.86.82.73.81.80.87.88.90.107.99.99.105.103.109.116.110.107.113.106.110.111.115.109.100.110.118.97.105.100.103.113.147.125.126.103.92.87.101.96.99.116.103.131.98.91.107.94.88.75.94.77.106.91.96.88.78.71.90.70.56.64.71.63.70.77.52.63.67.47.73.62.63.62.58.69.55.67.65.66.86.77.99.88.104.80.85.77.85.99.122.141.128.116.105.85.89.96.89.94.86.92.86.89.89.73.88.65.70.87.74.66.83.77.72.92.103.115.89.92.119.91.84.64.67.80.87.73.75.103.91.81.88.72.50.71.78.89.70.75.78.79.92.80.89.91.83.73.75.103.91.81.88.63. </td <td>87.</td> <td>73.</td> <td>78.</td> <td>98.</td> <td>87.</td> <td>80.</td> <td>103.</td> <td>87.</td> <td>92.</td> <td>79.</td>	87.	73.	78.	98.	87.	80.	103.	87.	92.	79.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79.	85.	86.	82.	73.	81.	80.	87.	88.	90.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.	99.	99.	105.	103.	109.	116.	110.	107.	113.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106.	110.	111.	115.	109.	100.	110.	118.	97.	105.
96. $99.$ $116.$ $103.$ $131.$ $98.$ $91.$ $107.$ $94.$ $88.$ $75.$ $94.$ $77.$ $106.$ $91.$ $96.$ $88.$ $78.$ $71.$ $90.$ $70.$ $56.$ $64.$ $71.$ $63.$ $70.$ $77.$ $52.$ $63.$ $67.$ $47.$ $73.$ $62.$ $63.$ $62.$ $58.$ $69.$ $55.$ $67.$ $65.$ $66.$ $86.$ $77.$ $99.$ $88.$ $104.$ $80.$ $85.$ $77.$ $85.$ $99.$ $122.$ $141.$ $128.$ $116.$ $105.$ $85.$ $89.$ $96.$ $89.$ $94.$ $86.$ $92.$ $86.$ $89.$ $89.$ $73.$ $88.$ $65.$ $70.$ $87.$ $74.$ $66.$ $83.$ $77.$ $72.$ $92.$ $103.$ $115.$ $89.$ $92.$ $119.$ $91.$ $84.$ $64.$ $67.$ $80.$ $87.$ $73.$ $75.$ $103.$ $91.$ $81.$ $88.$ $72.$ $50.$ $71.$ $78.$ $89.$ $70.$ $75.$ $78.$ $79.$ $92.$ $80.$ $89.$ $91.$ $83.$ $73.$ $87.$ $97.$ $98.$ $93.$ $114.$ $104.$ $93.$ $96.$ $95.$ $86.$ $83.$ $81.$ $85.$ $82.$ $96.$ $89.$ $81.$ $89.$ $81.$ $111.$ $97.$ $86.$ $78.$ $68.$ $61.$ $86.$ 106	100.	103.	113.	147.	125.	126.	103.	92.	87.	101.
75. $94.$ $77.$ $106.$ $91.$ $96.$ $88.$ $78.$ $71.$ $90.$ $70.$ $56.$ $64.$ $71.$ $63.$ $70.$ $77.$ $52.$ $63.$ $67.$ $47.$ $73.$ $62.$ $63.$ $62.$ $58.$ $69.$ $55.$ $67.$ $65.$ $66.$ $86.$ $77.$ $99.$ $88.$ $104.$ $80.$ $85.$ $77.$ $85.$ $99.$ $122.$ $141.$ $128.$ $116.$ $105.$ $85.$ $89.$ $96.$ $89.$ $94.$ $86.$ $92.$ $86.$ $89.$ $89.$ $73.$ $88.$ $65.$ $70.$ $87.$ $74.$ $66.$ $83.$ $77.$ $72.$ $92.$ $103.$ $115.$ $89.$ $92.$ $119.$ $91.$ $84.$ $64.$ $67.$ $80.$ $87.$ $73.$ $75.$ $103.$ $91.$ $81.$ $88.$ $72.$ $50.$ $71.$ $78.$ $89.$ $70.$ $75.$ $78.$ $79.$ $92.$ $80.$ $89.$ $91.$ $83.$ $73.$ $87.$ $97.$ $98.$ $93.$ $114.$ $104.$ $93.$ $96.$ $95.$ $86.$ $83.$ $81.$ $85.$ $82.$ $96.$ $89.$ $81.$ $89.$ $81.$ $111.$ $97.$ $98.$ $93.$ $114.$ $104.$ $93.$ $96.$ $95.$ $86.$ $83.$ $81.$ $85.$ $86.$ $81.$ $86.$ $106.$ $106.$	96.	99.	116.	103.	131.	98.	91.	107.	94.	88.
70. $56.$ $64.$ $71.$ $63.$ $70.$ $77.$ $52.$ $63.$ $67.$ $47.$ $73.$ $62.$ $63.$ $62.$ $58.$ $69.$ $55.$ $67.$ $65.$ $66.$ $86.$ $77.$ $99.$ $88.$ $104.$ $80.$ $85.$ $77.$ $85.$ $99.$ $122.$ $141.$ $128.$ $116.$ $105.$ $85.$ $89.$ $96.$ $89.$ $94.$ $86.$ $92.$ $86.$ $89.$ $89.$ $73.$ $88.$ $65.$ $70.$ $87.$ $74.$ $66.$ $83.$ $77.$ $72.$ $92.$ $103.$ $115.$ $89.$ $92.$ $119.$ $91.$ $84.$ $64.$ $67.$ $80.$ $87.$ $73.$ $75.$ $103.$ $91.$ $81.$ $88.$ $72.$ $50.$ $71.$ $78.$ $89.$ $70.$ $75.$ $78.$ $79.$ $92.$ $80.$ $89.$ $91.$ $83.$ $73.$ $87.$ $97.$ $98.$ $93.$ $114.$ $104.$ $93.$ $96.$ $95.$ $86.$ $83.$ $81.$ $85.$ $82.$ $96.$ $89.$ $81.$ $89.$ $81.$ $89.$ $81.$ $97.$ $86.$ $78.$ $68.$ $83.$ $76.$ $81.$ $78.$ $74.$ $69.$ $71.$ $85.$ $88.$ $86.$ $81.$ $86.$ $101.$ $97.$ $98.$ $86.$ $90.$ $83.$ $101.$ $97.$ $86.$ $78.$ <td>75.</td> <td>94.</td> <td>77.</td> <td>106.</td> <td>91.</td> <td>96.</td> <td>88.</td> <td>78.</td> <td>71.</td> <td>90.</td>	75.	94.	77.	106.	91.	96.	88.	78.	71.	90.
47. $73.$ $62.$ $63.$ $62.$ $58.$ $69.$ $55.$ $67.$ $65.$ $66.$ $86.$ $77.$ $99.$ $88.$ $104.$ $80.$ $85.$ $77.$ $85.$ $99.$ $122.$ $141.$ $128.$ $116.$ $105.$ $85.$ $89.$ $96.$ $89.$ $94.$ $86.$ $92.$ $86.$ $89.$ $89.$ $73.$ $88.$ $65.$ $70.$ $87.$ $74.$ $66.$ $83.$ $77.$ $72.$ $92.$ $103.$ $115.$ $89.$ $92.$ $119.$ $91.$ $84.$ $64.$ $67.$ $80.$ $87.$ $73.$ $75.$ $103.$ $91.$ $81.$ $88.$ $72.$ $50.$ $71.$ $78.$ $89.$ $70.$ $75.$ $78.$ $79.$ $92.$ $80.$ $89.$ $91.$ $83.$ $73.$ $87.$ $97.$ $98.$ $93.$ $114.$ $104.$ $93.$ $96.$ $95.$ $86.$ $83.$ $81.$ $85.$ $82.$ $96.$ $89.$ $81.$ $89.$ $81.$ $89.$ $81.$ $97.$ $98.$ $93.$ $114.$ $104.$ $93.$ $96.$ $95.$ $86.$ $83.$ $81.$ $85.$ $82.$ $96.$ $89.$ $81.$ $89.$ $81.$ $101.$ $97.$ $86.$ $78.$ $68.$ $63.$ $76.$ $81.$ $78.$ $74.$ $69.$ $71.$ $85.$ $88.$ $86.$ $81.$ $86.$ $90.$ </td <td>70.</td> <td>56.</td> <td>64.</td> <td>71.</td> <td>63.</td> <td>70.</td> <td>77.</td> <td>52.</td> <td>63.</td> <td>67.</td>	70.	56.	64.	71.	63.	70.	77.	52.	63.	67.
66. $86.$ $77.$ $99.$ $88.$ $104.$ $80.$ $85.$ $77.$ $85.$ $99.$ $122.$ $141.$ $128.$ $116.$ $105.$ $85.$ $89.$ $96.$ $89.$ $94.$ $86.$ $92.$ $86.$ $89.$ $89.$ $73.$ $88.$ $65.$ $70.$ $87.$ $74.$ $66.$ $83.$ $77.$ $72.$ $92.$ $103.$ $115.$ $89.$ $92.$ $119.$ $91.$ $84.$ $64.$ $67.$ $80.$ $87.$ $73.$ $75.$ $103.$ $91.$ $81.$ $88.$ $72.$ $50.$ $71.$ $78.$ $89.$ $70.$ $75.$ $78.$ $79.$ $92.$ $80.$ $89.$ $91.$ $83.$ $73.$ $87.$ $97.$ $98.$ $93.$ $114.$ $104.$ $93.$ $96.$ $95.$ $86.$ $83.$ $81.$ $85.$ $82.$ $96.$ $89.$ $89.$ $81.$ $89.$ $81.$ $111.$ $97.$ $98.$ $93.$ $114.$ $104.$ $93.$ $96.$ $95.$ $86.$ $83.$ $81.$ $85.$ $82.$ $96.$ $89.$ $81.$ $89.$ $81.$ $111.$ $97.$ $86.$ $78.$ $68.$ $63.$ $76.$ $81.$ $78.$ $74.$ $69.$ $71.$ $85.$ $88.$ $86.$ $81.$ $86.$ $106.$ $86.$ $119.$ $101.$ $91.$ $113.$ $121.$ $101.$ $86.$ $91.$	47.	73.	62.	63.	62.	58.	69.	55.	67.	65.
99. $122.$ $141.$ $128.$ $116.$ $105.$ $85.$ $89.$ $96.$ $89.$ 94.86.92.86.89.89. $73.$ 88. $65.$ $70.$ $87.$ $74.$ 66. $83.$ $77.$ $72.$ $92.$ $103.$ $115.$ $89.$ $92.$ $119.$ $91.$ $84.$ $64.$ $67.$ $80.$ $87.$ $73.$ $75.$ $103.$ $91.$ $81.$ $88.$ $72.$ $50.$ $71.$ $78.$ $89.$ $70.$ $75.$ $78.$ $79.$ $92.$ $80.$ $89.$ $91.$ $83.$ $73.$ $87.$ $77.$ $98.$ $93.$ $114.$ $104.$ $93.$ $96.$ $95.$ $86.$ $83.$ $81.$ $85.$ $82.$ $96.$ $89.$ $89.$ $81.$ $89.$ $88.$ $111.$ $97.$ $98.$ $93.$ $114.$ $104.$ $93.$ $96.$ $95.$ $86.$ $83.$ $81.$ $85.$ $82.$ $96.$ $89.$ $89.$ $81.$ $89.$ $88.$ $111.$ $97.$ $98.$ $86.$ $106.$ $86.$ $119.$ $101.$ $101.$ $83.$ $103.$ $119.$ $97.$ $98.$ $86.$ $90.$ $83.$ $101.$ $91.$ $113.$ $121.$ $101.$ $86.$ $107.$ $96.$ $86.$ $91.$ $91.$ $133.$ $103.$ $119.$ $97.$ $98.$ $86.$ $90.$ $83.$ $101.$	66.	86.	77.	99.	88.	104.	80.	85.	77.	85.
94.86.92.86.89.89.73.88.65.70.87.74.66.83.77.72.92.103.115.89.92.119.91.84.64.67.80.87.73.75.103.91.81.88.72.50.71.78.89.70.75.78.79.92.80.89.91.83.73.87.97.98.93.114.104.93.96.95.86.83.81.85.82.96.89.89.81.89.88.111.97.86.78.68.63.76.81.78.74.69.71.85.88.86.81.86.106.86.119.101.101.83.103.119.97.98.86.90.83.101.91.113.121.101.86.108.107.96.86.91.80.102.75.86.87.97.107.99.99.98.101.83.91.76.86.81.66.70.68.74.73.81.88.82.101.87.97.80.87.80.82.84.99.79.78.69.89.83.88.95.107.112.129.113.140.132. </td <td>99.</td> <td>122.</td> <td>141.</td> <td>128.</td> <td>116.</td> <td>105.</td> <td>85.</td> <td>89.</td> <td>96.</td> <td>89.</td>	99.	122.	141.	128.	116.	105.	85.	89.	96.	89.
87. $74.$ $66.$ $83.$ $77.$ $72.$ $92.$ $103.$ $115.$ $89.$ $92.$ $119.$ $91.$ $84.$ $64.$ $67.$ $80.$ $87.$ $73.$ $75.$ $103.$ $91.$ $81.$ $88.$ $72.$ $50.$ $71.$ $78.$ $89.$ $70.$ $75.$ $78.$ $79.$ $92.$ $80.$ $89.$ $91.$ $83.$ $73.$ $87.$ $97.$ $98.$ $93.$ $114.$ $104.$ $93.$ $96.$ $95.$ $86.$ $83.$ $81.$ $85.$ $82.$ $96.$ $89.$ $89.$ $81.$ $89.$ $88.$ $111.$ $97.$ $86.$ $78.$ $68.$ $63.$ $76.$ $81.$ $78.$ $74.$ $69.$ $71.$ $85.$ $88.$ $86.$ $81.$ $86.$ $109.$ $83.$ $101.$ $97.$ $86.$ $78.$ $68.$ $63.$ $76.$ $81.$ $78.$ $74.$ $69.$ $71.$ $85.$ $88.$ $86.$ $81.$ $86.$ $109.$ $83.$ $101.$ $101.$ $83.$ $103.$ $119.$ $97.$ $98.$ $86.$ $90.$ $83.$ $101.$ $91.$ $113.$ $121.$ $101.$ $86.$ $90.$ $83.$ $101.$ $91.$ $113.$ $127.$ $97.$ $99.$ $99.$ $98.$ $101.$ $83.$ $91.$ $76.$ $86.$ $81.$ $66.$ $70.$ $68.$ $74.$ $73.$ $81.$	94.	86.	92.	86.	89.	89.	73.	88.	65.	70.
92. $119.$ $91.$ $84.$ $64.$ $67.$ $80.$ $87.$ $73.$ $75.$ $103.$ $91.$ $81.$ $88.$ $72.$ $50.$ $71.$ $78.$ $89.$ $70.$ $75.$ $78.$ $79.$ $92.$ $80.$ $89.$ $91.$ $83.$ $73.$ $87.$ $97.$ $98.$ $93.$ $114.$ $104.$ $93.$ $96.$ $95.$ $86.$ $83.$ $81.$ $85.$ $82.$ $96.$ $89.$ $89.$ $81.$ $89.$ $88.$ $111.$ $97.$ $86.$ $78.$ $68.$ $63.$ $76.$ $81.$ $78.$ $74.$ $69.$ $71.$ $85.$ $88.$ $86.$ $81.$ $86.$ $106.$ $86.$ $119.$ $101.$ $101.$ $83.$ $103.$ $119.$ $97.$ $98.$ $86.$ $90.$ $83.$ $101.$ $91.$ $113.$ $121.$ $101.$ $86.$ $107.$ $96.$ $86.$ $91.$ $91.$ $113.$ $121.$ $101.$ $86.$ $107.$ $99.$ $99.$ $98.$ $101.$ $83.$ $91.$ $76.$ $86.$ $81.$ $66.$ $70.$ $68.$ $74.$ $73.$ $81.$ $88.$ $82.$ $101.$ $87.$ $97.$ $80.$ $87.$ $80.$ $82.$ $84.$ $99.$ $79.$ $78.$ $69.$ $89.$ $83.$ $88.$ $95.$ $107.$ $112.$ $129.$ $113.$ $140.$ $132.$ $122.$ </td <td>87.</td> <td>74.</td> <td>66.</td> <td>83.</td> <td>77.</td> <td>72.</td> <td>92.</td> <td>103.</td> <td>115.</td> <td>89.</td>	87.	74.	66.	83.	77.	72.	92.	103.	115.	89.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	92.	119.	91.	84.	64.	67.	80.	87.	73.	75.
75. $78.$ $79.$ $92.$ $80.$ $89.$ $91.$ $83.$ $73.$ $87.$ $97.$ $98.$ $93.$ $114.$ $104.$ $93.$ $96.$ $95.$ $86.$ $83.$ $81.$ $85.$ $82.$ $96.$ $89.$ $89.$ $81.$ $89.$ $88.$ $111.$ $97.$ $86.$ $78.$ $68.$ $63.$ $76.$ $81.$ $78.$ $74.$ $69.$ $71.$ $85.$ $88.$ $86.$ $81.$ $86.$ $106.$ $86.$ $119.$ $101.$ $101.$ $83.$ $103.$ $119.$ $97.$ $98.$ $86.$ $90.$ $83.$ $101.$ $91.$ $113.$ $121.$ $101.$ $86.$ $108.$ $107.$ $96.$ $86.$ $91.$ $91.$ $113.$ $121.$ $101.$ $86.$ $81.$ $66.$ $70.$ $68.$ $91.$ $91.$ $83.$ $91.$ $76.$ $86.$ $81.$ $66.$ $70.$ $68.$ $74.$ $73.$ $81.$ $88.$ $82.$ $101.$ $87.$ $97.$ $80.$ $87.$ $80.$ $82.$ $84.$ $99.$ $79.$ $78.$ $69.$ $89.$ $83.$ $88.$ $95.$ $107.$ $112.$ $129.$ $113.$ $140.$ $132.$ $122.$ $121.$ $107.$ $136.$ $123.$ $110.$ $129.$ $139.$ $127.$ $131.$ $121.$ $104.$ $117.$	103.	91.	81.	88.	72.	50.	71.	78.	89.	70.
97.98.93.114.104.93.96.95.86.83.81.85.82.96.89.89.81.89.88.111.97.86.78.68.63.76.81.78.74.69.71.85.88.86.81.86.106.86.119.101.101.83.103.119.97.98.86.90.83.101.91.113.121.101.86.108.107.96.86.91.92.75.86.87.97.107.99.99.98.101.83.91.76.86.81.66.70.68.74.73.81.88.82.101.87.97.80.87.80.82.84.99.79.78.69.89.83.88.95.107.112.129.113.140.132.122.121.107.136.113.116.132.115.109.121.116.106.135.121.120.123.110.129.139.127.131.121.104.117.	75.	78.	79.	92.	80.	89.	91.	83.	73.	87.
81. 85. 82. 96. 89. 89. 81. 89. 88. 111. 97. 86. 78. 68. 63. 76. 81. 78. 74. 69. 71. 85. 88. 86. 81. 86. 106. 86. 119. 101. 101. 83. 103. 119. 97. 98. 86. 90. 83. 101. 91. 113. 121. 101. 86. 108. 107. 96. 86. 91. 80. 102. 75. 86. 87. 97. 107. 99. 99. 98. 101. 83. 91. 76. 86. 81. 66. 70. 68. 74. 73. 81. 88. 82. 101. 87. 97. 80. 87. 80. 82. 84. 99. 79. 78. 69. 89. 83. 88. 95. 107. 112. 129. 113. 140. 132. <	97.	98.	93.	114.	104.	93.	96.	95.	86.	83.
97. 86. 78. 68. 63. 76. 81. 78. 74. 69. 71. 85. 88. 86. 81. 86. 106. 86. 119. 101. 101. 83. 103. 119. 97. 98. 86. 90. 83. 101. 91. 113. 121. 101. 86. 108. 107. 96. 86. 91. 80. 102. 75. 86. 87. 97. 107. 99. 99. 98. 101. 83. 91. 76. 86. 81. 66. 70. 68. 74. 73. 81. 88. 82. 101. 87. 97. 80. 87. 80. 82. 84. 99. 79. 78. 69. 89. 83. 88. 95. 107. 112. 129. 113. 140. 132. 122. 121. 107. 136. 113. 116. 132. 115. 109. 121. <td>81.</td> <td>85.</td> <td>82.</td> <td>96.</td> <td>89.</td> <td>89.</td> <td>81.</td> <td>89.</td> <td>88.</td> <td>111.</td>	81.	85.	82.	96.	89.	89.	81.	89.	88.	111.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97.	86.	78.	68.	63.	76.	81.	78.	74.	69.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71.	85.	88.	86.	81.	86.	106.	86.	119.	101.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101.	83.	103.	119.	97.	98.	86.	90.	83.	101.
80. 102. 75. 86. 87. 97. 107. 99. 99. 98. 101. 83. 91. 76. 86. 81. 66. 70. 68. 74. 73. 81. 88. 82. 101. 87. 97. 80. 87. 80. 82. 84. 99. 79. 78. 69. 89. 83. 88. 95. 107. 112. 129. 113. 140. 132. 122. 121. 107. 136. 113. 116. 132. 115. 109. 121. 116. 106. 135. 121. 120. 123. 110. 129. 139. 127. 131. 121. 104. 117.	91.	113.	121.	101.	86.	108.	107.	96.	86.	91.
101.83.91.76.86.81.66.70.68.74.73.81.88.82.101.87.97.80.87.80.82.84.99.79.78.69.89.83.88.95.107.112.129.113.140.132.122.121.107.136.113.116.132.115.109.121.116.106.135.121.120.123.110.129.139.127.131.121.104.117.	80.	102.	75.	86.	87.	97.	107.	99.	99.	98.
73. 81. 88. 82. 101. 87. 97. 80. 87. 80. 82. 84. 99. 79. 78. 69. 89. 83. 88. 95. 107. 112. 129. 113. 140. 132. 122. 121. 107. 136. 113. 116. 132. 115. 109. 121. 116. 106. 135. 121. 120. 123. 110. 129. 139. 127. 131. 121. 104. 117.	101.	83.	91.	76.	86.	81.	66.	70.	68.	74.
82.84.99.79.78.69.89.83.88.95.107.112.129.113.140.132.122.121.107.136.113.116.132.115.109.121.116.106.135.121.120.123.110.129.139.127.131.121.104.117.	73.	81.	88.	82.	101.	87.	97.	80.	87.	80.
107.112.129.113.140.132.122.121.107.136.113.116.132.115.109.121.116.106.135.121.120.123.110.129.139.127.131.121.104.117.	82.	84.	99.	79.	78.	69.	89.	83.	88.	95.
113. 116. 132. 115. 109. 121. 116. 106. 135. 121. 120. 123. 110. 129. 139. 127. 131. 121. 104. 117.	107.	112.	129.	113.	140.	132.	122.	121.	107.	136.
120. 123. 110. 129. 139. 127. 131. 121. 104. 117.	113.	116.	132.	115.	109.	121.	116.	106.	135.	121.
117	120.	123.	110.	129.	139.	127.	131.	121.	104.	117.
	117.	1007					/			

Appendix P-7: step-intensity data of the 60 wt% olivine mixture of Ol+Py

16.00	.05	136.00		60% oliv	ine mixt	ure			
97.	96.	89.	90.	93.	106.	78.	103.	101.	92.
103.	85.	90.	90.	100.	88.	82.	90.	109.	95.
112.	124.	138.	181.	211.	346.	465.	509.	434.	338.
246.	197.	151.	125.	91.	115.	98.	91.	96.	98.
77.	80.	71.	93.	82.	85.	102.	82.	74.	73.
86.	65.	80.	84.	76.	71.	97.	77.	82.	85.
69.	91.	88.	91.	81.	90.	78.	80.	83.	96.
84.	75.	77.	84.	83.	99.	88.	127.	134.	153.
119.	117.	112.	100.	109.	93.	79.	97.	89.	92.
96.	90.	112.	96.	95.	73.	93.	83.	84.	75.
68.	11.	/1.	/5.	78.	103.	68.	11.	62.	/5.
70.	65.	/3.	/1.	76.	60.	/4.	56.	79.	68.
83.	b/. 164	11.	85.	90.	ຽງ. 501	70.	95. 1055	1120	113.
108.	104.	191.	278.	381.	DØL. 103	808.	1055.	102	962.
000.	448.	295.	209.	1/4.	103.	99. 001	300	103.	354
202.	90. 220	92.	130.	105.	125.	111	131	405.	107
204.	220.	102.	130.	77	70	65	80	76	69
23. 73	86	116	113	125	168	253	401	536	567
629	616	519	431	318	210.	126.	127.	96.	91.
83	73	72	51	81	86.	80.	83.	90.	97.
118.	147.	193.	285.	289.	269.	213.	180.	122.	98.
87.	99	76.	75.	75.	69.	102.	95.	154.	186.
316.	497.	586.	637.	558.	510.	314.	210.	139.	103.
83.	77.	86.	65.	76.	61.	69.	81.	68.	79.
71.	78.	80.	82.	65.	79.	79.	82.	80.	96.
69.	90.	98.	83.	82.	109.	117.	118.	148.	187.
232.	289.	378.	538.	658.	1015.	1391.	1826.	2233.	2121.
1694.	1217.	750.	587.	518.	618.	727.	768.	654.	532.
373.	289.	215.	197.	203.	260.	369.	581.	729.	764.
722.	551.	384.	270.	191.	136.	120.	108.	107.	94.
102.	105.	102.	111.	123.	101.	107.	107.	129.	142.
185.	228.	327.	535.	960.	1353.	1567.	1378.	1128.	/20.
383.	280.	168.	124.	115.	104.	102.	97.	98.	60.
13.	70.	82.	/1.	11.	82.	60,	74.	11.	04.
55. 75	16.	20.	13.	6U. 04	54.	69.	70.	00.	76.
10.	100.	10.	1/0.	134	100	100	202.	356	24. 105
50. 627	620	130.	141.	134.	190.	199.	503	651 651	495.
1235	1760	2311	2643	2760	2390	1960	1331	922	610
422	310	271	2643.	340	353	506	818	1246	1682
1905.	1799.	1408.	975.	651.	435.	324.	208.	173.	129.
99.	101.	107.	80.	102.	89.	84.	96.	77.	78.
98.	99.	89.	130.	125.	123.	120.	116.	125.	82.
103.	108.	130.	198.	288.	291.	290.	262.	201.	153.
138.	118.	96.	135.	179.	207.	242.	295.	265.	245.
259.	293.	368.	412.	454.	425.	361.	296.	284.	284.
373.	578.	753.	834.	862.	737.	608.	504.	557.	667.
637.	684.	583.	475.	339.	234.	175.	138.	126.	126.
104.	155.	172.	242.	266.	261.	271.	217.	212.	242.
248.	268.	285.	238.	191.	137.	131.	103.	101.	103.
102.	151.	188.	282.	322.	382.	460.	418.	439.	415.
401.	320.	279.	249.	194.	197.	268.	402.	448.	477.
387.	358.	275.	198.	169.	145.	141.	168.	205.	240.
253.	183.	161.	150.	119.	102.	114.	105.	125.	10/.
103.	96.	119.	116.	119.	103.	91.	76.	92.	/8.
71.	83.	105.	i14.	129.	151.	291.	333. 107	444.	520.
43/.	390.	321.	250.	201.	193.	100. 100.	100.	201.	2/1. 100
299. 00	318. NT	357.	ט/ט. רר	304. 21	200.	234.75	δυ ΤΩΩΥ	100.	109. 01
00. 105	175	09. 104	140	01. 175	11.	10.	131	102	ידק 110
117	117	100.	170 170	110	116	QU	102	123. QA	112. 55
82	56	40	170. 47	53	47	55	56	64	45
67	56.	68.	44	58.	44.	53.	47.	50.	51.

68	56	63	64	68	80.	127.	171.	164.	168.
		05.	0	24	20.		0.0	00	0.0
142.	±1/.	97.	89.	/i.	/5.	81.	96.	90.	90.
112.	108.	103.	85.	99.	80.	80.	87.	83.	85.
100	104	171	່າວວ່	240	264	242	220	100	192
106.	124.	1/1.	233.	240.	204.	242.	233.	190.	102.
135.	139.	109.	126.	130.	166.	200.	186.	167.	166.
110	117	111	80	9.0	118	120	153	136	144
112.	111.	111.	0.2.	50.	110,	120.	100.	100.	100
131.	106.	100.	80.	79.	96.	78.	83.	90.	105.
103	29	101	103	105	131	135	161.	234.	267.
103.	5.0	101.	100.	1261	1207	1015	1100	1050	000
397.	543.	84/.	1193.	1364.	1387.	1245.	1199.	1020.	892.
725	590	466	398	334.	299.	239.	197.	154.	149.
120.	100	100.	110	0017	110	00	05	07	0.4
138.	109.	85.	112.	98.	110.	90.	90.	0/.	04.
82.	68.	68.	74.	49.	76.	59.	60.	55.	52.
70	62	54	60	50	54	88	69	77	95
70.	55.	54.	00.	52.	54.	00.	09.		
74.	135.	138.	147.	217.	239.	278.	350.	360.	330.
320	246	210	156	146	142	147	160	133	137
520.	240.	210.	110.	140.	100	111	120	170	227
157.	122.	115.	112.	96.	100.	111.	138.	1/8.	210.
283	325	369	356.	291.	272.	241.	235.	218.	292.
200.	(20)	(20)	704	041	000	722	671	560	430
367.	628.	638.	704.	841.	609.	155.	0/1.	100.	450.
375.	277.	297.	220.	205.	170.	156.	139.	125.	114.
120	115	146	133	127	135	137	145	127	171
120.	113.	140.	100.	127.	100.	137.	1400	100	100
164.	128.	128.	138.	102.	130.	113.	128.	102.	123.
148	216	210	210	201.	189.	187.	189.	174.	141.
140.	210.	100	1 4 6	100	1 7 1	07	74	00	
166.	141.	155.	140.	128.	131.	87.	74.	00.	11.
67.	109.	125.	151.	144.	145.	156.	161.	128.	97.
01	70	76	0.6	70	102	110	115	130	1/7
81.	19.	10.	00.	19.	105.	119.	112.	134.	14/.
181.	209.	220.	224.	238.	244.	261.	265.	244.	234.
271	240	258	230	265	236	221	214	231	245
2/1.	249.	2.50.	250.	200.	200.	627.	600	500	515.
310.	407.	449.	466.	490.	525.	637.	682.	598.	559.
523	390	332	281	236.	217.	220.	239.	314.	354.
100	550.	332.	201.	714	(10	555	410	210	172
486.	610.	/4⊥.	132.	/14.	619.	222.	412.	210.	213.
232.	147.	122.	143.	122.	124.	144.	118.	121.	121.
00	110	00	104	0.0	07	00	71	62	86
99.	112.	62.	104.	92.	07.	00.	/1.	02.	00.
68.	70.	69.	55.	93.	88.	87.	104.	96.	121.
100	115	100	155	164	155	133	154	128	126
100.	111.	100.	100.	101.	100.	100.	154.	100.	100.
98.	114.	92.	83.	83.	13.	87.	159.	13/.	183.
210	278.	385.	360	352.	345.	341.	325.	230.	209.
100	154	1 ()	1 4 1	1 4 6	170	220	262	265	254
196.	154.	102.	141.	146.	1/0.	239.	202.	200.	204.
270.	267.	236.	214.	203.	229.	323.	354.	356.	342.
251	205	242	252	725	213	308	277	251	210
221.	323.	242.	200.	235.	215.	J00.	211.	231.	210.
205.	170.	149.	119.	106.	96.	98.	81.	69.	82.
80	100	100	112	91	102.	112.	100.	122.	83.
00.	100.	100.	112.	71	01		70	200	00
84.	87.	82.	82.	/1.	81.	60.	/ 5 .	69.	60.
88.	81.	94.	118.	111.	171.	187.	273.	353.	357.
277	210	217	205	250	107	100	165	172	1/3
521.	210.	21/.	305.	239.	197.	190.	T01.	112.	140.
127.	90.	90.	77.	81.	73.	65.	57.	87.	81.
81	100	88	129	150	176.	207.	188.	197.	182.
01.	100.	001	1000	170	100	1.00	100	014	240
203.	213.	204.	202.	1/6.	183.	100.	195.	214.	240.
265.	297.	309.	287.	258.	247.	178.	177.	178.	145.
104	104	00	77	61	73	66	66	81	54
100.	104.	09.		01.	, , , ,	00.	100.	101.	111
71.	57.	70.	75.	91.	81.	95.	135.	105.	111.
115	126	120	118	98.	107.	85.	111.	96.	135.
100	1 2 2 1	140	110	127	120	124	107	177	220
152.	133.	142.	119.	157.	130.	154.	10/.	111.	220.
182.	162.	146.	161.	142.	117.	89.	86.	83.	72.
40	60	01	70	92	107	100	132	126	134
02.	09.	01.	14.	100	107.	100.	150.	120.	170
111.	135.	140.	143.	1/2.	167.	172.	164.	166.	170.
162	146	128.	119.	116.	99.	112.	112.	93.	112.
105.	- 10,	110	1 4 7	1 2 7	1 ()	101	212	157	170
84.	96.	110.	143.	137.	102.	191.	213.	157.	119.
193.	160.	141.	131.	95.	84.	75.	78.	87.	97.
65	60	72	70	76	84	102	86	76	82
03.	09.	13.	13.	70.	04.	102.	115	70.	102.
79.	65.	84.	77.	83.	87.	89.	115.	93.	106.
71	77	70	81	66	67	59	66.	66.	81.
· · ·		(4)	E 4	50.	00	01	00.	70	
/5.	66.	63.	54.	52.	80.	81.	98.	19.	04.
84.	93.	70.	57.	44.	67.	57.	43.	42.	37.
14	E 0	56	A 1	40	56	52	16	40	57
40.	52.	30.	41.	49.	.00		40.	44.	
58.	53.	49.	63.	46.	63.	51.	52.	64.	75.
80	120	130	123	129	127	117	115	83	88
00.	120.	100.	120.	142.		• • • • • ~ ~			
85.	50.	67.	5/.	5/.	66.	51.	4/.	55.	51.
60	53	59.	63.	61.	70.	68.	74.	76.	86.
01			001	445	1 2 0	111	110	100	100
σı.	<i>۲</i> ۷	91.	99.	113.	130.	114 .	TIQ.	140.	144.

a second and a second second

									_
142.	130.	114.	94.	104.	94.	88.	81.	79.	71.
CE	65	60	77	61	0.0	70	90	111	115
05.	05.	0.5 .	17.	04.	00.	70.	<i>.</i>	111.	11
115.	98.	103.	103.	104.	103.	89.	86.	107.	110.
100	127	116	100	111	120	152	134	135	139
100.	137.	110.			127.	132.	101.	100.	100
124.	122.	110.	97.	93.	132.	96.	120.	136.	129.
123	148	118	114	109	140	133	140.	157.	111.
123.	140.	110.		2001	110.	100.			
108.	116.	112.	114.	91.	98.	79.	80.	61.	67.
68	65	76	77	103	112	104	95.	113.	89.
	07	30	70	30	74	70	C 72	(7)	0.2
13.	87.	12.	8.	/b.	11.	70.	57.	ы.	83.
92	95.	76.	93.	96.	84.	98.	89.	73.	58.
C 4	50	50	 	<u>(</u>)	E 2	AC	сc	ΕO	71
64.	59.	50.	0D.	0Z.	οZ.	40.	. cc	00.	11.
55.	79.	75.	76.	75.	79.	60.	76.	74.	80.
60	0 /	63	70	60	117	120	157	1/3	118
09.	04.	0.5.	14.	52.	11/.	120.	137.	145.	110.
128.	102.	108.	138.	101.	65.	79.	72.	64.	55.
57	54	60	52	54	4 4	41	51	49	58
	51.	50.	70.	<u> </u>		00		F 0	00
45.	58.	58.	12.	<u>ە</u> ك،	19.	90.	60.	59.	80.
85.	103.	91.	105.	102.	139.	142.	132.	119.	116.
1 4 5	110	110	110	102	105	11/	110	150	146
145.	110.	110.	112.	105.	120.	114.	110.	132.	140.
172.	194.	216.	242.	235.	190.	171.	184.	202.	236.
228	210	106	1/5	125	153	128	170	156	159
420.	292.	190.	14	100.	100.	120.	170.	100.	100
167.	179.	186.	197.	184.	160.	165.	152.	129.	123.
154	116	112	108	85	87.	79.	76.	60.	64.
101.	110.	112.	100.	50	71		77	00	01
83.	75.	82.	53.	56.	/4.	68.	11.	83.	82.
106.	94.	84.	116.	117.	118.	95.	91.	97.	86.
06	0.2	0 /	02	75	01	75	00	01	75
90.	00.	04.	0.0.1	15.	21.	15.	00.	01.	
82.	61.	80.	79.	83.	91.	82.	105.	90.	108.
100	120	116	131	145	175	226	219	214	192
105.	127.	110.	101.	110.	175.	220.	212.	211.	
155.	132.	135.	139.	128.	102.	103.	80.	/4.	/1.
86	54	64	53	58	67	77	70.	87.	74.
100.	00	01.	70		c , .		70	07.	7.7.
106.	93.	92.	78.	83.	92.	68.	19.	02.	75.
88.	79.	92.	106.	143.	159.	188.	131.	175.	137.
100	115	140	1 7 7	101	20	92	90	88	88
120.		140.	100.	121.	20.	22.	50.	00.	
68.	91.	85.	84.	115.	106.	112.	109.	79.	101.
83	81	84	85.	78.	71.	83.	80.	75.	83.
100.	100	110	00.	100	77	00.	07	0	00
103.	106.	110.	98.	100.	11.	89.	87.	95.	96.
77.	73.	96.	106.	92.	117.	149.	116.	130.	131.
100	101	110	110	107	1 2 0	107	102	90	01
100.	101.	110.	1 1 L ·	141.	129.	107.	102.	50.	21.
89.	80.	89.	70.	94.	106.	89.	94.	/0.	65.
71	72	67	77	76	60	57	51	54	75
11.	12.	07.	71.	70.	00.	57.	51.	74.	10.
46.	62.	92.	83.	91.	89.	94.	86.	82.	104.
84.	94.	90.	91.	75.	86.	72.	74.	86.	73.
60	<u> </u>	C 4	75	77	01	00	01	104	174
60.	68.	04.	15.	10.	92.	09.	91.	124.	120.
111.	99.	97.	106.	77.	90.	116.	111.	136.	113.
109	70	88	70	103	G /	80	94	77	100
100.	19.	00.	70.	103.	24.	05.	<u>J</u> .		100.
117.	107.	116.	125.	93.	86.	93.	73.	80.	88.
95.	86.	79.	89.	73.	77.	87.	74.	69.	82.
70	74	с г.	60	57	<u> </u>	77	00	7 /	00
76.	/4.	62.	ъ <i>У</i> .	5/.	68.	15.	80.	14.	94.
107.	132.	124.	132.	92.	115.	101.	101.	111.	121.
99	92	101	78	67	72	70	74	73	74
<u> </u>	52.	101.	70.	07. (F	12.	10.	14.	15.	12.
71.	72.	55.	50.	65.	60.	51.	64.	49.	45.
49	47.	35.	39.	44.	48.	47.	53.	50.	48.
r 2	50	40	40	() ()	E 1	50	64	65	EO
52.	55.	49.	42.	٥٧.	DI.	52.	04.	05.	50.
66.	72.	65.	59.	63.	53.	62.	71.	55.	69.
65	62	77	63	63	81	64	77	60	50
0.0.	02.	11.	05.	0.5.	01.	04.	77.	00.	50.
62.	67.	81.	55.	87.	/6.	6J.	78.	91.	95.
104	124	115.	105.	92.	89.	86.	89.	100.	89.
110		110	-07		07	70	6 E	70	07
110.	11/.	TTR .	91.	84.	00.	12.	00.	/8.	00.
88.	82.	85.	63.	68.	78.	84.	89.	110.	102.
70	77	61	71	77	22	Q1	94	80	109
10.	11.		(1.	11.	00.	01.	24.	100.	109.
101.	119.	157.	147.	156.	97.	93.	75.	100.	88.
113	113	85	89	84	75.	89	76.	76.	86.
TT3.	÷ 10 ·	100	102.	1 2 4 .		1 4 2	100	107	100.
83.	88.	Ŧ08.	124.	130.	127.	142.	100.	12/.	126.
100.	135.	116.	115.	114.	109.	132.	104.	99.	97.
105	114	1/2	116	101	00	101	121	110	106
102.	114.	147.	110.	101.	50.	141.	141.	112.	100.
115.	104.	120.	127.	99.	97.	89.	103.	96.	78.
94	86	77	83	82	63	71	71	62	70
74.		7.		22.		, <u>,</u> ,	· · ·		, 0 .
12.	60.	70.	12.	ь/.	11.	95.	64.	66.	69.
66.	71.	76.	85.	83.	114.	96.	103.	110.	88.
01	71	67	75	7 4	77	71	70	БQ	70
02.	14.	07.	1 2 +	14.	11.	74.	12.	. כנ	10.

64.	47.	56.	49.	49.	63.	66.	66.	60.	84.
92.	91.	87.	86.	76.	75.	93.	73.	91.	66.
78.	71.	74.	61.	66.	66.	80.	79.	58.	75.
81.	76.	58.	57.	60.	48.	48.	64.	51.	45.
63.	48.	61.	57.	61.	60.	69.	49.	61.	79.
61.	87.	78.	66.	59.	63.	59.	57.	73.	77.
69.	70.	67.	67.	47.	54.	63.	71.	63.	54.
58.	73.	70.	86.	70.	69.	69.	74.	62.	53.
67.	84.	73.	79.	82.	79.	110.	110.	105.	93.
92.	95.	97.	77.	94.	86.	80.	82.	84.	78.
80.	60.	72.	66.	58.	109.	78.	83.	85.	87.
89.	72.	94.	95.	88.	143.	103.	114.	106.	89.
110.	134.	100.	121.	128.	92.	103.	99.	98.	97.
101.	107.	147.	137.	127.	104.	121.	100.	90.	94.
96.	106.	90.	124.	108.	96.	105.	69.	79.	68.
83.	87.	87.	78.	90.	76.	90.	85.	73.	63.
56.	70.	71.	62.	68.	83.	69.	80.	60.	64.
59.	53.	62.	60.	64.	61.	61.	75.	55.	62.
82.	64.	64.	94.	62.	104.	93.	79.	72.	79.
117.	124.	127.	108.	125.	115.	93.	83.	88.	96.
87.	99.	104.	93.	83.	79.	80.	88.	66.	71.
76.	68.	76.	88.	86.	85.	98.	83.	101.	90.
97.	89.	95.	74.	75.	72.	65.	90.	83.	88.
81.	117.	82.	95.	86.	62.	58.	76.	76.	67.
78.	70.	75.	85.	90.	67.	84.	89.	93.	99.
106.	117.	112.	115.	111.	113.	96.	86.	90.	87.
81.	81.	105.	92.	85.	82.	77.	121.	116.	101.
92.	88.	90.	86.	78.	76.	80.	81.	72.	81.
73.	86.	91.	98.	88.	91.	70.	102.	98.	111.
105.	97.	105.	115.	95.	113.	96.	84.	89.	86.
112.	99.	114.	107.	106.	104.	101.	87.	92.	95.
89.	81.	76.	95.	94.	102.	81.	107.	97.	85.
75.	74.	73.	73.	75.	66.	78.	80.	83.	74.
73.	75.	73.	87.	86.	87.	71.	83.	100.	104.
90.	111.	84.	78.	71.	81.	73.	83.	83.	92.
88.	118.	103.	140.	149.	143.	121.	161.	123.	119.
100.	122.	100.	111.	113.	121.	116.	117.	130.	135.
129.	94.	127.	107.	119.	118.	119.	125.	117.	111.
114.									

Appendix P-8: step-intensity data of the 70 wt% olivine mixture of Ol+Py

16.00	.05	136.00		70% oliv	ine mixtu	ure			
114.	125.	115.	132.	115.	121.	106.	109.	95.	123.
127.	124.	118.	103.	109.	109.	126.	105.	134.	135.
142.	153.	172.	205.	280.	443.	604.	682.	630.	546.
441.	311.	245.	175.	153.	139.	115.	120.	123.	109.
114.	120.	107.	125.	118.	125.	104.	101.	106.	111.
112.	139.	109.	111.	102.	108.	91.	112.	117.	112.
103.	131.	98.	118.	121.	118.	119.	102.	120.	94.
102.	114.	104.	131.	93.	107.	110.	126.	139.	150.
160.	155.	130.	133.	127.	151.	112.	114.	98.	103.
122.	120.	121.	120.	138.	117.	91.	94.	93.	86.
90.	109.	102.	88.	93.	93.	101.	88.	88.	102.
84.	113.	101.	99.	79.	88.	106.	100.	100.	118.
95.	110.	105.	76.	115.	98.	108.	107.	130.	135.
175.	174.	255.	361.	471.	/46.	1100.	1424.	1505.	1415.
1203.	870.	560.	318.	271.	202.	161.	139.	122.	112.
126.	166.	149.	164.	204.	267.	390.	491.	597.	589.
488.	386.	292.	212.	136.	157.	153.	155.	161.	140.
111.	108.	100.	100.	102.	103.	108.	93.	103.	98.
112.	123.	132.	138.	149.	191.	270.	444.	647.	194.
854.	865.	144.	639.	518.	382.	287.	183.	103.	120.
110.	96.	110.	84.	96.	103.	100.	102.	130.	120.
141.	1//.	199.	246.	285.	297.	251.	240. 122	100.	127.
134.	91.	112.	67. 577	107.	112. F07	109.	132.	122.	109.
277.	3/1.	500.	577.	1000	507.	421.	222.	235.	100.
112.	117.	102.	95.	94.	91. 115	107.	110	104	108
34.	99. 117	105.	109	133	111	129	163	183	185
117. 261	211	425	559	700	Q 3 1	13/3	1780	2123	2204
201.	1543	1113	741	533	618	771	738	720	518.
2045.	340	225	243	231	265	340.	533.	630.	768.
743	651	494	363	253	249.	182.	143.	128.	131.
127	136	130	147.	141.	121.	139.	138.	176.	192.
219.	300.	417.	623.	1066.	1635.	2013.	1997.	1773.	1312.
860.	541.	366.	254.	195.	164.	149.	138.	111.	92.
114.	103.	103.	109.	95.	76.	87.	74.	93.	82.
94.	75.	91.	72.	74.	113.	85.	70.	91.	87.
94.	98.	99.	105.	86.	93.	102.	100.	113.	87.
129.	123.	141.	170.	211.	210.	231.	250.	338.	457.
559.	637.	669.	596.	503.	475.	506.	531.	712.	958.
1363.	1840.	2500.	3142.	3426.	3295.	2819.	2275.	1527.	1050.
706.	541.	424.	413.	432.	506.	650.	973.	1577.	2389.
2703.	2703.	2352.	1728.	1375.	897.	614.	402.	267.	242.
180.	168.	147.	141.	121.	114.	122.	114.	113.	122.
99.	96.	132.	141.	146.	172.	178.	141.	132.	132.
165.	148.	171.	248.	342.	432.	438.	403.	330.	267.
237.	181.	171.	166.	208.	282.	311.	374.	397.	388.
317.	323.	349.	430.	445.	443.	392.	390.	321.	393.
459.	669.	947.	1115.	1236.	1213.	983.	824.	806.	921.
999.	967.	909.	779.	520.	400.	276.	190.	160.	176.
126.	150.	150.	207.	253.	240.	270.	264.	235.	235.
268.	245.	277.	240.	212.	189.	157.	143.	129.	148.
152.	178.	222.	345.	404.	530.	611.	642.	595.	496.
425.	367.	323.	284.	198.	224.	304.	336.	439.	422.
408.	372.	291.	207.	190.	168.	155.	182.	189.	234.
215.	229.	181.	148.	142.	130.	161.	152.	136.	140.
165.	156.	118.	149.	119.	110.	112.	102.	96.	109.
105.	110.	112.	11/.	114.	1/6.	209.	334.	427.	203.
504.	564.	505.	380.	315.	26/.	207.	148.	220. 157	240.
2/1.	306.	294.	510.	270.	203.	209.	103.	12/.	137.
109.	83.	85.	99.	80.	170	67. 150	07. 13/	۶/۰ ۱۶۲	שש. 150
121.	142.	212.	227.	173.	113.	120.	104.	110	109.
1/1.	162.	191.	191.	105. 71	143. 47	L32.	120.	±10. 60	99. QK
75. 71	92.	12.	70.	/1.	02. 71	09. 44	69. 67	02. 45	60. 67
/1.	57.	58.	12.	27.	14.	00.	07.	0D.	07.

 1^{0} , 1

194.	211.	176.	159.	143.	151.	129.	125.	115.	123.
110.	118.	87.	99.	113.	108.	122.	110.	160.	178.
174.	166.	145.	165.	152.	126.	118.	108.	129.	133.
133.	178.	146.	141.	140.	149.	160.	179.	172.	144.
178	132.	178	128.	129.	101.	100.	1/6. 213	204	193.
146.	143.	142.	141.	151.	131.	101.	107.	104.	84.
94.	89.	96.	118.	140.	132.	142.	149.	120.	113.
132.	122.	114.	114.	84.	83.	87.	91.	91.	91.
111.	122.	147.	131.	130.	102.	105.	114.	98.	108.
101.	81.	88.	61.	70.	72.	59. 102	55.	72.	77.
70. 79	93. 79	00. 74	108.	91. 112	01. 131	103.	04. 192	211	03. 187
164.	123.	142.	125.	137.	107.	102.	100.	92.	95.
71.	68.	63.	58.	69.	61.	61.	66.	56.	62.
62.	67.	72.	85.	83.	88.	91.	95.	101.	94.
107.	107.	152.	130.	166.	167.	184.	187.	169.	154.
149.	155.	170.	168.	159.	1/4.	163.	162.	182.	211.
212.	253	222.	203.	158	188	155	172	220. 159	240. 181
192.	197.	201.	204.	173.	182.	178.	171.	155.	161.
152.	127.	128.	125.	119.	96.	87.	84.	76.	91.
86.	78.	93.	93.	80.	92.	99.	109.	101.	93.
122.	117.	109.	123.	123.	112.	117.	116.	115.	111.
115. 95	116. 95	92.	100.	81. 111	110.	115.	106	88. 101	94.
154.	132	124	148.	170.	210.	298	321	307	284
252.	218.	199.	189.	193.	187.	138.	132.	118.	82.
107.	79.	84.	81.	84.	92.	83.	107.	90.	98.
96.	95.	.88	101.	85.	100.	101.	109.	97.	105.
104.	118.	129.	143.	147.	195.	207.	217.	195.	183.
92	104.	119	109.	101.	130.	142	124. 121	122.	84. 106
99.	104.	119.	112.	108.	127.	83.	94.	87.	94.
120.	95.	112.	107.	114.	88.	97.	106.	104.	120.
143.	110.	122.	115.	126.	108.	155.	187.	209.	177.
147.	142.	127.	152.	147.	171.	158.	111.	126.	113.
116.	121.	99.	121.	120.	118.	110.	119.	120.	103.
75.	70.	89.	102.	107.	100.	⁹ 5. 115.	98.	121.	140.
141.	140.	116.	116.	110.	108.	107.	115.	105.	94.
113.	85.	96.	79.	104.	112.	112.	133.	138.	163.
152.	157.	123.	127.	109.	128.	139.	149.	146.	184.
134.	123.	102.	123.	103.	101.	122.	104.	112.	116.
135	131	128	112.	143.	127.	114.	112.	107.	119. QQ
79.	101.	96.	100.	82.	95.	99.	85.	106.	111.
122.	143.	134.	109.	112.	123.	125.	128.	129.	123.
135.	122.	111.	100.	84.	124.	84.	100.	80.	92.
80.	88.	97.	73.	88.	65.	58.	72.	64.	79.
63	59. 66	55. 56	74. 50	44. 88	60. 66	69. 72	80. 79	94	91. 91
103.	99.	103.	90.	84.	95.	99.	85.	114.	104.
101.	93.	85.	89.	92.	84.	71.	84.	68.	80.
68.	96.	69.	86.	92.	100.	117.	104.	109.	113.
136.	164.	154.	120.	131.	120.	125.	115.	125.	127.
122.	133.	149. pp	168.	123.	106.	90. 110	92.	102.	96. 130
141.	107.	108.	129.	99.	123.	139.	134	137	132.
147.	171.	183.	184.	186.	147.	141.	122.	109.	139.
134.	147.	160.	126.	116.	93.	81.	116.	109.	119.
116.	112.	113.	147.	151.	143.	118.	146.	159.	135.
159.	148.	129.	126.	121.	125.	129.	132.	108.	123.
130	120.	133.	151.	149. 120	138. 128	120. 110	104. 197	117	14/. 11/
117.	123.	105.	110.	82.	81.	73.	92.	87.	86.
97	91.	103.	82.	85.	92.	87.	84	100.	79.
106.	97.	113.	114.	142.	146.	142.	172.	119.	131.
3 // 0	00	303	<u> </u>	117	3 / 1 / 2	110	111	00	60

90.	67.	70.	82.	80.	66.	77.	70.	94.	94.
94.	116.	117.	107.	99.	98.	99.	87.	112.	123.
98	94	98.	80.	75.	82.	107.	90.	88.	73.
92.	92.	86.	76.	71.	76.	78.	58.	100.	76.
72.	48.	81.	67.	64.	69.	68.	67.	80.	79.
62	59.	76.	93.	75.	74.	78.	76.	90.	89.
79	97	81.	72.	82.	82.	76.	62.	86.	71.
87	90	76	92.	94	100.	86.	77.	76.	78.
89	80	105	95	111	113	105.	135.	138.	132.
127	120	127	114.	127.	120.	121.	100.	129.	124.
100	113	Q1	115	102	105	101	115	110.	120.
110	119	130	139	134	150	168	178	164	169.
170	147	166	172	156	134	158	115	124	150
149	160	154	209.	185	162	117.	128.	130.	115.
124	137	126	131	114	143	129.	113.	99.	115.
96	105	94	95	93.	110	95.	110.	84.	99.
80	86	81	74	94	79	93	103.	78.	77
75	81	66	74	63	69	86	87	88	80
91 91	90	106	109	112	92	106	106	104	134
147	169	155	162	153	152	134	108	121	115
170	120	126	115	109	143	107	99	80	97
103	120. Q1	420.	100	106	116	117	120	129	148.
128	155	141	116	111	92	119	117	116	106
152	134	123	135	123	123	89	108.	100.	88.
92.	03 T340	103	140	122	123.	110	126	128	117.
152	175	151	164	137	158	157	130	135.	117.
108	130	129	140	152	105	136	143	152	138.
QQ.	121	102	110	100	82	97	116	113.	102
102	94	118	114	104	107	112	130	143	110
154	137	129	173	158	146	121	116	121	129.
1/8	145	145	153	123	133	113	123	103	98.
940.	105	121	136	115	121	123	136	113	97.
95	118	87	80	98	92	94	88	86	102
100	100	100	107	104	110	92	114	92	88
100.	310	106	12/	204.	102	105	118	129	153
127.	153	151	190	202	161	193	187	145	145
144	130	151	120.	158	162	171	187	162	172
175	160	1/2	156	155	143	118	140	141	147
175.	100.	142.	100.		140.	110.	140.	141.	17/.
140.									

Appendix P-9: step-intensity data of the 80 wt% olivine mixture of OI+Py

19.00	.05	139.00		80% oliv	ine mixt	ure			
116.	103.	115.	99.	124.	106.	101.	115.	114.	97.
102.	87.	115.	107.	110.	89.	120.	115.	125.	144.
130.	130.	126.	122.	104.	118.	115.	108.	119.	124.
116.	134.	112.	146.	118.	118.	123.	104.	103.	106.
97.	111.	93.	113.	87.	104.	99.	94.	96.	81.
111.	126.	109.	113.	114.	103.	99.	96.	101.	114.
113.	100.	93.	113.	90.	122.	109.	130.	116.	138.
181.	197.	312.	386.	506.	763.	1059.	1335.	1589.	1667.
1530.	1239.	919.	612.	429.	296.	208.	156.	133.	145.
147.	146.	153.	215.	217.	314.	405.	506.	557.	616.
589.	491.	416.	305.	242.	170.	156.	135.	123.	137.
131.	117.	114.	101.	. 95.	98.	94.	116.	101.	99.
121.	127.	127.	149.	174.	257.	368.	51/.	696.	839.
976.	1006.	1013.	866.	728.	537.	412.	300.	200.	143.
135.	115.	127.	100.	83.	104.	109.	113.	121.	109.
113.	136.	173.	188.	196.	227.	199.	164.	170.	135.
144.	106.	108.	89.	119.	120.	91.	113.	119.	131.
206.	271.	357.	413.	410.	397.	367.	249.	219.	169.
138.	105.	98.	85.	107.	94.	105.	91.	112.	94.
105.	98.	114.	100.	118.	87.	95.	102.	90.	112.
116.	110.	116.	110.	125.	127.	129.	1227	190.	191.
255.	290.	400.	524.	/15.	932.	1151.	1337.	1517.	1629.
1630.	1392.	1072.	813.	584.	540.	511.	242.	450.	446.
381.	306.	258.	207.	215.	222.	300.	397.	464.	501. 146
525.	45/.	4/9.	353.	309.	170.	128.	100	123.	140.
131.	112.	119.	13/.	141.	1605	187.	180.	102.	212.
240.	35/1	545.	2004.	1351.	1000.	2120.	166	126	1/10.
1204.	146	200.	30U. 115	201.	170.	28	100.	120. Q3	41.
12.5.	140.	95.	717.	77	103	98	99.	96	96
90. 90.	86	100	9J. 77	115	101	122	119	103	20. 89
126	130	1/10	177	193	101.	203	244	290	371
375	133	538	522	525	435	489	536	700	834
1174	1854	2348	2693	3130	3010	2866	2355	1926.	1274.
927	651	533	455	480	607	804.	1224.	1881.	2422.
2904	2916	2740	2397	1819	1259	901	601	437.	326.
271.	195.	185.	161.	129.	157.	121.	100.	116.	124.
122.	117.	143.	138.	166.	177.	202.	185.	183.	193.
184.	200.	231.	319.	337.	434	473.	463.	436.	345.
275.	234.	216.	221.	302.	298.	383.	415.	447.	436.
453.	397.	382.	375.	359.	408.	357.	336.	332.	448.
592.	811.	1038.	1392.	1431.	1443.	1346.	1213.	1179.	1044.
1113.	1151.	1067.	920.	710.	582.	384.	243.	208.	193.
163.	147.	168.	215.	221.	253.	212.	229.	227.	229.
246.	207.	220.	211.	221.	187.	159.	124.	161.	160.
154.	212.	314.	371.	499.	582.	621.	648.	653.	572.
480.	418.	335.	247.	246.	219.	221.	248.	270.	309.
300.	295.	233.	186.	178.	147.	142.	158.	176.	199.
211.	226.	191.	161.	147.	128.	143.	153.	169.	161.
173.	170.	164.	140.	125.	111.	118.	119.	104.	95.
116.	103.	108.	114.	147.	179.	206.	291.	393.	422.
443.	438.	413.	385.	284.	240.	227.	184.	196.	211.
272.	275.	279.	285.	243.	220.	182.	189.	152.	119.
119.	94.	87.	84.	83.	83.	88.	78.	89.	110.
132.	144.	158.	159.	162.	175.	130.	152.	158.	229.
174.	201.	253.	189.	188.	184.	181.	133.	119.	95.
86.	92.	80.	84.	71.	67.	76.	81.	66.	92.
66.	65.	86.	72.	66.	81.	77.	81.	85.	81.
91.	74.	120.	90.	106.	161.	187.	216.	252.	238.
262.	246.	196.	190.	146.	134.	111.	119.	137.	122.
137.	120.	128.	116.	103.	100.	96.	103.	98.	117.
119.	129.	159.	157.	180.	206.	230.	191.	176.	179.
146.	141.	143.	147.	169.	201.	257.	249.	247.	217.
203	182	180	163	157	201	195	233	228	224

225	1.86	174	149	150	115	120	105	107	140
223.	100.	1/4.	140.	1.10.	115.	129.	105.	127.	140.
118.	129.	142.	162.	162.	205.	221.	267.	331.	398.
610.	908.	1299.	1614.	2028.	2296.	2268.	2041.	1962.	1637.
1423.	1250.	1020.	846.	690.	571.	458.	408.	329.	2.87
262	210	162	150	140	126	1/2	141	93	107
100	100	102.	100	140.	120.	142.	141.	55.	127.
100.	102.	104.	108.	87.	93.	92.	82.	94.	83.
76.	87.	82.	81.	93.	94.	101.	98.	112.	131.
133.	148.	170.	238.	305.	384.	419.	502.	500.	534.
492	360	330.	257.	215	178	163	171.	190	192
137	160	150	126	160	176.	157	242	201	272
137.	102.	100.	120.	100.	150.	137.	242.	201.	373.
470.	486.	554.	541.	522.	461.	385.	350.	330.	351.
417.	483.	635.	758.	853.	937.	903.	862.	751.	668.
578.	452.	382.	273.	232.	224.	166.	188.	207.	189.
181.	181.	165.	186	188	201	232	236	239	259
226	212	187	160.	140	162	173	163	170	232.
220.	213.	107.	100.	142.	102.	1/3.	103.	179.	210.
289.	320.	366.	368.	382.	363.	315.	301.	298.	242.
226.	197.	188.	170.	157.	144.	111.	101.	116.	103.
112.	129.	135.	146.	143.	158.	137.	140.	143.	111.
111.	111.	104.	112.	128.	143.	150.	157.	182	166
175	199	208	197	218	2/9	2/3	260	280	3/1
240	275	200.	201	210.	242.	241.0	200.	2020	J41.
340.	365.	411.	391.	368.	365.	394.	365.	399.	414.
460.	514.	588.	653.	762	959.	977.	1023.	1051.	1038.
949.	785.	688.	645.	471.	389.	393.	402.	393.	499.
666.	952.	1055.	1109.	1151.	1080.	1017.	920.	688.	511.
132	384	255	230	220	205	192	217	169	153
140	170	150	120	140	100	172.	100	100.	101.
149.	170.	150.	130.	140.	100.	144.	106.	109.	97.
98.	102.	95.	90.	94.	114.	92.	101.	118.	146.
135.	184.	158.	195.	199.	205.	225.	210.	196.	176.
157.	162.	123.	114.	107.	106.	129.	128.	145.	160.
185	217	253	281	262	272	234	267	210	217
176	144	163	194	156	100	201.	207	240.	247
1/0.	144.	100.	104.	100.	109.	200.	207.	201.	202.
245.	267.	306.	293.	330.	424.	514.	569.	620.	5/3.
632.	534.	518.	466.	446.	468.	447.	403.	384.	342.
313.	304.	208.	202.	168.	128.	114.	125.	116.	115.
129	125	154	150	147	165	154	167	140	148
124	1/8	122	115	123	06	116	120	107	136
124.	140.	140	110.	120.	90.	110.	129.	107.	130.
131.	159.	148.	1/2.	196.	270.	385.	496.	619.	638.
658.	627.	577.	545.	538.	421.	340.	304.	270.	204.
216.	150.	139.	103.	111.	105.	93.	107.	102.	90.
88.	82.	125.	136.	144.	153.	164.	156.	184.	166.
192	201	201	203	221	202	210	2/3	316	334
200	450	201.	430	420	202.	210.	243.	374	334.
380.	400.	440.	430.	429.	389.	540.	295.	214.	240.
211.	1/1.	126.	115.	122.	111.	86.	82.	84.	94.
81.	87.	101.	99.	140.	162.	175.	163.	196.	191.
201.	190.	155.	170.	110.	140.	132.	120.	107.	117.
135	128	138	148	122	119	123	136	154	159
106	100	150.	161	120	120	107	100.	01	100
190.	102.	100.	101.	100.	152.	147.	99.	91.	102.
99.	85.	94.	120.	133.	127.	167.	167.	1/5.	1/9.
138.	170.	173.	153.	143.	178.	148.	194.	199.	195.
206.	216.	188.	178.	170.	157.	155.	167.	151.	152.
148.	166.	172.	189.	195.	218.	234.	225.	206.	203.
225	190	211	168	187	150	125	124	112	02
110	190.	211.	100.	1107.	100.	115	110	112.	114
119.	97.	83.	120.	115.	109.	115.	112.	91.	114.
124.	137.	106.	118.	128.	139.	169.	158.	164.	158.
149.	136.	115.	108.	114.	97.	84.	106.	99.	100.
83.	75.	76.	108.	91.	95.	122.	106.	89.	95.
89.	90.	87.	64	107	74	114	86	71	68
65	64	66	60	E1	5 Q	71	60,	F0	56
00. Cr	04.	00.	29.	01.	59.	/1.	00.	50.	101
65.	61.	60.	/9.	64.	/4.	80.	19.	92.	101.
127.	161.	191.	195.	219.	224.	194.	164.	171.	136.
121.	126.	89.	83.	82.	70.	73.	80.	76.	84.
62.	81.	71.	85.	94	93	82	98	134	110
123	111	1/6	1/6	150	175	159	150	101	210
142.	114.	140.	1 7 7	102.	100	100.	170.	174.	414.
229.	207.	203.	1//.	209.	190.	182.	1/5.	128.	129.
121.	123.	118.	131.	126.	119.	130.	142.	170.	198.
212.	195.	181.	194.	191.	163.	155.	163.	154.	150.
149.	168.	161.	175.	153.	164.	175.	148.	163.	191.
173	131	127	135	155	154	183	222	101	222
212.	1010 1010	220	202.	1001	1040	102. 102.	222. NE/	171.	222.
< 1 D .	/ / 44	2 311	Z.117	2 7 4	// 1	1 1 1 1	2 n n	/ 1 n	2 I D

010	170	107	177	1 7 7	1 17	110	104	0.6	100
ZIJ.	1/8.	187.	1//.	100.	147.	110.	104.	50.	100.
105.	114.	101.	117.	135.	156.	174.	182.	177.	156.
127	150	116	110	104	110	112	111	107	137
137.	109.	140.	119.	104.	110.	113.	111.	127.	137.
139.	145.	175.	156.	145.	121.	137.	119.	115.	120.
104	109	79	70	66	82	69	76	69	78
104.	105.	12.		110	02.	100	107	110	100
87.	91.	133.	135.	110.	106.	102.	107.	110.	100.
118	104	126	128	146	186	224	227.	259.	224.
110,	104.	100	120.	140.	1.00.	100	101	222.	221.
221.	206.	190.	187.	146.	142.	129.	101.	93.	86.
95	62 .	82.	76.	68.	85.	77.	82.	81.	71.
	02.	01	70.	101	100	07	111	117	100
11.	97.	84.	76.	101.	102.	97.	111.	11/.	120.
142.	157.	141.	162.	191.	200.	195.	216.	228.	208.
225	210	104	210	100	100	1 4 0	210	231	224
440.	219.	104.	212.	190.	199.	109.	210.	231.	224.
231.	213.	237.	268.	240.	230.	230.	222.	235.	227.
207	230	212	10/	177	164	157	165	161	160
207.	230.	212.	194.	1//.	104.	137.	105.	101.	100.
185.	213.	191.	176.	205.	173.	185.	175.	158.	152.
166	152	157	1 2 7	104	01	113	101	96	113
100.	132.	131.	127.	104.	21.	110.	101.	110	100
98.	95.	84.	82.	86.	97.	108.	100.	118.	122.
105	128	115	140	125	133	127	112	100.	107.
105.	120.	110	140.	125.	100.	100	110.	107	100
125.	95.	110.	98.	95.	91.	108.	94.	107.	102.
96.	87.	98.	94.	107.	118.	106.	115.	110.	127.
120	100	200	200	222	2.02	220	102	271	220
130.	122.	200.	206.	223.	202.	550.	405.	571.	555.
285.	252.	250.	262.	243.	214.	184.	152.	125.	112.
106	04	100	100	01	111	00	121	90	103
100.	90.	109.	100.	01.	114.	00.	121.	50.	105.
109.	101.	116.	122.	106.	111.	122.	116.	107.	121.
133	128	165	103	211	215	256	254	253	235
133.	120.	105.	195.	214.	240.	250.	234.	200.	200.
219.	203.	185.	24/.	211.	182.	157.	134.	121.	115.
110	130	119	150	157	166	135.	124.	127.	114.
100.	100	120	110	100	110	114	110	100	120
120.	122.	138.	110.	122.	112.	114.	118.	108.	128.
125.	147.	130.	105.	108.	134.	121.	107.	132.	114.
110	120	100	100	1 / 1	167	202	200	200	101
112.	129.	133.	120.	141.	10/.	202.	209.	200.	191.
173.	157.	159.	165.	189.	168.	159.	158.	134.	128.
112	123	127	136	137	143	146	166	142	129
110.	123.	127.	130.	157.	143.	140.	100.	112.	122.
110.	120.	135.	116.	113.	105.	81.	105.	98.	18.
105.	97.	92.	105.	122.	111.	129.	140.	139.	142.
171	120	140	105	100	107	110	1 2 1	104	0.0
1/1.	139.	149.	105.	109.	107.	110.	131.	104.	96.
84.	113.	85.	103.	109.	113.	116.	142.	180.	206.
176	170	171	160	150	127	154	1 17	150	1/0
170.	175.	1/1.	102.	150.	121.	174.	147.	100.	140.
154.	133.	123.	121.	111.	116.	128.	144.	138.	140.
155	165	106	161	162	130	132	134	126	145
110.	105.	190.	104.	102.	100.	110	134.	120.	100
148.	129.	135.	108.	T0a.	108.	110.	99.	122.	122.
114	124	119	98.	100.	98.	99.	95.	111.	123.
112	127	1 ()	107	120	00	100	00	172	120
111.	157.	164.	121.	130.	90.	123.	99.	112.	150.
122.	115.	120.	122.	92.	100.	88.	89.	113.	89.
81	105	101	20	Q1	66	76	81	89	59
01.	103.	101.	0,	01.	00.	10.	01,	0.2.	
79.	70.	75.	70.	80.	68.	83.	97.	/6.	89.
68.	81	71.	83.	76.	86.	118.	95.	99.	111.
100	100	117	117	07	0,0	0.2	100	104	102
108.	122.	11/.	11/.	97.	86.	95.	100.	124.	105.
121.	100.	108.	88.	99.	95.	98.	110.	101.	88.
94	124	104	102	106	101	96	130	151	181
100	124.	104.	102.	100.	101.	201	100.	1	101.
198.	188.	163.	160.	139.	116.	121.	163.	141.	168.
166.	180.	186.	147.	153.	148.	125.	113.	130.	115.
100.	100.	100.	100	100	110	124	1()	170	160
137.	139.	124.	103.	120.	110.	134.	102.	175.	102.
167.	145.	142.	123.	146.	158.	153.	173.	152.	181.
1 8 1	200	240	224	199	170	161	126	142	160
101.	209.	240.	254.	100.	119.	101.	120.	192.	100.
150.	145.	198.	161.	141.	125.	117.	106.	131.	130.
107	144	139	154	155	129	138	146.	140.	157.
107.	111.	1.10	100	145	122.	110	100	120	100
15/.	154.	143.	138.	145.	133.	112.	120.	138.	125.
122.	131.	143.	150.	161.	130.	141.	135.	123.	106.
111	122	120	1 6 7	1 6 5	100	100	1 / 1	122	106
144.	122.	130.	10/.	100.	123.	144.	141.	100.	100.
132.	138.	123.	125.	112.	108.	116.	91.	119.	121.
102	ρQ	06	100	115	116	105	95	113	95
100.	00.	30.	100.	TTD+	110.	100.		140	
102.	113.	151.	130.	158.	176.	157.	186.	162.	160.
119	119	120	95	164	131	143	122	125	107
	* ± 2 ·	107	~~··	101.				110	110
13.	82.	107.	92.	92.	80.	84.	94.	112.	110.
135.	147.	144.	132.	135.	102.	129.	139.	95.	119.
120	116	120	111	125	114	100	106	127	106
149.	TT0.	132.	111.	T22.	114.	100.	100.	141.	100.
96.	98.	106.	81.	82.	96.	88.	92.	88.	89.
86	77	79	68	82	90	84	79	83	74
00.	11.	12.		02.	20.	04.		101	, , ,
80.	86.	92.	87.	92.	79.	85.	89.	104.	84.

102	94	81	83.	85.	94.	88.	78.	93.	87.
91	106	101	86.	102.	102.	93.	64.	83.	78.
92	105	99.	126.	140.	154.	126.	180.	192.	162.
142	155	145.	149	136.	138.	137.	157.	136.	120.
133	109	114	105	104.	104.	112.	106.	122.	118.
106	118	132	135.	150.	154.	163.	179.	179.	175.
159	168	192.	165	176.	183.	182.	151.	165.	164.
191	209	204	217.	203.	177.	158.	155.	142.	129.
133	144	147	146.	148.	150.	126.	138.	124.	110.
108	106	110	124	125.	86.	104.	103.	90.	92.
100. QQ	Q1	89	94	82.	98.	102.	110.	100.	89.
78	92	80	92.	73.	81.	72.	94.	111.	80.
115	100	112	110	128.	120.	122.	134.	135.	171.
221	193	232	241.	164.	157.	156.	127.	156.	140.
126	152	148.	165.	175.	151.	134.	126.	145.	102.
120.	102.	119.	133.	130.	143.	135.	173.	179.	168.
215	168.	163.	144.	138.	133.	118.	138.	142.	145.
176.	173.	156.	158.	138.	122.	130.	120.	126.	120.
115.	141.	151.	165.	158.	171.	139.	150.	150.	158.
182.	181.	217.	179.	181.	207.	164.	157.	123.	143.
132.	147.	152.	161.	153.	147.	163.	148.	162.	150.
143.	140.	128.	113.	137.	134.	125.	116.	126.	133.
122.	108.	109.	108.	123.	159.	144.	185.	151.	164.
155.	175.	198.	184.	156.	159.	150.	139.	149.	169.
180.	142.	153.	162.	148.	144.	152.	151.	123.	119.
130.	122.	126.	107.	134.	152.	108.	112.	110.	127.
118.	99.	103.	117.	100.	92.	93.	101.	97.	112.
86.	108.	126.	129.	121.	119.	131.	115.	121.	121.
136.	139.	129.	111.	129.	129.	132.	123.	135.	147.
156.	190.	211.	245.	251.	250.	243.	203.	178.	186.
187.	155.	160.	147.	160.	160.	179.	174.	199.	208.
198.	193.	151.	169.	193.	187.	188.	170.	164.	173.
155.	205.	220.	257.	278.	289.	302.	272.	263.	247.
203.	206.	189.	166.	179.	146.	154.	168.	194.	197.
206.	218.	170.	183.	172.	149.	168.	163.	127.	131.
103.	131.	106.	117.	97.	111.	107.	88.	105.	131.
105.	98.	94.	107.	131.	104.	95.	106.	104.	107.
99.	100.	94.	99.	105.	107.	94.	100.	120.	11/.
92.									

Appendix P-10: step-intensity data of the 90 wt% olivine mixture of Ol+Py

19.00	.05	139.00		90% oliv	ine mixtu	ure			
89.	94.	97.	74.	88.	93.	86.	79.	79.	77.
84.	91.	80.	106.	91.	89.	91.	94.	84.	92.
89.	105.	100.	102.	101.	89.	94.	79.	91.	101.
91.	95.	98.	100.	95.	108.	90.	86.	88.	77.
85.	83.	81.	67.	83.	84.	91.	81.	85.	76.
101.	74.	76.	80.	77.	70.	80.	70.	90.	91.
93.	82.	87.	86.	90.	95.	87.	102.	100.	107.
136.	161.	197.	287.	406.	601.	875.	1205.	1515.	1552.
1525.	1192.	883.	564.	338.	230.	170.	166.	118.	106.
124.	109.	133.	143.	188.	208.	339.	434.	505.	575.
575.	505.	391.	248.	191.	146.	125.	100.	90.	84.
89.	91.	82.	94.	99.	78.	92.	82.	83.	81.
89.	105.	112.	117.	138.	161.	259.	365.	546.	769.
864.	958.	870.	769.	649.	483.	382.	256.	198.	154.
107.	82.	88.	99.	83.	81.	86.	94.	76.	90.
87.	96.	94.	130.	120.	119.	127.	126.	103.	104.
97.	90.	83.	76.	71.	73.	87.	92.	86.	85.
105.	145.	167.	189.	186.	203.	186.	147.	127.	115.
89.	91.	74.	86.	71.	/6.	67.	80.	/5.	65.
87.	84.	82.	82.	77.	73.	81.	88.	//.	11.
68.	85.	88.	. 87.	87.	82.	84.	11/.	119.	11/.
177.	213.	251.	353.	451.	615.	/10.	812.	959.	895.
804.	693.	587.	404.	298.	280.	254.	236.	259.	208.
209.	184.	154.	116.	125.	137.	167.	209.	199.	231.
223	230.	200.	185.	131.	121.	102.	110.	83. 1F1	105.
90.	97.	98.	98.	107.	97.	111.	122.	1010	1700
194.	269.	371.	299.	1023.	14/3.	1070.	2073.	2023.	122
1300.	837.	4/0.	277.	213.	1/1.	137.	102.	109.	122.
103.	118.	/0.	02. 20	70. 60	04. 76	70	101.	97. 97	66
82. 70	61.	62.	87	85	70. 86	83	90.	91	111
/0. 03	00. QQ	100	131	150	169	157	182	205	235
250	263	278	287	270	319	325	353	404	566
689	1128	1587	2092	2402	2557	2425.	2084	1623.	1021.
713	515.	389.	364.	397.	421.	567.	948.	1393.	2012.
2553	2775	2569.	2228	1697.	1240.	814.	529	368.	271.
200.	183.	140.	151.	116.	107.	116.	103.	103.	88.
107.	79.	112.	106.	123.	132.	129.	149.	171.	136.
148.	138.	166.	230.	308.	364.	428.	409.	431.	348.
230.	200.	154.	155.	172.	231.	303.	306.	374.	347.
361.	292.	242.	243.	222.	205.	218.	241.	276.	326.
403.	645.	855.	1016.	1214.	1138.	1163.	1012.	954.	945.
949.	1000.	1009.	872.	645.	490.	323.	217.	178.	128.
107.	122.	102.	117.	133.	123.	135.	156.	115.	117.
124.	134.	142.	122.	124.	123.	88.	116.	111.	105.
126.	134.	209.	285.	414.	504.	540.	535.	532.	402.
357.	250.	185.	145.	136.	148.	141.	140.	141.	156.
155.	139.	121.	127.	101.	104.	78.	110.	105.	92.
111.	112.	103.	115.	102.	99.	103.	135.	149.	131.
150.	152.	131.	137.	89.	90.	101.	85.	97.	77.
84.	70.	82.	84.	77.	104.	130.	153.	222.	249.
317.	306.	280.	230.	218.	171.	148.	133.	117.	126.
127.	150.	139.	109.	133.	144.	137.	100.	85.	91.
65.	78.	64.	76.	65.	60.	67.	62.	80.	/1.
78.	73.	89.	99.	86.	97.	92.	116.	107.	11/.
147.	150.	166.	179.	178.	166.	150.	133.	106.	95.
/1.	84.	50.	/4.	/1.	6U.	45.	5/.	68.	4/.
43.	45.	56.	48.	55.	55. 100	43.	⊃∠. 104	41. 105	70. 204
01. 010	6U.	10.	0J. 146	33. 110	1001	100.	106	100.	204.
∠18. 01	102.	70D.	140.	170'	27. 70	ΔE TT2.	100.	103. 03	ΔQ 110.
91. 91.	114. 02	90. 90.	107	110	12.	107	119	125	109.
93. 108	0 <i>3.</i> 106	90.	1107.	129	159	177	191	197	189
177	142	125	134	107	143.	155.	175.	184	195.
		÷ 4 - •		· · ·					

180	148	141	120.	117.	114	69.	75.	104.	83.
102.	113.	108.	119.	136.	150.	176.	190.	281.	320.
412.	627.	958.	1338.	1620.	1792.	1802.	1626.	1559.	1361.
1155.	1026.	896.	785.	572.	511.	415.	350.	306.	240.
204.	187.	164.	120.	106.	90.	98.	91.	82.	94.
74.	78.	71.	69.	79.	72.	64.	71.	63.	74.
57.	59.	74.	65.	70.	86.	64.	80.	68.	81.
100.	125.	123.	169.	187.	279.	307.	368.	391.	426.
354.	308.	239.	185.	149.	123.	107.	100.	10.	105.
90. 391	102.	539	473	125.	127.	340	286	288	275.
241	264	320.	436.	514.	590.	591.	624.	534.	440.
407.	327.	249.	210.	200.	188.	146.	145.	170.	137.
188.	168.	175.	175.	141.	188.	188.	225.	230.	217.
181.	165.	145.	148.	136.	126.	113.	127.	158.	153.
207.	261.	253.	315.	325.	301.	268.	263.	236.	196.
185.	174.	129.	107.	119.	107.	106.	90.	87.	80.
8/.	88.	88.	/9.	/8.	96.	85.	107.	93.	120
123	02. 117	103	99. 139	134	102.	141	146	178	211
239	278	282	294	319	294	323.	292	280.	333.
327.	427.	376.	500.	546.	609.	689.	796.	839.	822.
799.	686.	621.	460.	385.	330.	298.	284.	317.	361.
502.	738.	858.	1000.	970.	1026.	935.	769.	592.	473.
349.	286.	234.	197.	184.	184.	164.	147.	156.	160.
134.	116.	108.	97.	96.	68.	79.	96.	55.	78.
80.	75.	82.	56.	78.	/4.	89.	68.	174	61. 142
83.	91. 116	100.	148.	154.	180.	103.	209.	1/4. 91	143. 88
104.	110.	131	121	122	114	146.	128.	127.	123.
105.	117.	100.	108.	107.	111.	127.	131.	144.	146.
175.	180.	202.	222.	263.	335.	386.	440.	535.	521.
478.	486.	429.	359.	366.	348.	312.	319.	312.	281.
207.	211.	188.	151.	178.	105.	96.	110.	117.	122.
98.	95.	109.	107.	104.	103.	93.	99.	109.	109.
86.	100.	108.	96.	111.	85.	78.	72.	91.	105.
123.	127.	115.	140.	163.	180.	253.	390.	419.	445.
499.	538.	499.	451.	420.	357.	308. 91	504. 75	203.	207.
132.	127.	85	39. 76	83	92	76	92	111.	95.
118.	114.	119.	106.	120.	129.	141.	170.	238.	284.
290.	372.	332.	318.	338.	335.	302.	242.	205.	199.
182.	147.	114.	98.	86.	78.	85.	72.	74.	69.
59.	71.	74.	72.	83.	120.	148.	124.	154.	132.
151.	136.	138.	112.	115.	101.	95.	103.	71.	92.
/4.	62.	64. 0(/6.	84.	86.	68.	/1.	87.	88. 00
100.	97.	96. 88	82.	84. 106	103	115	113	0∠. 114	125
116	110	124.	106.	100.	105.	93.	124.	142.	157.
134.	155.	142.	131.	142	108.	132.	124.	100.	121.
128.	108.	115.	119.	133.	161.	149.	146.	137.	131.
157.	136.	154.	143.	120.	128.	95.	90.	104.	78.
91.	105.	98.	64.	70.	104.	103.	96.	92.	86.
88.	97.	86.	96.	106.	114.	123.	127.	117.	121.
118.	102.	84.	87.	87.	10.	65. E0	61. 56	64. 51	72.
70. 62	49.	50.	70. 50	53. 52	04. 15	56	59	48	58
62	46.	51	45.	48.	37.	55.	51.	38.	47.
46.	38.	43.	52.	40.	52.	51.	63.	74.	81.
108.	106.	128.	181.	166.	144.	125.	153.	113.	120.
97.	92.	82.	64.	69.	50.	57.	53.	67.	63.
56.	53.	59.	60.	77.	71.	65.	86.	96.	91.
84.	85.	107.	120.	123.	135.	112.	121.	153.	158.
170.	172.	193.	164.	163.	145.	122.	144.	11/.	118.
128.	99. 150	123.	119.	80. 134	94. 107	101. 124	107	143. 110	1/1.
103.	100 100	1/0	13/. 131	134. 134	13/. 110	104. 101	107.	115	91. 108
88 1711	111	120	122.	116	117 117	139.	143.	167	172
171.	182	170.	183	192	171	194.	205.	197.	179.

20. C.

161.159.126.135.103.98.972.95.97.100.123.137.13120.116.117.89.99.95.8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
72.95.97.100.123.137.13120.116.117.89.99.95.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
120. 116. 117. 89. 99. 95. 8	8. 82. 86. 87.
120. 116. 117. 89. 99. 95. 8	8. 82. 86. 87.
99, 132, 118, 113, 112, 114, 12	0. 86. 79. 94.
	1 55 58 67
79. 55. 59. 70. 65. 47. 6	1. 55. 50. 07.
71. 72. 66. 80. 82. 83. 7	8. 51. 82. 88.
90 88 89 87 125 154 15	4. 196. 174. 174.
	2 74 79 77
148. 150, 125, 141, 145, 155, 10	5. 14. 10. 11.
74. 73. 57. 45. 73. 58. 5	8. 60. 49. 60.
67 57 64 73 96 76, 8	5. 78. 102. 90.
	6 140 140 140
127. $132.$ $110.$ $140.$ $130.$ $144.$ 15	0. 149. 140. 145.
150. $122.$ $155.$ $143.$ $133.$ $134.$ 13	6. 151. 155. 166.
170 216 157 152 136 126 11	9 130 120, 121,
1/0. 210. $1/1.$ $1/2.$ $1/0.$ $1/1.$	n 100 101 110
106. $112.$ $96.$ $82.$ $90.$ $111.$ 9	2.103.121.110.
137. $133.$ $126.$ $155.$ $127.$ $121.$ 12	8. 97. 111. 114.
03 102 76 86 69 80 8	4 74 60 77
95. 102. 70. 60. 69. 60. 6	
89. 74. 87. 67. 81. 78. 8	7. 80. 55. 90.
78, 98, 90, 92, 88, 76, 7	6. 83. 60. 102.
70 07 54 03 65 71 5	9 67 56 70
79. 07. 54. 55. 55. 71. 5	J. 07. 30. 70.
58. 74. 70. 78. 57. 61. 8	5. 12. 11. 83.
96, 112, 132, 133, 172, 193, 24	4. 311. 288. 243.
242 221 105 196 100 186 16	3 117 104 83
242. 251. 105. 100. 105. 100. 10	5. 10. 04. 03.
66. 80. 68. 54. 74. 68. 7	5. 79. 84. 82.
76. 86. 79. 73. 64. 82. 8	8. 74. 85. 60.
107 102 112 116 179 105 24	7 212 182 174
97. 102. 112. 116. 170. 195. 24	7. 212. 102. 174.
144, 163, 151, 127, 141, 136, 11	0. 98. 85. 91.
92 81 80 72 104 102 8	7. 119. 85. 91.
	5 63 64 87
64. 82. 88. 86. 89. 100. 7	J. 0J. 04. 07.
99. 88. 86. 105. 89. 92. 7	1. 75. 73. 110.
85 72 92 96 92 123 14	8. 136. 146. 135.
	0 100 00 01
129. 102. 129. 113. 121. 132. 12	
93. 80. 85. 104. 115. 131. 14	3. 126. 119. 117.
<u>66 75 65 69 95 90 8</u>	1, 72, 64, 81,
	3 07 00 101
55. 47. 68. 78. 60. 77. 7	J. 97. 89. 101.
114. 108. 98. 113. 95. 132. 10	0. 82. 99. 100.
75 85 79 64 88 101 10	3. 99. 150. 131.
	0 00 92 100
136. 123. 108. 108. 129. 115. 12	9. 99. 02. 100.
83. 82. 90. 80. 92. 103. 7	6. 96. 91. 114.
122 126 173 139 143 118 10	6. 103. 112. 130.
	5 00 79 105
134. 110. 121. 110. 107. 85.	· · · · · · · · · · · · · · · · · · ·
76. 85. 69. 69. 75. 72. 5	4. 70. 94. 70.
83 93 110 108 116 89 8	6. 91. 86. 85.
	2 76 69 82
83. 90. 84. 85. 76. 61. 7	J. 70. 09. 02.
72. 57. 62. 58. 58. 50. 6	2. 76. 59. 56.
62 49 56 56 53 52 7	2. 57. 73. 64.
	A 63 73 104
55. 72. 46. 66. 67. 70. 7	
105. $103.$ $75.$ $109.$ $79.$ $66.$ 8	3. 97. 88. 95.
80 77 72 79 69 83 7	8. 82. 58. 89.
	1 104 113 133
56. 66. 62. 17. 13. 11. 1	
160. $142.$ $109.$ $118.$ $106.$ $97.$	15. 109. 121. 124.
112 128 155 123 125 98 10	1. 96. 89. 93.
	8 126 127 123
108. 95. 62. 91. 90. 95.	10. $120.$ $127.$ $125.$
131. 95. 97. 116. 116. 111. 11	6. 119. 112. 156.
137 181, 149, 169, 172, 150, 12	1. 99. 103. 106.
	1 96 67 80
126. 144. 114. 115. 108. 106.	
93. 112. 85. 96. 94. 96. 9	7. 88. 110. 101.
127, 110, 95, 85, 85, 79, 8	3. 98. 95. 86.
	01 80 75
94. 100. 100. 101. 90. 113. C	
105. 109. 112. 92. 110. 89. 6	9. /9. /6. 80.
84 92, 124, 69, 89, 80, 7	5. 77. 76. 77.
	10 50 RN 70
111. 8b. 94. 89. 63. 82. A	کر، ۵۵، ۲۶۰ منابق
101. 91. 103. 127. 112. 148. 17	2. 154. 116. 110.
80 93 85, 131, 111, 92, 10)9. 97. 85. 73.
	10 77 80 107
yø. 12. ob. 15. 12. 13. 1	0.11.02.107.
111. 120. 106. 103. 90. 120. 11	18. 95. 81. 100.
105, 91, 84, 77, 72, 96, 7	76. 83. 96. 76.
00 06 60 70 64 50 6	57 62 74 64
64. 65. 6j. 6U. 4/. 65. 5	53. 53. 54. 54.
47. 76. 52. 65. 67. 55. 6	50. 57. 70. 52.

	70	5.4	EQ	55	59	64.	62.	58.	63.
//.	78.	54.	01	55. 60	68	66.	75.	62.	53.
11.	20.	74	01.	104	103	133.	142.	148.	131.
68.	19.	/4.	0.5.	109.	75	97.	137.	112.	111.
132.	120.	121.	00	67	87	78.	72.	71.	89.
91.	91.	/0.	111	115	148.	119.	134.	128.	129.
80.	90.	90.	143	125	113	137.	118.	123.	104.
107.	120.	149.	195	161	148.	133.	112.	102.	100.
135.	147.	100.	105.	139	123	96.	83.	87.	87.
100.	108.	139.	114.	£0 60	61.	54.	69.	73.	70.
13.	77.	10.	65	72	67	78.	75.	65.	59.
67.	59.	57.	65.	64	63	76.	62.	79.	70.
69.	56.	69.	04.	04.	105	82.	116.	94.	152.
69.	82.	95.	09.	110	126	116.	134.	112.	107.
143.	14/.	10/.	106	127	116	108.	115.	84.	89.
124.	98.	124.	103	104	108	106.	140.	146.	141.
91.	98.	93.	120	104.	98	97.	97.	110.	116.
137.	124.	104.	106	120	110	88.	95.	103.	71.
112.	139.	100	121	111	101	112.	105.	123.	124.
71.	87.	109.	131.	1/8	156	154.	109.	112.	93.
137.	154.	127.	102.	100.	126	122.	115.	126.	119.
112.	11/.	110.	120.	122.	86	116.	95.	97.	85.
98.	97.	107.	102	105	111	93.	117.	121.	113.
97.	98.	85.	103.	10.5.	138	101.	127.	109.	117.
125.	119.	100.	102.	130	114	122.	121.	103.	88.
104.	142.	111.	109.	130.	80	91.	96.	106.	88.
83.	92.	101.	60	76	73	76.	77.	77.	77.
74.	/5.	102.	0U. 06	20.	67	94	96.	96.	97.
96.	63.	80.	00.	09. 91	87	92	112.	100.	95.
78.	93.	91.	165	204	102	190	161.	128.	140.
110.	124.	124.	100.	104.	140	112	132.	174.	141.
106.	126.	115.	107.	123.	140.	109	120.	124.	153.
148.	153.	139.	123.	143.	100.	236	235	207.	204.
147.	140.	1//.	191.	214.	106	144	114.	131.	172.
187.	152.	146.	149.	139.	120.	101	118	112.	98.
178.	176.	149.	156.	133.	127.	81	75.	69.	62.
108.	88.	88.	/1.	02.	75.	78	90	62.	75.
65.	85.	84.	12.	11.	/U. 01	69	73	70.	72
81.	65.	82.	/5.	57.	01.	09.	15.	101	
84.									

Appendix P-11: step-intensity data of pure olivine

16.00	.10	136.00	р	ure oliv	íne				
87.	96.	100.	97.	93.	96.	75.	89.	73.	95.
118.	171.	248.	640.	1011.	409.	170.	110.	98.	88.
95.	91.	90.	93.	97.	90.	77.	89.	72.	79.
87.	84.	93.	96.	86.	80.	80.	82.	76.	68.
94.	74.	76.	84.	100.	88.	115.	90.	83.	90.
81.	82.	70.	73.	89.	82.	63.	68.	83.	83.
70.	95.	82.	92.	117.	147.	264.	469.	1314.	2339.
1205.	419.	197.	125.	120.	100.	138.	211.	435.	732.
461.	167.	110.	105.	79.	87.	82.	78.	80.	95.
102.	124.	175.	289.	848.	1161.	869.	470.	186.	102.
98.	85.	75.	69.	80.	80.	79.	74.	76.	53.
62.	54.	58.	67.	79.	69.	68.	66.	73.	62.
64.	84.	66.	73.	59.	61.	56.	68.	73.	73.
72.	86.	61.	83.	105.	149.	293.	483.	721.	561.
257.	121.	97.	82.	73.	63.	62.	84.	82.	80.
67.	69.	75.	89.	74.	94.	93.	76.	101.	148.
242.	423.	1339.	3205.	1937.	582.	237.	151.	127.	96.
78.	84.	78.	78.	61.	65.	78.	78.	72.	82.
57.	81.	79.	107.	85.	85.	106.	153.	141.	129.
134.	144.	222.	248.	346.	649.	1973.	3222.	2082.	747.
402.	309.	386.	684.	1874.	3533.	2408.	924.	414.	232.
173.	129.	120.	100.	87.	97.	85.	116.	147.	115.
120.	191.	443.	630.	339.	152.	129.	173.	412.	413.
232.	123.	130.	154.	250.	448.	1292.	1509.	1005.	742.
1507.	1134.	450.	191.	121.	100.	91.	79.	76.	70.
82.	61.	78.	80.	88.	109.	183.	516.	678.	425.
143.	84.	78.	64.	72.	76.	53.	56.	68.	56.
65.	66.	73.	114.	136.	102.	83.	77.	84.	70.
63.	66.	78.	96.	142.	270.	231.	128.	89.	64.
60.	54.	54.	53.	49.	66.	49.	55.	56.	47.
56.	60.	69.	74.	104.	167.	167.	189.	155.	89.
60.	63.	53.	61.	44.	48.	59.	59.	58.	63.
48.	68.	93.	168.	328.	268.	124.	108.	100.	101.
70.	64.	58.	58.	66.	76.	75.	98.	79.	71.
77.	90.	121.	206.	175.	120.	98.	109.	155.	239.
208.	142.	79.	91.	98.	102.	103.	168.	180.	293.
475.	1083.	2357.	1843.	1324.	1110.	812.	489.	312.	265.
147.	122.	90.	76.	79.	69.	74.	63.	65.	57.
70.	64.	74.	64.	83.	103.	113.	198.	533.	447.
383.	185.	103.	76.	88.	71.	93.	111.	139.	236.
568.	612.	502.	253.	201.	189.	261.	530.	590.	495.
266.	169.	116.	140.	141.	167.	129.	152.	186.	269.
198.	147.	124.	96.	128.	258.	336.	328.	300.	195.
146.	105.	85.	76.	78.	71.	52.	66.	67.	67.
42.	84.	80.	122.	83.	92.	99.	83.	104.	133.
248.	300.	323.	246.	250.	371.	379.	553.	729.	1002.
698.	500.	325.	252.	314.	555.	1402.	1220.	1022.	630.
258.	160.	150.	157.	140.	132.	100.	81.	62.	66.
77.	75.	73.	69.	62.	63.	91.	179.	144.	124.
104.	66.	69.	57.	51.	63.	58.	53.	72.	59.
76.	52.	46.	76.	84.	120.	151.	217.	443.	661.
513.	397.	286.	349.	258.	226.	144.	111.	82.	85.
107.	82.	103.	97.	103.	85.	102.	90.	75.	97.
124.	123.	177.	295.	584.	499.	528.	402.	240.	174.
107.	82.	69.	59.	51.	59.	53.	63.	60.	75.
66.	76.	73.	131.	192.	363.	318.	326.	290.	237.
157.	97.	72.	63.	57.	70.	72.	90.	134.	188.
151.	149.	82.	65.	59.	43.	53.	39.	56.	67.
58.	46.	49.	57.	46.	72.	66.	103.	109.	121.
110.	101.	76.	85.	121.	166.	112.	133.	109.	115.
123.	114.	134.	107.	97.	123.	122.	89.	109.	91.
77.	92.	83.	61.	89.	90.	94.	85.	125.	128.
94.	92.	79.	73.	66.	50.	45.	58.	42.	36.
55.	58.	52.	57.	52.	51.	48.	60.	45.	37.
45.	47.	42.	53.	65.	78.	180.	144.	106.	132.

67.	63.	63.	56.	56.	58.	53.	50.	72.	84.
80.	118.	130.	113.	128.	214.	186.	142.	148.	131.
130.	107.	92.	99.	157.	196.	142.	161.	106.	106.
102.	124.	116.	109.	104.	92.	113.	93.	180.	195.
183.	166.	186.	210.	172.	128.	153.	105.	69.	63.
72.	80.	132.	156.	103.	132.	115.	73.	64.	78.
103.	142.	98.	113.	82.	75.	62.	61.	50.	57.
60.	69.	67.	67.	93.	70.	97.	105.	169.	183.
149.	155.	110.	82.	72.	51.	68.	59.	53.	53.
66.	64.	87.	89.	99.	100.	116.	110.	169.	144.
106.	134.	120.	130.	149.	193.	137.	113.	113.	77.
52.	64.	66.	67.	80.	89.	113.	83.	92.	105.
74.	57.	53.	52.	59.	70.	58.	61.	67.	79.
74.	69.	59.	65.	55.	60.	37.	48.	49.	47.
58.	64.	59.	72.	77.	85.	93.	159.	290.	374.
223.	188.	214.	139.	94.	67.	75.	53.	74.	67.
70.	73.	89.	93.	106.	86.	134.	169.	302.	206.
130.	164.	124.	99.	64.	64.	72.	76.	76.	76.
59.	90.	83.	86.	60.	82.	105.	85.	64.	88.
75.	92.	110.	119.	131.	82.	111.	97.	91.	103.
72.	68.	120.	143.	83.	84.	84.	75.	66.	60.
55.	43.	49.	76.	96.	126.	86.	67.	111.	74.
77.	62.	72.	83.	142.	149.	88.	106.	89.	92.
81.	96.	72.	82.	73.	127.	168.	121.	93.	114.
120.	104.	68.	85.	78.	83.	89.	62.	71.	69.
49.	62.	71.	72.	77.	66.	72.	52.	60.	68.
80.	74.	55.	65.	64.	54.	51.	56.	55.	59.
48.	52.	64.	79.	74.	95.	93.	69.	65.	94.
78.	82.	78.	71.	65.	72.	66.	67.	62.	93.
130.	119.	93.	84.	115.	136.	125.	97.	78.	73.
96.	104.	95.	106.	139.	111.	107.	103.	148.	120.
146.	199.	162.	105.	99.	129.	126.	94.	81.	66.
74.	63.	71.	81.	96.	106.	64.	53.	60.	81.
68.	101.	104.	77.	73.	67.	90.	97.	69.	69.
82.	96.	67.	76.	71.	105.	77.	68.	65.	91.
85.	98.	135.	159.	109.	87.	87.	98.	85.	85.
79.	70.	76.	73.	81.	113.	128.	86.	107.	78.
85.	90.	68.	72.	82.	76.	61.	51.	60.	47.
57.	57.	54.	56.	47.	55.	50.	59.	56.	63.
60.	71.	50.	55.	61.	60.	53.	65.	61.	69.
65.	54.	57.	134.	148.	105.	76.	90.	107.	95.
89.	74.	64.	67.	58.	76.	82.	89.	137.	111.
83.	131.	124.	119.	103.	116.	185.	145.	123.	107.
87.	118.	110.	96.	63.	61.	56.	54.	62.	43.
53.	55.	55.	57.	65.	74.	61.	57.	61.	70.
76.	64.	86.	90.	107.	127.	203.	137.	90.	81.
98.	107.	134.	91.	84.	84.	87.	109.	107.	119.
170.	100.	87.	89.	102.	128.	143.	101.	100.	84.
96.	110.	135.	120.	109.	173.	148.	179.	135.	100.
108.	118.	133.	121.	133.	100.	88.	107.	85.	86.
97.	87.	80.	106.	124.	138.	137.	142.	112.	89.
102.	106.	107.	108.	99.	91.	69.	83.	78.	59.
62.	67.	47.	65.	46.	70.	81.	70.	68.	88.
86.	70.	102.	62.	76.	102.	136.	210.	153.	123.
106. 123.	124.	112.	112.	142.	130.	115.	118.	99.	123.

э,
Appendix P-12: step-intensity data of the 50 wt% olivine mixture of OI+Py, step size 0.01° 2θ

19.00	.01	139.00		50%-olivi	ne, 0.01	degree	two-theta		
92.	91.	94.	106.	98.	96.	94.	99.	98.	88.
78.	84.	82.	88.	94.	70.	80.	93.	77.	85.
86.	67.	96.	76.	87.	69.	78.	69.	73.	76.
89.	85.	96.	98.	83.	72.	91.	92.	88.	88.
83.	89.	78.	86.	77.	86.	83.	82.	91.	98.
87.	103.	89.	93.	92.	91.	90.	76.	92.	69.
101.	11.	97.	96.	84.	103.	69.	112.	90.	93.
91.	105.	92.	81.	100	90.	98.	95.	110.	110.
105.	122	120.	108.	102.	140.	118.	119.	120.	131.
102.	137.	149.	124.	176	167	161	130.	135	102.
110.	100.	120.	133	107	107.	101.	141.	101	197
107	121.	120.	105	107.	116	99	106	98	00
100	108	96	- 05. 93	112	94	104	84	70	87
102.	80.	94.	94.	80.	82.	83.	82.	96.	88.
69.	87.	79.	89.	94.	79.	82.	91.	85.	109.
85.	89.	76.	95.	101.	84.	89.	86.	93.	114.
91.	77.	89.	98.	102.	102.	84.	83.	64.	89.
85.	68.	85.	77.	72.	89.	90.	76.	73.	97.
77.	83.	88.	78.	94.	87.	85.	94.	58.	90.
70.	82.	82.	74.	86.	78.	68.	81.	76.	72.
75.	81.	76.	79.	86.	83.	79.	67.	75.	75.
74.	83.	74.	79.	58.	78.	86.	68.	59.	77.
76.	74.	83.	80.	81.	68.	71.	82.	74.	97.
81.	64.	100.	83.	60.	90.	72.	6/.	6/.	70.
/1.	62.	70.	81.	66. 64	/1.	86.	/5.	12.	67.
61. 65	04. 75	09. 71	72	04. 70	84	61	04. 75	80	73. 78
61	80	91	72.	82	78	61	84	73	70.
84.	74.	95.	69.	64.	67.	82.	70.	69.	77.
85.	88.	75.	71.	85.	64.	70.	87.	73.	74.
72.	61.	98.	101.	78.	70.	101.	71.	71.	90.
97.	67.	83.	74.	70,	66.	67.	73.	92.	65.
76.	71.	76.	71.	85.	100.	84.	99.	77.	80.
103.	94.	87.	93.	97.	104.	89.	111.	115.	118.
99.	103.	146.	133.	121.	133.	141.	117.	137.	135.
134.	186.	131.	170.	182.	208.	218.	214.	220.	248.
261.	231.	293.	338.	356.	401.	433.	471.	516.	566.
627.	652.	/0/.	658.	800.	849.	907.	907.	959.	966.
990.	1049.	10/8.	1066.	1024.	1035.	1064.	979.	920.	920.
370	330	306	204	000. 355	013. 237	242.	101	443. 186	415.
192	159	143	155	145	154	124	120	100.	121
112	108	114	119	112.	117.	97.	115.	102.	77.
94.	98.	96.	102.		92.	92.	98.	98.	93.
78.	97.	103.	85.	99.	98.	99.	93.	102.	112.
86.	103.	95.	105.	117.	119.	103.	119.	124.	143.
137.	134.	138.	128.	160.	156.	155.	192.	214.	203.
196.	226.	247.	263.	281.	281.	348.	314.	346.	391.
402.	376.	379.	416.	415.	420.	375.	365.	374.	367.
369.	299.	309.	312.	309.	238.	261.	222.	230.	199.
209.	200.	158.	166.	141.	146.	135.	130.	116.	119.
124.	135.	130.	129.	131.	116.	129.	114.	126.	121.
135.	115.	14/.	119.	145.	136.	14/.	149.	148.	123.
100.	101.	121.	141.	135.	123.	141. 100	112.	120. 07	121. 02
96 102.	ттЭ. ТТЭ.	105. 81	101. 77	ቻ/. 7ይ	104. 85	102. 79	92. 95	92. 88	- 20 70
90. 81	94. 86	93	14. 67	70. QQ	81	70	83	81 81	92. 92
66	76	91	69. 69	78	101	84.	82.	64	77
55.	77.	89.	70.	71.	74.	96.	80.	90.	
74.	90.	69.	92.	103.	91.	93.	95	83.	81.
102.	82.	85.	106.	99.	73.	113.	107.	99.	114.
116.	112.	137.	112.	139.	155.	151.	175.	170.	153.
202.	2.01.	225.	200.	219.	281.	265.	325.	331.	331.

361	408	437	473	471.	475	495.	532.	555.	574.
570.	572.	570.	593.	578.	591.	555.	603.	553.	572.
568.	501.	508.	545.	495.	454.	463.	443.	396.	381.
341.	378.	321.	297.	253.	273.	273.	231.	227.	198.
220.	187.	161.	152.	146.	138.	130.	124.	114.	103.
113.	104.	95.	107.	111.	96.	83.	103.	83.	85.
72.	87.	81.	87.	93.	68.	89.	80.	80.	74.
80.	/5.	90.	6Z.	79.	86.	84.	/6.	80.	97. CC
86.	88.	68. 07	52. 90	84-	88.	92.	82.	84. 95	104
70. 82	04. 112	07. Q3	09. 95	121	102	109	113	120	125
104.	144.	140.	151.	131.	151.	165.	174.	167.	203.
201.	214.	233.	239.	255.	260.	292.	314.	291.	300.
341.	334.	332.	331.	338.	366.	348.	347.	339.	339.
289.	272.	291.	265.	271.	241.	209.	205.	232.	176.
156.	171.	174.	155.	147.	155.	126.	130.	121.	115.
105.	121.	110.	90.	99.	102.	82.	81.	102.	107.
90.	85.	103.	93.	110.	67. 101	102	99. Q1	97.	111
90. 117	91. 101	90.	101	112.	99	116	125	138	148.
144.	157.	152.	177.	164.	157.	193.	204.	203.	230.
265.	271.	303.	326.	333.	386.	404.	420.	532.	523.
513.	614.	606.	676.	663.	708.	750.	726.	723.	736.
708.	729.	757.	678.	691.	649.	625.	627.	571.	506.
494.	492.	435.	364.	340.	290.	285.	278.	262.	234.
218.	182.	188.	167.	152.	151.	125.	139.	121.	120.
103.	111.	90.	101.	88.	95.	/9.	92.	107.	98.
89.	86.	97.	8/.	91.	68.	101.	93.	84.	63. 77
07. 75	77.	84. 78	91. 66	58	78	74	84	78.	60.
76.	70.	70.	71.	74.	78.	70.	70.	83.	86.
92.	86.	79.	76.	87.	110.	101.	71.	77.	93.
108.	91.	66.	76.	73.	84.	106.	92.	78.	93.
55.	82.	79.	71.	84.	90.	78.	82.	95.	88.
57.	74.	83.	101.	81.	90.	76.	88.	89.	64.
94.	102.	86.	83.	88.	65.	90.	83.	/5.	89.
89. 07	88.	90.	111.	/1.	95. 90	104.	87. 129	96. 104	96.
0J. 111	97. 121	07. 11/	110. 96		109	117	129.	116	118
135.	137.	128.	128.	164.	136.	148.	167.	155.	158.
146.	160.	191.	214.	190.	202.	211.	220.	244.	237.
257.	280.	293.	270.	311.	297.	315.	373.	351.	350.
391.	423.	403.	457.	455.	480.	528.	559.	580.	637.
665.	642.	701.	766.	834.	907.	1005.	1074.	1199.	1299.
1482.	1643.	1847.	1908.	21/3.	21/4.	2452.	2531.	2640.	2001.
2724. 2754	2702.	2034.	2980.	2333.	2273	2904.	2014.	1775	1760
1628	1505	1369	1250.	1214.	1077.	1047.	901.	858.	845.
870.	767.	790.	744.	766.	728.	795.	801.	815.	816.
826.	847.	939.	941.	959.	920.	951.	1017.	973.	993.
1024.	927.	942.	892.	893.	834.	860.	795.	767.	669.
610.	607.	544.	461.	496.	475.	409.	369.	339.	341.
342.	323.	315.	301.	261.	220.	256	255.	244.	∠60. 201
238.	235. 413	200.	269. 460	∠80. 488	503.	520.	593	577.	501. 692
736	41J. 847	922	886	895.	955.	1016	1000.	1016.	1070.
1066.	1122.	1002.	1017.	937.	936.	847.	856.	770.	723.
709.	621.	620.	554.	546.	477.	423.	398.	384.	327.
282.	311.	245.	230.	223.	241.	221.	187.	161.	169.
158.	141.	150.	134.	140.	135.	107.	129.	110.	114.
125.	115.	112.	120.	124.	112.	116.	98.	129.	. 98.
115.	99.	107.	128.	122.	114.	123.	105.	126.	129.
122.	124. 111	113. 172	121. 170	13U. 110	130. 199	107	11/. 112	112. 111	1109.
111. 111	123	143. 117	127. 88	119. 119	119	122	107	140	115
116.	136.	106.	121.	130.	121.	129.	130.	143.	140.
151.	152.	178.	164.	177.	191.	185.	199.	236.	219.
256.	265.	271.	314.	351.	365.	376.	448.	451.	534.
566	629	756	757	799	858	993	982	1064	1094

1192.	1194	1256	1320.	1335.	1359.	1301.	1312.	1281.	1214.
11/0	1000	1000	1007	1014	1333.	700	774	702	620
1142.	1000.	1002.	1007.	1014.	004.	709.	207	202.	050.
561.	541.	499.	401.	395.	346.	314.	307.	293.	250.
224.	219.	184.	173.	183.	154.	159.	140.	131.	128.
132.	121.	115.	126.	120.	97.	107.	108.	123.	113.
92.	93.	102.	108.	108.	108.	108.	84.	95.	102.
00	68	76	200	80	79	86	77	87	80
00.	00.	70.	69.	00.	70.	20.	0.2	72	50.
67.	61.	78.	68.	96.	78.	/1.	82.	12.	11.
80.	79.	67.	77.	73.	71.	81.	82.	70.	89.
90.	83.	82.	84.	67.	60.	56.	74.	73.	71.
76.	70.	58.	65.	58.	72.	63.	60.	61.	75.
62	73	53	76	65	58	56	70	76	80
62.	75.	55.	70.	70		20.	70.	70. EC	71
67.	90.	57.	90.	79.	12.	12.	01.	. 0C	/1.
76.	69.	65.	60.	68.	70.	82.	72.	81.	72.
62.	72.	62.	61.	67.	60.	86.	76.	73.	60.
70.	65.	65.	71.	68.	60.	83.	57.	77.	70.
71	84	66	85	80	72	72	66	73	R/
02	64.	71		70	72.	02.	71	100	77
82.	64.	/1.	13.	70.	//.	92.	/1.	100.	76.
67.	71.	77.	66.	77.	80.	59.	80.	76.	82.
92.	79.	68.	67.	79.	87.	93.	89.	93.	72.
67.	82.	84.	90.	90.	92.	92.	97.	90.	85.
77	89	91	77	89	92	94	93	95	85
102	70	110	05	116	112	100	111	110	104
102.	/8.	112.	95.	110.	113.	100.	111.	110.	104.
116.	127.	111.	123.	131.	14/.	130.	145.	14/.	133.
160.	172.	181.	170.	179.	174.	174.	185.	210.	205.
194.	207.	201.	214.	218.	234.	255.	232.	278.	299.
337	344	368	374	417	442	456.	464.	500.	500.
537.	613	506	457	674	724	737	731	751	750
570.	013.	390.	057.	074.	724.	137.	731.	751.	750.
112.	/31.	/5/.	/45.	723.	125.	688.	121.	652.	640.
647.	585.	559.	525.	550.	516.	521	485.	481.	476.
465.	444.	478.	459.	540.	506.	550.	518.	524.	562.
642.	617.	700.	749.	780.	893.	942.	1008.	1056.	1077.
1203	1358	1390	1515	1688	17/3	1932	2007	2082	2276
1203.	1000	1500.	1010.	2000.	1/40.	1032.	2007.	2002.	2270.
2388.	2507.	2606.	2621.	2675.	2693.	2814.	2821.	2873.	2893.
2833.	2971.	2892.	2967.	2891.	2876.	2825.	2785.	2697.	2653.
2560.	2476.	2399.	2278.	2217.	2187.	1957.	1826.	1695.	1570.
1520.	1388.	1295.	1197.	1106.	994.	924.	824.	758.	720.
681	604	518	554	456	473	395.	392.	345.	352.
360	216	365	216	210.	272	272.	205	264	261
209.	510.	505.	510.	312.	277.	271.	291.	204.	201.
312.	276.	325.	255.	307.	331.	333.	308.	308.	361.
378.	384.	441.	471.	465.	549.	545.	599.	693.	729.
846.	897.	957.	1014.	1090.	1176.	1269.	1316.	1421.	1533.
1587.	1675.	1698.	1797.	1741.	1769.	1810.	1702.	1737.	1675.
1677	1582	1498	1529	1429	1359	1268	1195	1149	1065
1077.	10020	006	707	1722.	1000	1200.	E 4 0	E20	1005.
993.	923.	090.	797.	731.	030.	202.	548.	520.	400.
419.	396.	358.	334.	342.	266.	219.	268.	245.	232.
205.	196.	190.	175.	177.	153.	172.	161.	136.	157.
132.	159.	143.	133.	122.	115.	133.	138.	117.	127.
113.	119.	123.	126.	91.	94.	79.	98.	111.	112.
95	107	109	93	107	82	105	97	76	88
01	107.	105.)J.	107.	52.	101.	60	, 0.	00.
01.	02.	69.	65.	09.	//.	00.	05.	32.	90.
89.	73.	80.	/5.	83.	100.	89.	104.	11.	107.
87.	90.	90.	83.	82.	93.	111.	107.	84.	100.
109.	97.	83.	101.	99.	113.	114.	123.	117.	134.
118.	117.	116	166	127	129.	136.	140.	152.	146.
1/3	136	1/3	131	140	150	140	120	95	1 4 7
193.	100.	141.	131.	149.	100	140.	100	100	141.
120.	138.	125.	132.	128.	123.	136.	122.	109.	106.
114.	121.	106.	100.	93.	115.	117.	117.	99.	101.
121.	139.	129.	124.	137.	168.	161.	181.	193.	205.
210.	224.	240.	215.	219.	253.	232.	286.	268.	270.
270	289	298	260	274	289	295	278	268	241
270.	202.	100	200.	2/3.	177	104	171	171	167
201.	230.	199.	210.	203.	1//.	194.	1/4.	1/1.	102.
167	149.	147.	139.	157.	118.	142.	111.	134.	121.
105.	111.	110.	98.	117.	125.	124.	122.	127.	119.
132.	133.	133.	168.	156.	151.	179.	168.	193.	217.
204	231	259	263	239	266	242	297	278	288
2010	20210	252.	2001	2022.	200.	222	271	220.	205
211.	J00.	202.	221.	200.	203.	203.	4/4+ 101	200.	29J. 711
204.	299.	298.	302.	297.	276.	291.	293.	2121	341.
345	355	371	370	419	432	459	502	488	506

620	530	E E C	624	189	517	404	195	470	510
141	100	JJ0. 415	204.	201	270	307	310	343	200
441.	404.	415.	200.	201.	319.	337.	340.	242.	290.
274.	309.	285.	310.	285.	306.	280.	209.	207.	290.
313.	328.	266.	3/4.	387.	407.	382.	427.	504.	535.
603.	590.	625.	681.	724.	666.	777.	698.	/98.	726.
840.	805.	864.	863.	818.	851.	802.	797.	685.	737.
698.	674.	638.	633.	581.	596.	612.	594.	526.	565.
564.	540.	514.	545.	524.	565.	557.	512.	577.	623.
582.	614.	728.	662.	733.	692.	678.	669.	673.	627.
686.	610.	591.	600.	620.	551.	518.	502.	457.	402.
422	446	377.	332.	333.	295.	286.	264.	246.	227.
196	190	151	151.	153.	140.	138.	148.	144.	129.
111	121	124	107	123	134	114	113	111	116
107	133	130	133	121	133	136	148	138	173
160	104	100	211	224.	222.	237	252	265	280
109.	211	109.	211.	220.	220.	237.	230	344	300.
200.	211.	291.	303.	335. 335	319.	JJ4. 367	2201	244.	200.
377.	332.	355.	382.	335.	320.	357.	333.	300.	327.
350.	306.	323.	335.	282.	302.	299.	325.	308.	280.
326.	316.	328.	304.	306.	311.	362.	353.	357.	365.
383.	355.	370.	356.	390.	363.	334.	343.	338.	333.
324.	321.	297.	270.	249.	243.	235.	222.	211.	216.
199.	183.	162.	164.	154.	133.	149.	139.	128.	124.
137.	115.	122.	112.	132.	124.	113.	111.	115.	127.
111.	106.	114.	113.	121.	113.	142.	148.	144.	150.
126.	151.	206.	156.	168.	226.	209.	216.	227.	248.
260.	317.	291.	322.	353.	363.	359.	395.	419.	396.
419.	435.	428.	447.	473.	482.	498.	492.	469.	506.
484.	461.	449.	483.	494.	477.	459.	475.	466.	429.
487.	433.	431.	442.	432.	416.	403.	385.	373.	377.
359	342	347	335	310	314	291	305.	271	290.
222.	271	256	227	268	233	239	252	252	301
222.	324	316	371	393	384	417	421	438	469
516	500	526	506	575.	596	500	500	565	561
510.	500.	530.	510	541.	170	165	161	300	203
540.	231.	228.	510.	200.	4/0.	400.	404.	390.	292.
405.	3/4.	325.	320.	209.	200.	200. 102	203.	241.	170
216.	200.	227.	201.	214.	172.	183.	1/1.	157.	170.
159.	1/1.	188.	167.	197.	180.	1/8.	216.	207.	231.
207.	225.	236.	229.	268	268.	312.	263.	278.	263.
284.	308.	304.	270.	297.	259.	272.	294.	253.	231.
248.	241.	235.	214.	220.	201.	189.	205.	177.	162.
168.	163.	153.	145.	138.	145.	135.	147.	131.	113.
138.	128.	121.	118.	133.	123.	127.	137.	123.	109.
134.	127.	140.	131.	135.	131.	144.	142.	120.	127.
125.	130.	145.	114.	151.	113.	138.	111.	126.	127.
125.	103.	131.	118.	125.	116.	143.	121.	132.	122.
102.	107.	119.	126.	123.	105.	107.	98.	105.	91.
122.	102.	104.	106.	68.	94.	105.	87.	93.	101.
79.	86.	84.	81.	80.	105.	74.	83.	94.	73.
104.	84	77.	100.	110.	82.	99.	107.	101.	99.
92	108	110	109.	114.	106.	123.	106.	127.	141.
121	148	152	157	153	162	184	177	206	204
224	254	250	287	316	343	366	382	396	443
224.	234.	475	564	554	600	612	687	651	646
440.	443.	470.	504.	640	600.	455	501	610	530
679.	107.	011.	450	405	034.	2020.	291.	207	210.
534.	499.	453.	458.	405.	446.	387.	303.	30/.	J44. 107
333.	298.	256.	279.	278.	242.	239.	209.	218.	197.
190.	225.	199.	209.	209.	196.	206.	227.	210.	269.
242.	268.	267.	284.	258.	324.	288.	341.	372.	356.
394.	377.	408.	392.	444.	448.	435.	444.	464.	452.
465.	443.	414.	433.	450.	420.	393.	435.	381.	421.
367.	418.	397.	395.	407.	369.	385.	312.	314.	290.
291.	281.	287.	246.	247.	231.	251.	223.	211.	166.
181.	166.	155.	177.	169.	135.	145.	114.	126.	103.
116.	107.	110.	103.	96.	112.	107.	104.	81.	97.
91.	72.	83.	73.	89.	76.	88.	77.	69.	67.
76.	68.	72.	89.	70.	94.	67.	88.	76.	72.
81	89	103.	63.	71.	105.	77.	98.	89.	86.
91	92	114	76.	86	97.	97.	115.	91.	97
136.	115.	110.	112.	159.	165.	173.	187.	199.	187.

195.	225.	229.	228.	235.	267.	255.	284.	293.	251.
253	273	248	234.	255.	234.	209.	215.	203.	211.
100	170	163	170	150	1 / 3	150	132	122	141
100.	170.	103.	1/0.	135.	143.	102.	122.	140	101
142.	128.	119.	109.	112.	112.	123.	133.	142.	121.
116.	142.	112.	117.	154.	140.	151.	118.	143.	136.
142.	134.	138.	137.	158.	147.	147.	140.	125.	146.
126	156	130	120	125	116	127	124	116	109.
120.	110.	100.	102	122.	110.	110	70	00	202.
106.	111.	102.	105.	122.	95.	112.	12.	<i>39</i> .	00. ()
96.	88.	74.	/1.	63.	/8.	11.	62.	79.	68.
75.	69.	62.	55.	63.	77.	65.	66.	72.	64.
52.	41.	64.	58.	69.	60.	65.	72.	58.	71.
69	56	59	61	61	68	64	55.	61.	55.
57		55. E1	67	G1.	55.	50	53	53	46
50.	62.	51.	57.	54.	55.	20.		55.	40.
46.	57.	55.	53.	49.	5/.	60.	6∠.	60.	64.
51.	62.	61.	63.	55.	57.	65.	63.	64.	64.
51.	55.	56.	58.	45.	57.	55.	56.	50.	57.
61	65.	61.	71.	55.	65.	54.	45.	58.	62.
55	40	40	61	50	58	62	61	54	51
55.	42.	40.	01.	30.		62.	01. C2	70	51. (E
59.	52.	55.	56.	/6.	61.	63.	63.	12.	00.
59.	54.	61.	73.	57.	74.	67.	58.	62.	67.
55.	69.	64.	78.	55.	68.	75.	70.	80.	78.
67.	83.	64.	60.	96.	79.	86.	86.	82.	88.
02	109	qq	111	126	134	117	116	145	137.
145	170	170	175	120.	104	161	170	146	150
145.	1/2.	1/6.	1/5.	146.	184.	101.	179.	140.	100.
163.	160.	174.	159.	139.	130.	124.	134.	114.	139.
120.	106.	119.	107.	108.	101.	102.	108.	102.	103.
83.	93.	105.	92.	83.	77.	110.	77.	83.	105.
80	83	102	89	109.	98.	110.	100.	84.	106.
100	02.	100	102	111	1 27	110	109	123	116
100.	0.0.	109.	102.	111.	127.	110.	107	160	124
126.	115.	124.	130.	120.	121.	123.	107.	152.	104.
127.	120.	116.	118.	111.	137.	103.	100.	112.	107.
122.	87.	98.	97.	116.	96.	74.	78.	87.	67.
82.	79.	88.	78.	88.	69.	75.	67.	83.	85.
75	74	79.	93.	74.	85.	73.	100.	106.	111.
100	04	00	104	114	110	130	117	170	167
109.	24.	175	104.	107	100	132.	275	2/0.	256
163.	164.	1/5.	104.	197.	100.	210.	225.	241.	230.
275.	259.	284.	291.	278.	265.	262.	285.	307.	330.
292.	282.	266.	331.	282.	261.	279.	251.	234.	243.
262.	269.	233.	227.	248.	199.	209.	200.	217.	217.
174	195.	173.	156.	156.	133.	157.	133.	129.	136.
140	110	112	100	110	11/	123	112	129	130
140.	119.	113.	109.	150	114.	170	165	207	175
138.	138.	163.	167.	109.	148.	1/3.	100.	207.	1/3.
194.	192.	191.	185.	187.	200.	221.	220.	229.	200.
200.	208.	209.	200.	184.	205.	181.	162.	189.	141.
166.	151.	149.	160.	148.	120.	146.	147.	130.	134.
108.	115.	103.	103.	108.	105.	119.	103.	106.	104.
96	102	120	111	100	89	87	123	134.	101.
114	102.	120.	1 7 2	100.	130	117	125	125	154
114.	127.	132.	120.	120.	133.	117.	125.	123.	134.
118.	124.	144.	139.	122.	141.	139.	100.	131.	139.
123.	152.	132.	117.	120.	120.	121.	146.	122.	112.
112.	98.	96.	94.	78.	86.	95.	100.	85.	82.
97.	83.	68.	82.	78.	71.	68.	78.	77.	70.
77	83	77	71	62	77	76	63.	91.	79.
70	60.	07	01	20	20	63	110	99	80
19.	00.	97.	01.	09.	107.	120	110.	100	07
112.	93.	93.	95.	91.	107.	120.	110.	109.	07.
121.	95.	108.	117.	111.	137.	118.	131.	112.	99.
119.	126.	146.	103.	117.	97.	162.	144.	136.	140.
131.	160.	130.	162.	141.	159.	166.	161.	160.	176.
147	192	188	215	212	208	216	257	273.	263
747.	300	304	357	305	200.	136	150	573	590
200.	500.	500.	554.	J 70.	50/ .	400.	1000	1101	1171
625.	699.	/44.	/6/.	858.	940.	1003.	1000.	1101.	11/1.
1200.	1200.	1311.	1352.	1354.	1430.	1437.	1462.	1382.	1345.
1410.	1316.	1301.	1317.	1240.	1215.	1219.	1117.	1087.	1123.
1062.	925.	1012.	974.	919.	898.	827.	818.	854.	800.
7.91	780	707	710	680	638	684	656	549.	529
552	520	100	161	160	457	404.	302	421	389
222.	220.	422.	304.	407.	220	764.	224.	300	350.
358.	359.	321.	320.	289.	320.	514.	∠88 .	508.	250.
296.	250.	250.	249.	222.	229.	232.	232.	181.	221.
192.	181.	193.	197.	158.	181.	175.	140.	152.	162.

				4.45			120	1 7 1	110
148.	129.	153.	149.	143.	132.	115.	130.	131.	119.
99.	92.	103.	111.	103.	94.	117.	124.	100.	107.
125.	101.	114.	102.	114.	112.	131.	117.	117.	120.
98	124	99	115	113.	117.	117.	109.	96.	107.
100	124.	100	105	110	110	106	107	97	95
106.	105.	108.	105.	110.	110.	100.	107.	04	04
93.	99.	95.	103.	99.	15.	88.	96.	94.	04.
89.	86.	98.	81.	80.	63.	77.	76.	92.	87.
81.	57.	88.	83.	76.	85.	71.	82.	49.	70.
70	75	71	63	57	56	72	67.	59.	66.
12.	73.	71.	03.	27.	50.	62.	50	46	60
62.	13.	/1.	61.	12.	60.	02.		40.	50.
63.	65.	48.	66.	51.	60.	60.	46.	62.	51.
85.	73.	70.	76.	64.	49.	72.	60.	76.	46.
67	66	61	76	64.	74.	82.	75.	63.	59.
70	60.	67	07	73	54	79	78	63	71
76.	60.	67.	01.	73.	100	15.	70.	00.	0
87.	84.	79.	100.	63.	109.	96.	00.	90.	90.
89.	85.	94.	111.	116.	110.	125.	108.	111.	117.
136.	140.	132.	144.	162.	147.	157.	166.	184.	156.
188	215	205	162	202	245.	271.	245.	293.	298.
100.	213.	203.	220	270	320	363	361	384	362
285.	297.	336.	339.	379.	329.	202.	242	204.	302.
374.	400.	386.	376.	393.	422.	358.	342.	352.	544.
348.	372.	366.	329.	331.	335.	298.	310.	292.	261.
260.	270.	236.	240.	209.	227.	217.	175.	184.	178.
170	100	163	170	177	151	142	170.	181.	169.
1/2.	109.	100.	210	200	100	100	227	200	207
204.	205.	188.	210.	200.	199.	190.	170	170	207.
203.	193.	192.	203.	215.	187.	197.	172.	172.	204.
171.	174.	180.	175.	159.	152.	150.	170.	140.	146.
160	151	123	140.	134.	135.	124.	113.	114.	128.
115	191.	103	07	108	118	137	129	105.	120.
112.	99.	123.	100	100.	117	101	117	107	120
104.	114.	138.	132.	130.	11/.	121.	11/.	127.	120.
173.	151.	149.	149.	177.	220.	209.	244.	263.	257.
221.	220.	273.	304.	264.	306.	271.	313.	310.	320.
362	324	354	337.	360.	357.	332.	316.	331.	343.
202.	224.	207	200	200	320	303	264	288	301
309.	320.	307.	200.	290.	327.	202.	201.	200.	230
265.	271.	277.	261.	249.	258.	200.	204.	247.	239.
272.	274.	279.	305.	268.	274.	289.	290.	330.	324.
361.	354.	368.	387.	453.	484.	512.	533.	592.	617.
640	691	717.	758.	833.	857.	895.	913.	882.	936.
001	010	968	964	951	940	888.	881.	902.	914.
001.	910.	200.	002.	701	016	010	765	800	702
877.	874.	898.	882.	701.	040.	012.	705.	522	102.
660.	639.	649.	629.	581.	535.	572.	513.	532.	484.
463.	510.	436.	397.	447.	401.	415.	390.	382.	346.
347	307.	318.	302.	256.	277.	271.	262.	263.	248.
224	212	213	206	224	194	178.	183.	183.	161.
101	212.	120	150	1 17	1/2	145	156	158	132
101.	169.	138.	100.	147.	142.	142.	140	100.	140
143.	123.	122.	135.	120.	140.	123.	142.	135.	149.
138.	124.	118.	155.	145.	130.	139.	124	130.	136.
136.	144.	134.	153.	132.	125.	145.	126.	124.	131.
123	126	115	110.	133.	131.	122.	135.	128.	146.
140	120.	147	163	159	150	171	149.	130.	146.
149.	139.	147.	1 4 1	157	150.	1 / /	140	144	151
150.	144.	100.	141.	157.	100.	144.	190.	144.	1 4 4
158.	159.	150.	145.	133.	120.	172.	135.	159.	144.
119.	142.	131.	159.	133.	146.	141.	139.	132.	130.
150	151	137	144	138.	127.	126.	135.	122.	135.
104	101.	120	120	120	136	151	118	118	128.
134.	100.	130.	120.	150	1 4 1	101	125	147	120
122.	120.	115.	123.	150.	141.	121.	100	147.	130.
158.	171.	156.	172.	176.	178.	190.	186.	206.	1/3.
204.	229.	203.	213.	202.	212.	194.	223.	230.	212.
200	222	219	182	207.	184.	217.	204.	193.	220.
200.	100	222	102.	174	100	185	161	177	165
216.	190.	220.	198.	174.	1/0	165.	154	170	157
170.	1/5.	140.	108.	100.	160.	102.	104.	1/4.	10/ 1
165.	150.	144.	126.	153.	157.	169.	141.	151.	122.
153.	155.	174.	167.	170.	181.	163.	159.	194.	150.
161	120	172	161	165	160	176.	161.	146.	153.
1011	140	100	101	100	105	140	126	126	134
122.	148.	130.	101.	120.	140.	140.	120.	120.	105
119.	113.	147.	125.	110.	113.	96.	95.	95.	103.
99.	97.	89.	117.	95.	117.	114.	117.	122.	127.
124	118.	158.	141.	134.	132.	155.	154.	158.	164.
167	157	171	178	162.	147.	168.	190.	188.	197.
107.	1 7 / •	101	101	150	166	158	123	140	162
10/.	±//•	TOT .	TOT.	100.	T00.		100.	110.	2020

147	135	142	129	131	149	135	125.	124	120
177.	110	00	100	100	- 12.	05	01	101	04
97.	113.	98.	100.	109.	92.	95.	04.	101.	94.
86.	90.	87.	99.	103.	90.	108.	99.	114.	95.
89.	95.	97.	122.	118.	117.	112.	116.	128.	104.
136	128	106	119	121	127	122	130	138	133
110.	120.	100.	107	150	1.66	102	150.	101	160
119.	130.	154.	15/.	152.	166.	183.	128.	191.	162.
183.	170.	200.	194.	191.	239.	226.	194.	223.	218.
222.	229.	234.	233.	269.	229.	244.	269.	254.	259.
262	264	105	270	202	201	304	307	304	310
262.	204.	203.	270.	232.	JZ1.	JU4.	507.	504.	515.
304.	314.	293.	314.	310.	295.	315.	278.	291.	291.
307.	307.	297.	306.	290.	295.	303.	315.	285.	284.
269	281	279	280.	311.	298.	278.	273.	2.67.	276.
202.	771	277	240	265	220	2/1	256	264	220
203.	2/1.	211.	200.	200.	423.	241.	200.	204.	229.
239.	246.	253.	229.	250.	251.	271.	242.	229.	262.
256.	228.	226.	232.	253.	258.	248.	238.	244.	250.
223.	268.	242.	259.	263.	245.	275.	270.	316.	282.
204	250	221	333	356	350	370	121	300	116
504.	550.	221.	333.	550.	107	570.	421.	599.	440.
415.	460.	464.	4/4.	4//.	497.	528.	218.	599.	592.
568.	584.	562.	603.	616.	579.	604.	626.	610.	609.
640	584	654.	700.	634.	638.	700.	655.	725.	736.
707	607	724	661	627	601	606	570	570	5/3
702.	570	734.	501.	527.	021.	450	111	170.	400
54/.	572.	525.	519.	504.	484.	453.	441.	453.	422.
422.	402.	398.	375.	381.	336.	325.	342.	297.	288.
284.	304.	303.	337.	269.	279.	266.	251.	250.	241.
244	222	235	233	257	253	269	283	281	307
244.	200	233.	233.	237.	200	202.	202.	2010	307.
283.	288.	211.	278.	270.	299.	291.	331.	351.	301.
375.	398.	398.	431.	436.	511.	496.	501.	597.	621.
596.	643.	588.	716.	656.	679.	685.	741.	689.	696.
694	723	660	737	693.	702.	694	641.	675.	646.
(71	(15	E06	517	501	400	502	161	161	467
0/1.	015.	500.	527.	521.	402.	202.	401.	404.	407.
381.	403.	405.	413.	323.	336.	303.	258.	288.	290.
246.	236.	201.	191.	212.	174.	180.	190.	177.	155.
142.	171.	165.	163.	128.	145.	141.	122.	143.	152.
120	133	1 3 1	130	114	128	129	132	132	119
129.	133.	100	137.	110	120.	105	1 45	102.	12/
119.	134.	138.	119.	112.	138.	125.	145.	131.	136.
125.	122.	131.	115.	104.	134.	104.	130.	110.	111.
112.	112.	134.	101.	118.	102.	108.	111.	114.	98.
110	99	109	112	109.	109.	121.	111.	100.	131.
110.	100	110	174	105.	115	115	105	100.	07
125.	100.	110.	124.	105.	110.	113.	105.	109.	97.
104.	111.	120.	86.	106.	100.	103.	105.	88.	97.
91.	84.	73.	79.	82.	97.	92.	96.	91.	80.
60.	84.	77.	81.	74.	68.	59.	76.	65.	80.
60	75	63	82	86	81	85	93	81	63
20.	7.5.	03.	02.	00.	01.	110	104	01.	05.
18.	/1.	92.	84.	85.	81.	112.	124.	99.	95.
117.	91.	105.	102.	106.	138.	133.	129.	133.	124.
114.	129.	109.	127.	132.	129.	108.	121.	149.	117.
135	110	133	123	133	143	141	129	155	136.
142	145	133	150	1/0	144	130	130	148	161
145.	140.	100.	159.	140.	144.	130.	130.	140.	101.
169.	178.	163.	158.	149.	156.	163.	164.	1/6.	160.
163.	167.	135.	158.	154.	163.	164.	140.	127.	153.
153.	134.	132.	123.	147.	119.	137.	115.	123.	105.
112	106	127	92	98	118	87	107	89	93
112.	100.	104	22.	.02	110.	07.	107.	00.	<u> </u>
90.	101.	104.	99.	8/.	110.	94.	105.	96.	98.
87.	102.	88.	111.	95.	99.	87.	104.	111.	128.
133.	116.	132.	128.	115.	127.	147.	152.	155.	152.
154	171	153	178	188	201.	211	212.	197.	243.
246	251	102	200	100.	201	340	261	366	304
240.	251.	203.	290.	201.	504.	340.	501.	500.	594.
312.	416.	420.	500.	4//.	525.	553.	532.	54/.	539.
556.	533.	562.	497.	488.	532.	498.	493.	470.	481.
420.	423.	406.	395.	413.	395.	379.	370.	345.	365.
395	370	3/0	340	208	280	201	267	208	277
333.	J/7.	J4U.	107	220.	207.	471.	201.	490.	4// •
246.	231.	218.	183.	207.	194.	184.	184.	1/4.	1//.
157.	177.	165.	186.	175.	153.	174.	154.	151.	170.
183.	181.	184.	200.	216.	204.	216.	227.	229.	220.
266	2.63	291	313	276.	317.	305.	324	322	377 -
317	224	221	333	200.	345	320	320	322	346
74/.	JJ4.	202.	222.	547.	242.	J20.	567.	366.	540.
338.	331.	523.	330.	308.	325.	335.	328.	280.	205.
282.	282.	273.	264.	278.	263.	263.	267.	245.	244.
246.	269.	238.	283.	259.	278.	298.	279.	266.	259.

291	294	324	325	337	364	323	374	388	369
341.	377.	371.	340.	360.	374.	301.	340.	343.	348.
356.	353.	343.	324.	329.	323.	324.	311.	302.	290.
299.	282.	274.	278.	276.	248.	238.	263.	211.	235.
235.	268.	237.	223.	255.	231.	276.	272.	263.	264.
291.	312.	300.	342.	328.	283.	348.	326.	333.	327.
330.	277.	276.	254.	279.	231.	261.	247.	219.	230.
218.	260.	220.	196.	234.	224.	229.	200.	193.	184.
187.	152.	1/2.	148.	136.	1/5.	153.	138.	123.	125.
104	99. 75	114.	97.	70.	97.	69	99. 92	104	115. NØ
75.	99.	93.	97.	80.	99.	77.	97.	76.	94.
89.	87.	87.	96.	92.	113.	96.	94.	109.	113.
110.	124.	133.	109.	121.	132.	120.	106.	149.	108.
105.	125.	121.	142.	119.	120.	140.	132.	112.	132.
119.	119.	125.	125.	126.	115.	112.	106.	120.	111.
110.	121.	100.	99.	116.	104.	97.	115.	93.	106.
107.	90.	99.	92.	105.	93.	106.	92.	89.	88.
76.	91.	95. 71	/3.	80.	74.	79.	70. 97	71.	6∠. 70
74	60.	71.	80.	70.	7J. 86	66	77	71.	75
84.	74.	62.	73.	70.	84.	89.	78.	69.	83.
77.	81.	82.	87.	80.	79.	72.	78.	113.	85.
90.	117.	99.	95.	113.	92.	88.	112.	120.	96.
110.	123.	128.	116.	137.	135.	154.	142.	132.	158.
163.	201.	189.	209.	222.	224.	238.	276.	278.	283.
295.	274.	283.	300.	295.	322.	340.	352.	331.	297.
356.	319.	308.	322.	314.	311.	299.	328.	317.	289.
318. 299	263	331. 266	287.	328.	3∠1. 221	250	334. 233	270.	200. 204
194	189	189	184	185	198.	187.	174.	171.	156.
142.	165.	135.	183.	152.	168.	127.	149	139.	128.
159.	126.	137.	114.	114.	131.	115.	111.	120.	138.
106.	90.	88.	111.	94.	99.	89.	113.	97.	95.
87.	95.	109.	90.	83.	76.	82.	86.	70.	96.
64.	87.	78.	80.	71.	85.	90.	68.	75.	75.
63. 00	/5.	/4.	93.	91.	/8.	86.	/6.	97.	80.
103	99.	93.	105.	86. 96	100.	82. 143	95. 140	132	92.
150	90. 142	167	186	190.	184	143.	182	226	190.
176.	193.	211.	235.	228.	196.	209.	245.	231.	213.
214.	256.	215.	224.	231.	223.	198.	227.	235.	212.
223.	243.	253.	238.	271.	243.	259.	270.	228.	264.
256.	259.	243.	251.	240.	226.	242.	234.	256.	242.
237.	212.	228.	222.	223.	212.	218.	225.	219.	205.
219.	212.	202.	228.	206.	191.	191.	218.	208.	199.
223.	220.	229.	198.	231.	247. 297	259.	249.	244.	308
265.	304.	294	304.	307.	293.	273.	314.	303.	286.
309.	280.	295.	264.	232.	285.	244.	261.	246.	204.
245.	247.	234.	228.	205.	232.	226.	222.	199.	190.
178.	194.	164.	168.	174.	173.	160.	143.	167.	139.
132.	144.	148.	118.	113.	108.	132.	117.	99.	108.
85.	82.	92.	94.	83.	88.	75.	99.	94.	84.
84. 40	79.	74.	58. 69	61. 75	69. 64	73.	68. 56	6U. 79	73. 63
59	56	53	77	7J. 80	67	59	55	75	68
76.	60.	66.	49.	55.	68.	64.	77.	66.	68.
59.	74.	74.	68.	73.	92.	78.	66.	67.	68.
85.	94.	72.	80.	86.	90.	78.	93.	106.	110.
115.	93.	103.	102.	120.	115.	112.	112	99.	116.
106.	110.	132.	131.	139.	107.	105.	119.	106.	121.
125.	117.	125.	126.	136.	113.	128.	116.	127.	141.
124.	±14. 110	102	117. 05	102 102	90. Q7	141. 115	133. 11/	104. QQ	101
93	111	111	109	122	108	126	108	101	142
151.	126.	138.	136.	154	154.	146.	150.	165.	157.
160.	161.	173.	154.	168.	191.	162.	172.	166.	164.
149.	181.	161.	186.	153.	160.	161.	173.	159.	156.

138.	185.	151.	166.	159.	149.	178.	156.	178.	158.
188.	185. 219	194. 271	178. 222	170.	197. 250	184. 230	181.	206. 236.	176. 215
200.	229.	240.	256.	234.	217.	175.	215.	207.	238.
194.	229.	242.	228.	231.	201.	186.	197.	198. 122	184.
129.	128.	126.	116.	111.	133.	112.	114.	122. 110.	98.
94.	98. 70	93.	79.	85.	93.	78.	71.	93.	90. 77
81.	105.	82,	88. 81.	83. 84.	76. 76.	83. 94.	97.	99.	87.
100.	119.	101.	90.	115.	94.	100.	128.	130.	106.
115.	105.	116. 130.	122. 131.	117.	122. 153.	126. 141.	145.	122. 144.	123. 119.
133.	169.	168.	142.	158.	148.	159.	151.	170.	150.
151. 188.	180. 175.	155. 199.	161. 186.	164. 178.	$\frac{1}{2}$.	166. 191.	1/5. 181.	$181. \\ 189.$	194. 213.
187.	186.	191.	171.	166.	178.	176.	174.	176.	188.
192. 182.	158. 169.	190. 198.	213. 163.	193. 190.	159. 163.	183.	1/1. 172.	192. 170.	170.
147.	145.	169.	151.	134.	138.	140.	136.	150.	140.
132.	134.	125. 136.	128.	141. 120.	131. 128.	133.	123.	136. 127.	144.107.
109.	105.	95.	93.	114.	103.	104.	103.	101.	115.
104. 110	118. 122	107. 97	121. 117	111.	107. 125.	125.	113.	110. 152.	115. 160.
155.	158.	181.	176.	171.	188.	207.	186.	205.	218.
204.	231. 198	217. 207	236.	243. 176	230. 206.	233.	228. 202.	205. 191.	223. 166.
169.	195.	170.	198.	186.	175.	226.	177.	196.	172.
177. 118	181.	163.	167. 119	156. 105	156. 106	131.	142.	130.	132.
104.	97.	79.	94.	95.	87.	123.	88.	97.	103.
87. 86	84. 76	85. 65	100.	94. 87	78. 70	99. 82	69. 88	72.	73. 85
73.	93.	87.	78.	92.	70.	93.	94.	84.	92.
98.	80. 85	96. 01	105.	86. 80	90. 108	102.	86. 74	80. 96	77. 103
94. 87.	86.	99.	80.	90.	84.	87.	87.	76.	87.
70.	88.	84.	90. 70	80.	83. 70	91. 91	97. 73	89. 80	76.
94. 76.	73.	86.	79.	88.	94.	95.	86.	75.	101.
87. 02	113.	97.	83.	94. of	111.	118.	110.	91. 107	111.
92. 101.	109.	84.	95.	95. 91.	113.	92. 99.	100.	98.	89.
80.	93.	100.	80.	107.	80.	90. 77	96. 70	80. 04	75.
93.	94. 84.	83. 84.	84. 62.	66.	76.	78.	79.	82.	55. 79.
62.	95.	75.	71.	65.	80.	65.	88.	87. 70	78.
82. 71.	84. 82.	89. 74.	81. 98.	105.	83. 57.	70.	84. 78.	98.	97.
74.	88.	94.	101.	106.	103.	96.	104.	120.	105.
112.104.	94. 107.	121. 111.	90.	114. 91.	100.	122. 102.	100.	109. 88.	105. 91.
83.	90.	89.	94.	94.	93.	89.	94.	82.	92.
93. 63.	102.	79. 59.	88. 65.	63. 70.	75. 60.	92. 60.	78. 60.	75. 52.	86. 53.
63.	60.	67.	63.	61.	54.	48.	61.	62.	45.
54. 60.	46. 49.	55. 57.	51. 49.	64. 65.	46. 62.	52. 63.	41. 48.	59. 48.	45. 61.
64.	65.	61.	54.	62.	62.	58.	60.	52.	57.
56. 54.	65. 52.	51. 64.	61. 47.	62. 58.	57. 47.	44. 51.	41. 62.	52. 55.	54. 49.
59.	66.	59.	55.	49.	41.	65.	60.	52.	39.
58. 53	53. 43	48. 52	47. 65	44. 57	57. 56	49. 56	48.	65. 48.	64. 45
38.	62.	59.	61.	69.	57.	74.	55.	68.	61.
72. 67	60. 71	55. 76	66.	56. 86	76. 70	64. 80	78. 81	66. 78	74. 71
98.	95.	94.	98.	94.	104.	114.	113.	122.	102.

111	130	100	1 3 3	130	100	100	110	140	135
151	131	115	101	130.	120.	120.	95	109	103
124	118.	101	98.	91	82	117	96.	103.	80.
97.	100.	91.	90.	103.	72.	103.	96.	76.	72.
97.	71.	81.	73.	82.	87.	81.	70.	69.	62.
70.	64.	61.	61.	63.	61.	78.	65.	75.	70.
68.	80.	62.	66.	49.	66.	60.	62.	58.	57.
50.	69.	75.	48.	56.	49.	56.	51.	55.	47.
56.	45.	56.	64.	51.	58.	59.	59.	53.	58.
45.	58.	65.	55.	52.	65.	50.	51.	62.	70.
68.	69.	64.	57.	64.	71.	74.	59.	72.	76.
71.	66.	64.	89,	75.	87.	62.	72.	60.	78.
80.	83.	81.	81.	78.	58.	64.	71.	63.	93.
77.	89.	91.	83.	74.	84.	79.	83.	82.	76.
95.	77.	104.	88.	79.	102.	80.	84.	98.	91.
98.	102.	115.	102.	123.	104.	106.	120.	117.	119.
122.	121.	125.	136.	138.	129.	128.	118.	105.	112.
124.	128.	128.	113.	94.	121.	108.	115.	130.	131.
124.	102.	116.	116.	134.	133.	123.	151.	123.	128.
119.	141.	141.	151.	149.	133.	124.	156.	160.	153.
144.	125.	153.	114.	142.	116.	118.	121.	108.	105.
109.	131.	106.	98.	108.	112.	84.	91.	114.	81.
91.	97.	106.	94.	114.	88.	120.	88.	96.	108.
88.	77.	79.	84.	88.	66.	81.	81.	92.	69.
78.	77.	66.	73.	76.	81.	72.	61.	83.	55.
84.	/4.	86.	59.	72.	68.	84.	69.	68.	63.
82.	64.	80.	/3.	81.	81.	88.	/4.	61.	84.
17.	/4.	81.	83.	95.	92.	/6.	93.	94.	95.
92.	112.	128.	98.	103.	93.	112.	127.	108.	12/.
135.	112.	123.	110.	127.	102.	110.	120.	129.	103.
95.	117.	110	141.	104.	80.	109.	92.	104.	102.
112.	102.	111	111.	112	90.	109.	30. 100	95.	10.
129.	90.	111.	110	113.	104.	101.	108.	90.	130
100.	120	112.	110.	137	120	136	117	127	110.
142	120.	150	113	131	144	154	139	119	151
143	144	156	160	151.	157	136	139	152	138
170	154	136	152	142	157	151	174	175	150.
156	132	154	149	140	140	121	134	120	139
136.	127	128.	120.	139.	131.	131.	130.	109.	108.
138.	112.	126.	119.	118.	107.	117.	91.	123.	107.
102.	98.	96.	99.	103.	116.	93.	107.	108.	121.
109.	113.	122.	130.	86.	108.	120.	103.	127.	138.
110.	128.	145.	138.	120.	133.	138.	143.	130.	118.
144.	118.	130.	129.	125.	125.	120.	127.	123.	112.
118.	111.	119.	93.	122.	125.	126.	130.	100.	105.
105.	123.	141.	119.	129.	128.	130.	119.	153.	120.
160.	140.	140.	147.	168.	134.	130.	147.	126.	149.
142.	111.	131.	121.	107.	108.	120.	110.	113.	117.
106.	99.	114.	130.	111.	118.	122.	103.	111.	92.
114.	115.	108.	103.	111.	92.	90.	106.	122.	78.
87.	116.	82.	87.	90.	109.	88.	80.	92.	73.
89.	80.	78.	77.	82 -	83.	96.	78.	92.	81.
82.	84.	74.	81.	67.	74.	71.	71.	56.	80.
88.	67.	75.	63.	68.	67.	71.	82.	61.	69.
58.	70.	62.	84.	66.	87.	82.	70.	/1.	88.
79.	84.	97.	115. 07	90.	94.	86.	89.	98.	95.
98.	104.	94.	97.	94.	90.	102.	93.	87.	91.
88.	/1.	92.	72.	65. 01	90.	79.	94.	81.	69.
93. 01	07. 60	94. OF	92. 70	91. 70	0D. 04	0V. 00	ジエ・ フロ	71.	09. 70
01. 01	99. 76	72. 00	/δ. 70	10.	04. 77	00. 75	/ D . 7 E	/U.	/y. 77
91. 70	10.	02. 70	12. 70	07. 70	12.	10.	75.75	02. 65	12. QA
טי. רר	0J. 65	74.	70. 50	/U. 60		00. 70	75.	00. QQ	04. 70
79	70	67	39. 70	00. QD	7J. 96	07 07	92	02. 00.	70. Q1
20. 20	94	90	96	90.	82	93. 77	102	20. 80	24. 80
74	80 24.	94	20.	78 78	75	90	82	56	78 78
72	66.	86	86.	62.	70	72	71	77.	79
76.	78.	88.	77.	92.	91.	74.	95.	73.	69.

÷

64.	82.	80.	64.	61.	67.	63.	58.	59.	73.
51.	67.	59.	70.	62.	59.	61.	66.	55.	66.
61.	43.	67.	68.	54.	52.	67.	52.	49.	59.
48.	64.	52.	53.	57.	59.	60.	64.	55.	62.
53.	50.	64.	59.	57.	56.	52.	72.	65.	60.
65.	65.	62.	69.	75.	91.	63.	79.	65.	87.
78.	106.	80.	82.	101.	82.	98.	90.	95.	101.
01. 71	90. 07	90.	76. 97	63. 96	77.	84	101. 87	72.	75
7±. 81	80 80	79	78	83	74.	85	70	75	82.
66.	73.	63.	71.	62.	69.	71.	80.	55.	78.
80.	73.	62.	59	79.	70.	70.	76.	77.	85.
93.	92.	72.	111.	100.	102.	92.	95.	116.	113.
140.	105.	124.	118.	114.	150.	135.	152.	124.	125.
143.	138.	142.	119.	138.	125.	140.	123.	109.	103.
120.	91.	109.	107.	89.	107.	103.	103.	107.	99.
102.	104.	108.	107.	113.	106.	111.	111.	96. 91	95. 84
90. 90	93. 70	99. 79	87. 88	105.	70. 70	79	90. 77	70	66
64	76	48.	66.	66.	64.	68.	48.	68.	66.
75.	59.	58.	70.	55.	57.	65.	64.	58.	57.
48.	42.	55.	61.	60.	47.	57.	41.	56.	50.
54.	44.	54.	57.	49.	54.	50.	54.	56.	43.
55.	49.	63.	55.	47.	55.	54.	38.	46.	53.
60.	66.	60.	48.	41.	56.	52.	53.	41.	53.
49.	74.	48.	68.	55.	58.	6U.	57.	12.	85.
54.	55.	62.	61. 75	66. 76	12.	68. 83	63. 76	71	75.
59. 72	00. 59	69	81	88	74	90.	78.	77.	72.
71.	59.	87.	74.	96.	83.	95.	96.	100.	115.
104.	91.	94.	76.	108.	89.	108.	123.	118.	101.
109.	144.	113.	125.	125.	114.	124.	114.	104.	94.
116.	117.	128.	126.	156.	135.	133.	130.	123.	136.
155.	164.	148.	140.	139.	130.	118.	133.	150.	163.
132.	131.	138.	141.	116.	125.	128.	130.	146.	126.
125.	121.	139.	105.	148.	119.	139.	137.	119.	123.
127.	105	149.	113.	123.	108	120.	131	116.	129.
122.	140.	122.	120.	126.	115.	119.	135.	136.	128.
139.	137.	141.	163.	145.	142.	163.	192.	195.	198.
201.	195.	163.	205.	184.	192.	207.	229.	217.	219.
242.	227.	228.	243.	288.	240.	256.	264.	229.	261.
283.	263.	278.	248.	239.	237.	245.	238.	251.	211.
240.	251.	228.	191.	210.	206.	219.	231.	210.	231.
256.	243.	244.	221.	235.	215.	2/1.	∠48. 202	270.	268.
212.	203.	270.	260.	250.	207.	273.	292.	275.	189
207.	182	194	190.	179.	192.	183.	180.	186.	197.
178.	189.	220.	200.	201.	189.	177.	190.	182.	167.
187.	222.	184.	170.	209.	197.	173.	165.	161.	175.
174.	165.	177.	179.	173.	193.	177.	185.	159.	198.
203.	197.	180.	205.	210.	215.	205.	181.	162.	213.
230.	242.	191.	201.	236.	177.	235.	201.	218.	205.
226.	166.	198.	202.	211.	195.	218.	191.	201.	181.
170.	108.	159.	105.	134	104.	157.	155	142	165
140	120	151	140.	146.	157.	142.	131.	114.	115.
102.	116.	104.	115.	102.	96.	112.	85.	82.	92.
82.	110.	72.	85.	91.	100.	102.	93.	86.	86.
97.	98.	78.	104.	67.	95.	86.	72.	77.	70.
88.	79.	70.	87.	95.	85.	77.	74.	79.	76.
74.	84.	73.	70.	95.	81.	76.	76.	61.	93.
65.	68.	60.	69.	69.	86.	90.	69. 102	/9.	85.
70.	63. 07	86. 01	94. of	92. ΩΩ	82. 70	/4. QE	103. 07	90. 101	94. 101
100. 111	04. QQ	71. 106	102.	115	97. 97	120	116	115	115
110	91	108.	95	105.	117.	114.	116.	112.	117.
126.	147.	139.	110.	113.	113.	131.	134.	134.	126.
113.	131	121.	129.	97.	119.	92.	102.	97.	129.

. 5

100	95	111.	92.	103.	87.	116.	112.	96.	104.
	110	100	102	0.4	04	0.2	00	0.0	110
90.	119.	102.	102.	54.	94.	95.	09.	50.	110.
109.	116.	91.	97.	99.	82.	107.	99.	111.	94.
1.0.1	07	100	0.2	115	100	03	101	91	100
101.	51.	100.	110	+	107.	0.5.	101.	0.0	1001
102.	86.	91.	110.	97.	107.	94.	92.	96.	82.
82.	108.	88.	105.	84.	95.	73.	94.	84.	114.
00	01	110	01	01	05	76	06	70	80
33.	81.	112.	91.	21.	90.	10.	00.	70.	09.
88.	87.	81.	94.	99.	91.	87.	106.	88.	93.
02	106	0.0	105	00	0.0	05	92	83	77
95.	100.	90.	105.	52.	90.	25.	22.	0.0.	105
93.	101.	87.	113.	97.	90.	96.	95.	98.	105.
113	109	117.	96.	120.	120.	111.	118.	120.	129.
100	1100.	111	117	120.	220,	110	100.	101	100
125.	116.	114.	113.	136.	116.	118.	120.	121.	120.
117.	127.	136.	136.	137.	122.	137.	131.	132.	123.
107	100	1 4 3	1 4 0	1.00	120	150	154	107	103
127.	132.	145.	142.	100.	120.	152.	104.	107.	195.
213.	185.	192.	237.	210.	225.	233.	217.	212.	240.
204	230	215	204	215	188	194	185	192	172
204.	250.	213.	204.	427	100.	100	140	120	105
173.	164.	139.	156.	137.	142.	138.	149.	130.	105.
123	143	134	140.	131.	148.	123.	113.	146.	148.
140	1 15 .	1 2 2 1 4	110	120	110	104	100	00	0.4
142.	145.	132.	118.	139.	113.	104.	122.	92.	94.
107.	100.	95.	97.	112.	91.	83.	102.	68.	78.
70	00	0.0	76	65	60	79	84	64	72
10.	02.	50.	70.	00.	02.	70.	61	()	()
70.	78.	66.	62.	66.	/4.	64.	51.	63.	69.
65	66.	61.	70.	62.	57.	58.	74.	68.	61.
29. 27		<u> </u>	r 0 .	00	70	70	70	70	61
b/.	57.	00.	61.	80.	70.	70.	70.	70.	01.
70.	71.	81.	64.	77.	64.	84.	67.	72.	82.
07	02	0.4	105	02	06	00	82	QQ	103
0/.	93.	04.	100.	95.	50.	90.	02.		105.
91.	102.	113.	94.	102.	100.	95.	80.	105.	76.
87	86	84	89	94	79	85.	80.	77.	93.
	00.	01.	30.			01	00	0.0	70
87.	/6.	85.	79.	82.	85.	91.	89.	90.	12.
99.	88.	99.	82.	84.	92.	73.	90.	82.	91.
00	07	74	60	0.2	00	0.1	61	65	86
99.	61.	74.	09.	03.	00.	91.	01.	0.0.	00.
72.	74.	78.	74.	96.	71.	83.	90.	86.	85.
90	109	102	88	100	114	94	99	91.	120.
140.	102.	100	101	100.	120	100	100	1 2 5	140
11/.	124.	128.	124.	108.	138.	129.	153.	132.	149.
173.	121.	151.	165.	155.	150.	146.	136.	163.	144.
124	146	122	100	1 / 3	145	1/0	125	110	137
134.	140.	100.	142.	141.	140.	140.	123.	110.	157.
136.	133.	130.	114.	136.	130.	139.	125.	127.	116.
121	125	111	120	122	139	119.	126.	124.	131.
107	110	100	110	100	111	200		100	07
107.	118.	102.	110.	120.	111.	99.	90.	106.	67.
114.	100.	113.	91.	94.	93.	95.	89.	107.	100.
100	0.4	0.2	1.01	03	0.2	0.0	07	9.4	104
100.	54.	95.	101.	55.	9J.	90.	57.	24.	104.
98.	85.	91.	97.	88.	/1.	13.	87.	88.	80.
82	85	82	81.	89	92.	92.	93.	106.	115.
120	07.	111	104	110	110	100	107	166	100
130.	97.	111.	124.	110.	110.	109.	127.	100.	122.
119.	121.	144.	106.	104.	116.	109.	139.	100.	105.
109	74	85	87	79	100	82	79.	88.	89.
102.	7	05.	07.	, , , , , , , , , , , , , , , , , , ,	100.	02.	01	107	01
/4.	93.	95.	81.	85.	/5.	95.	91.	107.	81.
78.	95.	85.	97.	84.	103.	97.	102.	97.	74.
07	70	75	00	95	00	105	80	68	61
02.	72.	73.	00.			105.	00.	00.	72
76.	12.	88.	80.	76.	90.	/4.	92.	81.	13.
69.	77.	70.	67.	74.	94.	81.	76.	68.	82.
100	104	00	100	6 4	100	0 /	0.4	63	102
106.	104.	90.	102.	64.	102.	04.	94.	05.	102.
97.	88.	103.	84.	90.	90.	95.	96.	101.	89.
78	76	9.4	78	81	50	90	87	102	87.
70.	10.		70.	01.	23.		100	145	07.
104.	96.	98.	85.	98.	83.	85.	109.	115.	95.
104.	99.	85.	104.	90.	101.	90.	94.	100.	87.
111	00	71	0.0	107	0.2	102	01	0.0	100
114.	92.	14.	88.	10/.	93.	103.	91.	90.	100.
92.	97.	98.	112.	116.	86.	100.	101.	84.	103.
105	107	63	107	130	105	133	101	118	126
100.	107.	20.	107.	120.	100.	100.	101.	120.	1 4 1
151.	129.	147.	130.	137.	15/.	167.	154.	135.	141.
140	163.	160.	139	146.	128.	146.	126.	126.	118.
115	110	120	107	105	100.	100	121	100	1/1
115.	119.	132.	121.	125.	128.	123.	121.	146.	141.
141.	144.	124.	123.	152.	130.	147.	143.	146.	147.
1/3	122	120	172	172	1 17	142	114	130	140
743.	100.	120.	123.	1000	_ = / ·	174.	TTZ -	100.	7.4.4
123.	127.	135.	104.	113.	114.	88.	103.	110.	III.
90	90.	104	83	96.	94.	104.	91.	97.	106.
100	105	111	01		~~.		100	0.0	05
102.	105.	114.	91.	93.	89.	89.	100.	96.	82.
82.	97.	92.	85.	86.	82.	96.	90.	86.	63.
04	00	00	00	20	00	102	02	105	0.0
24.	ου.	22.	00.	12.	20.	TOD.	0.0.	101.	

117	109	87	92	102	84	95	110	79	112
171.	109.	07.	52.	102.	04.	20.	110.	· · ·	112.
99.	85.	91.	96.	89.	85.	/8.	90.	57.	65.
79.	63.	85.	68.	73.	73.	67.	82.	67.	91.
63	77	71	70	60	74	72	75	75	72
03.	11.	71.	79.	00.	/4.	75.	13.	12.	12.
/5.	/5.	74	13.	85.	12.	/1.	64.	86.	69.
72.	79.	73.	70.	63.	68.	75.	67.	67.	64.
69	69	66	76	69	66	70	70	67	60
(J).	05.	00.		0.0	70.	70.		01.	71
6/.	60.	ъU.	55.	80.	12.	76.	60.	89.	/1.
63.	79.	83.	86.	91.	74.	73.	84.	92.	96.
90	101	87	110	88	90	80	91	102	9.9
50.	101.	07.	110.	00.	50.	00.	21.	102.	107
89.	102.	98.	100.	95.	98.	82.	88.	106.	107.
91.	99.	91.	97.	119.	100.	97.	111.	114.	111.
Q1	123	107	95	99	114	99	103	111	100
07	123.	111	25.	101	111.	<u> </u>	105.	111.	100.
97.	87.	111.	80.	101.	13.	80.	92.	87.	86.
80.	98.	72.	79.	90.	76.	89.	84.	75.	80.
72	85	61	76	74.	71.	73.	73.	74.	79.
72.	74	01.	10.	70	05	70.	73.	71.	70
11.	74.	87.	80.	78.	82.	70.	11.	76.	70.
71.	65.	78.	76.	76.	82.	60.	81.	76.	78.
77	78	81	69	90	66	58	69	69	82
· · · ·	70.	01.	02.	00.	100.	70	0.5.	00.	75.
86.	19.	98.	81.	85.	100.	78.	84.	89.	/5.
90.	96.	102.	110.	96.	83.	85.	114.	95.	120.
96	126	131	88	128	107.	119.	111.	101.	99.
00.	100	111	100	100	11/	117	104	101.	0,
92.	100.	115.	100.	109.	110.	11/.	104.	92.	86.
107.	94.	97.	106.	104.	94.	102.	95.	91.	108.
79	104	103	101	98	114.	102.	105.	101.	113.
100	104.	100.	101.	100.	114	1 4 0	105.	101.	140
109.	101.	120.	116.	128.	114.	142.	125.	128.	142.
124.	118.	118.	142.	127.	137.	147.	155.	136.	119.
131	147	123	117	132	104	97	113	107	83
191.	100	1201	101	101	100	20	200	100	117
90.	100.	80.	101.	101.	108.	70.	88.	108.	11/.
93.	111.	125.	98.	98.	98.	94.	100.	113.	112.
101	94	110	106	102	108.	107.	92.	102.	106.
105	104	05	01	00	00	102	76	05	02
105.	104.	95.	91.	02.	92.	103.	70.	99.	0
99.	108.	101.	113.	115.	116.	100.	106.	113.	106.
109.	109.	126.	132.	119.	123.	107.	108.	123.	107.
00	06	100	103	00	76	02	1.01	05	00
03.	<u>.</u>	100.	105.	09.	70.	92.	101.	22.	00.
99.	82.	79.	88.	75.	83.	89.	86.	104.	87.
94.	81.	98.	90.	92.	83.	101.	81.	101.	79.
95	07	00	95	03	80	80	95	Q1	02
0	97.	95.	<u>ح</u> ر	95.	00.	00.	<i>93</i> .	91.	22.
90.	100.	92.	99.	94.	94.	80.	88.	88.	94.
74.	69.	92.	95.	86.	92.	72.	75.	71.	98.
99	104	91	Q /	94	90	87	81	72	106
<u> </u>	104.	24.	24.	24.	20.	7.	72	72.	100.
81.	67.	93.	85.	11.	19.	76.	13.	83.	79.
104.	85.	82.	85.	63.	89.	92.	87.	97.	99.
77	80	90	88	75	88	82.	77.	91.	98.
70	111	20.	00.	70.	00.	107	00	00	00
19.	111.	89.	81.	19.	67.	107.	99.	00.	00.
87.	85.	97.	75.	102.	89.	74.	80.	79.	88.
80.	120.	75.	93.	105.	105.	102.	90.	87.	129.
100.	107	120	107	120	100	176	120	126	134
122.	127.	120.	107.	120.	122.	120.	130.	130.	134.
129.	127.	136.	138.	127.	119.	136.	140.	116.	120.
109.	115.	106.	111.	113.	107.	118.	93.	111.	102.
102	110	101	00	107	123	100	100	109	113
102.	110.	121.	, , , ,	107.	123.	100.	109.	109.	113.
122.	131.	123.	138.	131.	139.	131.	108.	112.	121.
123.	122.	108.	118.	94.	102.	107.	108.	80.	100.
97	101	104	0.0	70	105	101	87	07	84
07.	101.	104.	50.	12.	105.	101.	70	102	01.
103.	90.	81.	89.	83.	90.	85.	79.	103.	88.
85.	94.	85.	93.	89.	70.	82.	79.	79.	87.
92	70	87	71	90	79	72	74	64	71
72.		70	7.4	20.	, J . E 7	0.2	67	6 T	
13.	86.	78.	14.	₽Z.	5/.	93.	0/.	. CO	83.
61.	57.	67.	64.	68.	67.	63.	67.	61.	65.
67	51	62	65	54.	53.	63.	65.	61.	65
66	51.	52. E0	60	E0	E0.	E.2	77	E 4	41
00.	28.	59.	69.	58.	20.	53.	11.	54.	41.
67.	64.	53.	56.	53.	66.	57.	55.	43.	54.
42.	53.	49.	55.	40.	54.	46.	63.	61.	59.
55	17	56	13	10	10	50	БQ.	10	1 1
.رر	41.	. טכ	43.	42.	42.	JJ.	JO.	30.	
41.	48.	46.	49.	40.	40.	58.	51.	38.	49.
52.	55.	32.	41.	50.	50.	69.	55.	50.	63.
46	67	69	2.0	51	51	61	46	40	62
40.		59.	50.	J1.	51.	UI.	-10. rr		15
ΰΖ.	62.	5/.	50.	55.	56.	52.	22.	50.	45.
55	44	45	44	48	52.	53.	65.	63.	57.

54.	50.	52.	51.	46.	52.	65.	67.	50.	57.
57.	52.	64.	71.	67.	73.	65.	50.	68.	68.
49.	55.	72.	66.	75.	76.	67.	64.	67.	68.
97.	84.	58.	74.	71.	68.	68.	73.	66.	70.
13.	76.	59.	85.	64.	60.	69.	69.	63.	81.
78.	70. 67	56.	6U. 70	65. 45	62.	69.	69. 70	65. 75	54.
70.	51	60. 68	74+ 59	60. 68	53. 71	63.	12.	15.	81. 57
67.	66.	61.	75.	71	74.	79	73	64 64	75
69.	67.	78.	62.	75.	74.	93.	74.	72.	66.
70.	87.	75.	80.	76.	75.	72.	79.	78.	68.
77.	95.	77.	69.	74.	93.	66.	65.	56.	58.
63.	53.	81.	67.	64.	75.	69.	61.	54.	58.
51.	47.	72.	70.	82.	76.	73.	61.	87.	75.
81.	88.	12.	76.	78.	77.	101.	77.	64.	87.
90. Q3	/o. 20	79	/D. 01	/5.	84.	104.	88.	89.	11.
89	98	91	91.	111	108	95.	101.	105	113
122.	133.	110.	133.	134.	158.	105.	104.	103.	123.
110.	119.	108.	105.	104.	121.	111.	114.	97.	94.
106.	115.	95.	101.	99.	97.	105.	120.	111.	104.
101.	92.	95.	87.	116.	95.	109.	99.	103.	91.
105.	98.	100.	109.	106.	101.	105.	100.	116.	92.
109.	104.	106.	109.	91.	128.	121.	108.	105.	118.
127.	116.	120.	107.	116.	140.	125.	114.	103.	124.
63	91	82	73	90. 90.	94. Q5	102.	63	64. 7Ω	92.
73.	81.	86.	86.	76.	82.	79.	76.	86.	83
82.	90.	81.	101.	75.	74.	88.	72.	81.	87.
88.	82.	81.	97.	84.	91.	62.	75.	64.	81.
86.	80.	88.	79.	75.	85.	82.	74.	79.	86.
78.	65.	81.	98.	97.	88.	98.	91.	82.	84.
105.	95.	87.	112.	105.	96.	94.	101.	79.	83.
81. 06	86.	/8.	8/.	81.	79.	85.	/4.	76.	67.
75.	84	76	25	86 86	/ C +	83.	73.	8U. 99	81. 70
83.	96.	82.	99.	89.	107.	71.	88.	85	88
96.	100.	83.	89.	90.	80.	92.	93.	96.	122.
112.	104.	95.	93.	135.	115.	140.	112.	130.	128.
117.	129.	116.	137.	139.	137.	102.	154.	118.	136.
126.	141.	117.	113.	117.	104.	126.	109.	108.	94.
112.	96.	102.	80.	89.	91.	75.	97.	93.	93.
92.	108.	93. 106	95. 104	92.	95. 107	112.	97. 107	110.	102.
100.	92.	83.	104.	95	107.	101.	107	119. 83	99. 90
101.	89.	94.	91.	104.	98.	91.	93.	95.	90.
89.	94.	86.	93.	77.	81.	94.	80.	76.	92.
76.	87.	84.	88.	74.	84.	97.	99.	93.	73.
100.	96.	106.	83.	93.	91.	109.	104.	113.	125.
124.	119.	115.	124.	132.	131.	138.	143.	144.	127.
142	141.	144.	139.	107.	137.	145.	151.	137.	127.
121.	133.	119.	120.	118	125.	146	137	153	120.
134.	135.	154.	141.	137.	134.	151.	157.	148.	134.
138.	138.	145.	137.	126.	139.	136.	139.	121.	122.
144.	130.	126.	149.	157.	132.	141.	113.	116.	131.
132.	120.	124.	126.	125.	124.	119.	128.	126.	129.
122.	86.	113.	127.	116.	104.	114.	100.	116.	98.
93. 117	108. 116	96. 107	112.	111.	119.	89. 126	95. 121	101.	114.
110^{112}	138	107.	108	129	112. 111	136. 126	131. 124	124.	140.
136.	140.	141.	133.	152.	151.	120.	134.	158.	150
138.	158.	133.	164.	156.	145.	135.	132.	151.	144.
125.	140.	120.	143.	112.	127.	128.	138.	122.	135.
130.	124.	120.	116.	105.	140.	120.	120.	137.	119.
123.	122.	118.	106.	110.	117.	139.	116.	127.	121.
120.	122.	101.	124.	117.	125.	106.	126.	123.	114.
99. 107	99. QN	92. go	80 78.	79.	104	95. 02	/3.	88.	92.
±V(.	20.	07.	. ua		1114 -	7 .	1177	11/	114

91.	98.	85.	86.	99.	117.	91.	81.	97.	85.
86	90	84	81	66	91	88	90.	79	84
68	70	73	60	73	66	66	78	64	72
71	70.	73.	69. 69	/0	74	71	78	65	91 91
79.	79. 60	79.	70	49.	74.	60	61	00.	70
72.	68.	78.	78.	81.	69.	69.	74	90.	10.
78.	64.	64.	76.	12.	68.	69.	74.	84.	64.
/1.	84.	84.	/4.	12.	55.	54.	84.	53.	86.
74.	64.	79.	73.	85.	68.	90.	80.	79.	68.
70.	82.	75.	81.	83.	79.	68.	76.	78.	77.
72.	70.	100.	77.	68.	75.	80.	78.	78.	79.
71.	92.	91.	94.	75.	88.	82.	86.	101.	90.
93.	102.	80.	94.	111.	96.	82.	125.	110.	119.
108.	122.	102.	99.	128.	114.	108.	105.	72.	101.
93	88	79	100	84	104	86	75	80	82
80	64	75	86	69	82	76	83	97	68
71	04.	75.	76	0 <i>)</i> .	72	70.	00. 00	50	00.
11.	00.	70.	70.	02.	12.	70.	71	50.	100
83.	82.	86.	/5.	80.	86.	12.	/1.	65.	100.
68.	65.	96.	61.	80.	61.	63.	65.	62.	53.
66.	74.	77.	56.	73.	49.	73.	53.	54.	57.
70.	67.	44.	68.	62.	64.	45.	43.	51.	46.
43.	46.	57.	58.	52.	50.	61.	61.	56.	59.
63.	58.	54.	55.	53.	60.	43.	55.	64.	46.
50.	50.	65.	75.	53.	53.	73.	67.	73.	78.
73.	49.	64.	84.	77.	74.	61.	87.	71.	84.
83.	79.	76.	84	86.	74.	86.	95.	79.	82.
93	91	90	88	78	85	77	72	71	87
20	73	56	20.	70.	76	75	75	59	69
75	73.	JU. 75	71	12.	70.	(J).	20.	50.	70
75.	00.	75.	/1.	92.	00.	96.	ov.	90.	79.
89.	83.	84.	11.	69.	79.	76.	85.	79.	11.
83.	94.	/1.	69.	87.	69.	82.	78.	73.	74.
84.	63.	78.	79.	63.	65.	56.	72.	73.	/4.
70.	75.	58.	69.	72.	65.	53.	83.	63.	62.
66.	78.	86.	89.	73.	72.	69.	65.	63.	79.
63.	68.	76.	46.	69.	89.	66.	83.	91.	59.
67.	51.	70.	77.	68.	63.	80.	68.	63.	72.
74.	64.	71.	58.	77.	72.	63.	65.	58.	73.
52.	48	74.	54.	55.	65.	58.	67.	80.	71.
56	55	48	57	68	63	65	71.	48.	57
48	46	59	66	50	58	58	56	47	69
40.	40.	50	61	50.	50.	60.	63	-17 · 61	65
4.7.	J2 ·		01. 50	40	50.	60.	6J.	01.	0J. EC
28.	55.	0D.	52.	48.	6U.	62.	54.	οU. Γο	
42.	64.	55.	60.	52.	55.	69.	66.	52.	67.
64.	68.	55.	54.	86.	68.	79.	67.	/4.	65.
55.	71.	65.	66.	70.	68.	102.	68.	79.	77.
68.	84.	81.	87.	72.	70.	70.	82.	81.	72.
84.	64.	65.	76.	92.	75.	70.	62.	77.	69.
72.	70.	71.	58.	63.	69.	68.	75.	54.	75.
79.	78.	74.	57.	62.	82.	77.	76.	76.	68.
59.	81.	85.	68.	65.	79.	81.	86.	73.	85.
78.	92.	78.	94	95	80.	69.	77.	80.	74.
80	77	71	62	56	71	71	68	86	69
70	82	69	76	50. 64	72	65	64	54	58
70.	72	72	50.	65	66	71	50	71	70
74.	73.	73.	59.	00.	00. (7	74.	20.	(7)	70.
12.	80.	73.	81.	/1.	67.	80.	85.	67.	13.
//.	86.	/1.	82	69.	/0.	/8.	/6.	79.	68.
98.	81.	84.	82.	92.	88.	92.	84.	75.	102.
95.	98.	96.	87.	79.	103.	87.	76.	97.	87.
81.	83.	91.	69.	88.	60.	73.	82.	76.	81.
62.	72.	71.	71.	82.	59.	76.	87.	71.	81.
62.	64.	81.	65.	80.	89.	81.	83.	80.	71.
71	100	76	82	74	75	83	76.	69.	92
105	72	95	103	86	77	113	98	84	95
109	100	110	405.	102	83	102	104	101	107
110.	100.	100	102	107	104	115	127. 00	101	. 107 ·
104	100.	102.	T03.	10/.	T00.	TT3 *	20,	TOT •	24. 117
104.	91. 100	89.	84.	99. 107	85.	88.	100.	80.	113.
93.	102.	91.	82.	103.	93.	81.	/5.	/8.	/8.
9/.	/4.	79.	85.	102.	100.	100.	91.	92.	111.
99.	107.	96.	97.	85.	85.	91.	84.	80.	93.
85.	102.	83.	93.	82.	96.	83.	89.	76.	90.

82.	86.	72.	93.	86.	73.	93.	79.	85.	94.
82	83	96	80	80	72	80	74	80	84
76	00.	20.	07	01		00.	01	00.	01.
76.	92.	//.	87.	91.	84.	98.	91.	98.	80.
86.	92.	88.	91.	90.	79.	94.	72.	89.	74.
96	96	66	on	05	00	00	102	105	114
50.	90.	00.	30.	21.	09.	30.	102.	101.	114.
99.	102.	88.	84.	112.	93.	110.	97.	99.	95.
85.	94	83.	99.	82.	90.	103.	97.	86.	110
104	<u> </u>	00.		110		100.	100	1 2 0	110.
104.	94.	99.	111.	110.	114.	122.	120.	130.	140.
126.	143.	129.	121.	127.	123.	119.	115.	135.	120.
110	130	125	133	110	125	130	100	151	126
110.	150.	125.	100.	119.	120.	130.	129.	151.	120.
101.	136.	113.	126.	122.	117.	128.	108.	128.	134.
128.	115.	114.	115.	127.	116.	119.	109.	121.	120.
111	110	120	100	0.4	110	110	117	101	100.
111.	112.	129.	106.	94.	110.	119.	11/.	121.	123.
105.	91.	90.	101.	129.	117.	108.	119.	109.	87.
101	107	120	110	100	112	103	103	92	109
101.	107.	120.	105	100.	100	105.	100.	101	100.
100.	98.	118.	125.	122.	122.	125.	122.	124.	140.
125.	122.	127.	148.	156.	138.	153.	121.	150.	138.
1 2 1	150	130	1 2 7	120	111	130	124	120	116
171.	1701	100.	127.	120.	111.	150.	124.	120.	110.
114.	105.	102.	115.	98.	102.	103.	113.	110.	134.
113	97	105	127	107.	111.	120.	120	118	105
117	107	101	102	110	100	111	107	100	100.
11/.	103.	121.	103.	110.	129.	111.	107.	103.	108.
118.	127.	119.	124.	115.	102.	127.	124.	118.	94.
135	103	112	116	105	102	1.01	86	84	103
133.	105.	112.	110.	101.	102.	101.	00.	04.	105.
89.	108.	100.	101.	95.	85.	86.	96.	95.	92.
96.	102.	89.	96.	78.	93.	93.	106.	110.	109.
115	100	00	00	100	07	122	05	01	102
110.	109.	90.	co.	100.	97.	122.	95.	91.	105.
102.	76.	81.	99.	111.	88.	91.	87.	85.	89.
93	94	89	109	84	76	104	97	97	102
22.	101	00.	102.			1011	07.	105	102.
86.	101.	99.	93.	111.	93.	91.	87.	105.	89.
69.	91.	78.	97.	86.	92.	72.	94.	83.	76.
66	72	80	66	91	63	70	Q1	79	70
00.	12.	04.	00.	01.	05.	70.	01.	70.	19.
76.	74.	83.	92.	84.	77.	76.	75.	73.	78.
90.	71.	75.	58.	76.	62.	79.	69.	77.	94.
62	77	04	00	70	06	04	04	67	0.
03.	11.	04.	00.	19.	00.	94.	04.	01.	92.
88.	68.	77.	71.	78.	89.	77.	76.	70.	71.
60	70	82	56	74	65	64	71	79	54
		02.		2 1 •		74.	71.	7 J .	54.
65.	69.	13.	61.	61.	53.	/6.	67.	55.	66.
64.	59.	70.	58.	62.	59.	65.	68.	59.	54.
05	64	FO	(1	(7	63	67	<u> </u>	52	64
00.	04.	50.	01.	07.	65.	07.	00.	55.	04.
66.	63.	79.	80.	62.	57.	72.	72.	79.	79.
65	67	82	64	68.	91.	85.	66	90	83
02.	0,.	01	05	00.	00	00	101	<u>.</u>	101
82.	90.	81.	85.	90.	89.	90.	101.	92.	101.
82.	103.	95.	89.	84.	83.	100.	107.	92.	107.
118	83	97	91	72	87	88	95	96	98
	05.	101	00	12.	105	07	110	<u> </u>	110
12.	95.	101.	98.	98.	102.	97.	116.	99.	118.
120.	120.	128.	117.	119.	115.	127.	132.	135.	146.
139	130	116	139	126	127	120	117	122	97
100	100,	101	100.	101	140	100	117.	100	100
130.	96.	121.	131.	104.	142.	109.	97.	100.	109.
77.	82.	100.	97.	112.	96.	107.	93.	103.	93.
108	90	92	84	82	91	98	91	91	88
100.	20,	22.	0.1.	100	<u> </u>		21.	21.	00.
104.	89.	98.	98.	100.	86.	93.	86.	94.	94.
91.	89.	99.	95.	80.	101.	104.	108.	90.	105.
100	Q.5.	Q 5	102	103	92	۵n	70	00	0.4
100.		01.	102.	105.	24.	50.	75.	90.	24.
103.	66.	97.	58.	88.	76.	86.	70.	79.	78.
83.	79.	78.	85.	87.	76.	75.	73.	67.	75.
03	06	63	73	45	00	75	05	72	70
05.	00.	00.	1	05.	07.	1	05.	13.	12.
72.	77.	71.	76.	79.	68.	99.	95.	69.	76.
93	80.	81	74	88.	86	74	85	102	79
00	00.	04	77	00.	100	0.5	0.5.	202.	100
98.	95.	94.	16.	σ3.	103.	95.	87.	94.	T08.
93.	99.	99.	98.	96.	100.	93.	105.	109.	91.
108	97	127	115	100	104	83	97	104	٩n
100.	21.			100.	-04·	0.0.	27.	- U4.	<u> </u>
81.	86.	82	93.	61.	83.	76.	79.	83.	90.
82.	83.	87.	79.	81.	71.	76.	81.	77.	73.
02.	05.	00	60	01	00	67	00	07	71
26.	00.	90.	. 20	04.	09.	07.	09.	03.	14.
94.	73.	101.	77.	81.	99.	88.	77.	90.	93.
101	78	85	78	113	108	92	104	99	97
-0 <u>-</u> .	110	00.		100	100.	24.	101.		~ ~ ~
98.	110.	98.	88.	105.	102.	83.	95.	95.	83.
96.	82.	90.	87.	85.	79.	81.	81.	91.	78.
80	63	75	70	QL	62	77	75	6.0	20
00.	05.		12.		02.		• ل /	00.	00.

59.	78.	66.	71.	70.	83.	77.	60.	80.	75.
80.	81.	86.	82.	67.	76.	78.	76.	76.	70.
75.	61.	88.	75.	95.	81.	75.	87.	85.	91.
103.	77.	82.	85.	91.	99.	94.	90.	92.	82.
74.	95.	/4.	100.	89.	12.	92.	81. 111	100	94
105	07. Q5	105.	104.	108	88	131.	97.	100.	119.
107.	101.	116.	102.	85.	117.	123.	102.	87.	92.
105.	105.	98.	99.	103.	113.	112.	92.	98.	108.
104.	89.	86.	87.	112.	97.	109.	99.	108.	101.
74.	89.	92.	68.	77.	90.	91.	98.	81.	110.
83.	98.	94.	104.	88.	92.	97.	107.	/6.	93.
92.	92. 112	100.	114. QR	108.	95.	85	82.	97.	87.
92.	92	93.	95.	94.	82.	110.	93.	103.	93.
109.	89.	90.	106.	94.	104.	91.	101.	104.	100.
110.	100.	98.	89.	83.	75.	95.	97.	75.	108.
88.	80.	92.	88.	74.	97.	80.	79.	80.	68.
95.	73.	89.	79.	91.	71.	82.	79.	69.	82.
80. CT	68.	88.	86.	81.	69. 05	76.	71.	84. 91	78.
60. 69	04. 92	63	84	90.	80.	84.	79.	87.	86.
82.	71.	85.	88.	95.	89.	93.	86.	87.	72.
70.	76.	82.	79.	85.	87.	93.	90.	88.	90.
78.	76.	85.	88.	95.	102.	91.	122.	102.	. 88
97.	105.	86.	114.	99.	106.	109.	99.	91.	103.
104.	117.	102.	119.	108.	95. 125	117. 113	114. 113	100.	108.
119.	113.	122.	114.	107.	107	102	107.	103.	93.
89.	103.	95.	102.	93.	84.	89.	91.	77.	80.
86.	104.	91.	89.	115.	99.	94.	96.	111.	114.
110.	86.	99.	111.	98.	115.	116.	92.	113.	116.
105.	90.	110.	111.	122.	108.	88.	116.	103.	118.
88.	120.	106.	113.	109.	103.	126.	94.	111.	138.
105.	97. 81	113.	105.	86	105	92.	87.	90.	88.
90. 82	84	107.	94.	103.	93.	91.	81.	105.	91.
86.	87.	90.	84.	97.	101.	99.	98.	98.	110.
87.	91.	127.	87.	103.	93.	131.	115.	118.	101.
143.	124.	115.	101.	97.	95.	110.	89.	104.	114.
114.	113.	96.	90.	97.	107.	110.	111.	11/.	90.
111.	98.	89.	89.	94. 78	92.	91.	68	91	89.
88.	90.	70.	79.	80.	67.	86.	90.	78.	88.
81.	97.	83.	82.	88.	96.	80.	99.	97.	90.
69.	82.	94.	95.	93.	105.	75.	88.	72.	85.
102.	87.	74.	113.	90.	79.	91.	94.	78.	97.
78.	85.	91.	84.	100.	88.	81.	88.	82. 101	100
88. 04	92. 71	105.	85. 100	96	93	104.	92.	115.	96.
101.	103.	97.	118.	102.	105.	111.	98.	80.	99.
92.	98.	101.	99.	101.	96.	92.	95.	94.	96.
88.	96.	93.	89.	90.	96.	104.	93.	76.	82.
93.	85.	93.	71.	84.	89.	76.	90.	90.	80.
97.	72.	102.	84.	87.	98.	89.	86.	105	92.
84. 111	103.	110	106.	80 91'	07. 111	110	124	124	116.
119	123.	128.	116.	150.	133.	137.	115.	131.	136.
144.	159.	132.	164.	167.	135.	148.	160.	158.	174.
157.	150.	136.	155.	151.	118.	136.	158.	147.	113.
116.	136.	143.	128.	114.	130.	130.	116.	140.	125.
114.	130.	137.	126.	117.	120.	112.	133.	109.	12/
128.	121.	143. 135	120.	144. 125	132.	130. 137	140.	140.	140
121.	100.	155.	124	113	130.	131.	147.	143.	116
114.	152.	136.	123.	112.	127.	157.	142	135.	140
144.	135.	120.	119.	116.	141.	122.	123.	113.	116
128.	106.	135.	122.	120.	129.	145.	125.	120.	118
140	140	147	126	128	135.	136.	127.	111.	140

					4.15	4 2 2	1.40	101	115
154.	126.	139.	147.	11/.	14/.	133.	140.	121.	115.
124.	112.	135.	135.	133.	114.	122.	127.	112.	115.
105.	110.	110.	138.	142.	119.	117.	131.	141.	119.
137.	126.	129.	119.	143.	125.	160.	134.	141.	143.
130.	160.	161.	153.	177.	180.	153.	155.	162.	149.
162.	167.	147.	183.	176.	176.	164.	182.	164.	177.
156.	142.	174.	158.	167.	158.	156.	150.	144.	130.
147.	153.	153.	139.	145.	128.	108.	101.	108.	112.
107.	129.	121.	120.	113.	98.	108.	112.	110.	112.
98.	94.	108.	119.	112.	114.	99.	95.	111.	95.
107.	105.	90.	117.	97.	106.	92.	110.	124.	117.
114.	137.	124.	128.	126.	114.	115.	126.	122.	119.
138.	134.	125.	138.	107.	122.	122.	103.	119.	113.
131.	130.	126.	126.	116.	111.	89.	123.	99.	112.
135.	112.	128.	114.	114.	115.	117.	121.	112.	105.
107.	112.	121.	96.	103.	88.	113.	118.	112.	92.
104.	96.	99.	93.	87.	108.	105.	103.	104.	91.
107.	81.	110.	87.	84.	93.	82.	91.	92.	71.
94.	85.	88.	83.	87.	74.	82.	90.	84.	79.
74.	87.	74.	77.	84.	71.	67.	78.	75.	83.
69.	79.	86.	79.	82.	79.	74.	83.	93.	82.
84.	72.	73.	74.	73.	77.	74.	68.	83.	68.
84.	87.	75.	77.	64.	71.	84.	88.	80.	85.
70.	84.	71.	75.	87.	79.	89.	73.	80.	74.
76.	80.	82.	91.	69.	79.	87.	84.	72.	83.
72.	88.	73.	81.	80.	77.	74.	96.	71.	66.
72.	73.	78.	91.	81.	80.	67.	82.	83.	84.
78.	75.	83.	81.	77.	73.	80.	62.	91.	74.
91.	72.	89.	88.	51.	84.	80.	72.	66.	76.
76.	79.	71.	71.	92.	68.	56.	63.	90.	84.
65	72	73.	80.	78.	90.	73.	72.	78.	77.
79.	76.	83.	81.	88.	78.	81.	92.	93.	83.
92.		501	22.	500				_	

Appendix P-13: step-intensity data of the 50 wt% olivine mixture of Ol+Py, step size 0.02° 2θ

19.00	.02	139.00		50%-olivin	ne mixtur	re of Ol·	+Py, step	0.02	
94.	98.	98.	78.	75.	97.	96.	84.	72.	82.
69.	83.	92.	90.	81.	95.	96.	86.	80.	72.
83.	84.	89.	99.	73.	80.	80.	88.	72.	96.
67.	116.	82.	80.	99.	72.	96.	89.	96.	110.
107.	103.	109.	128.	147.	144.	158.	158.	176.	152.
169.	141.	132.	120.	138.	87.	100.	106.	113.	110.
115.	97.	83.	107.	94.	90.	82.	85.	77.	82.
87.	95.	78.	81.	91.	87.	85.	72.	98.	92.
93.	97.	101.	87.	70.	72.	104.	90.	90.	63.
/1.	68.	67.	81.	/3.	90.	85.	84.	85.	68.
60.	29. 71	67.	72.	81. 71	74.	69.	70.	68.	80.
68. 70	/1.	68.	71.	/1. (F	96. 77	86.	79.	89.	/4.
70.	01. 77	60.	75.	6D. 00	11.	65.	82.	77.	69.
02. 77	77.	64.	00. 69	02. 90	00. 70	76	79.	74.	80. 74
63	86	0J. 81	09. 73	80. 86	70. 99	70. 85	80 80	04. Ω/	/4. 01
05. 77	88	88	49	79	75	87	81	83 83	90
83	80.	108	114	115	126	123	144	152	182
189.	204	214.	252.	283.	391.	386	467	572	732
864.	1026.	1077.	1174.	1141.	1113.	1053.	825	712.	555.
433.	392.	293.	266.	231.	196.	153.	153.	115.	110.
109.	102.	112.	97.	93.	97.	83.	95.	98.	81.
87.	79.	75.	68.	83.	99.	77.	93.	125.	106.
98.	114.	134.	119.	136.	171.	161.	194.	221.	267.
318.	351.	380.	397.	385.	417.	365.	349.	298.	259.
209.	186.	159.	148.	133.	97.	109.	106.	107.	115.
106.	111.	104.	137.	98.	135.	135.	138.	133.	122.
118.	106.	110.	92.	99.	85.	90.	65.	65.	80.
85.	74.	64.	84.	77.	54.	73.	69.	74.	73.
79.	64.	81.	71.	65.	78.	80.	76.	85.	79.
84.	85.	80.	99.	101.	77.	101.	88.	100.	93.
113.	132.	144.	185.	210.	257.	281.	354.	441.	437.
538.	500.	537.	596.	591.	526.	492.	525.	435.	446.
393.	346.	290.	270.	241.	202.	171.	150.	132.	139.
102.	96.	86.	84.	93.	85.	82.	79.	66.	69.
/4.	82.	86.	69.	76.	/6.	82.	65.	73.	83.
84.	67.	17.	/5.	86.	82.	17.	/3.	90.	109.
101.	8/.	98.	113.	121.	130.	161.	180.	199.	245.
311.	J10.	120	367.	300.	412.	516.	295.	268.	22U. 0E
103	154.	130.	140.	123.	101.	96. 75	112.	91.	80. 75
101	102	92.	105.	106	120	107	130	137	165
166	191	205	250	318	417	478	594	655	809.
835	849	901	837	766	700	572	475	408	308
266.	206.	173.	130.	145.	123.	102.	107.	104.	97.
87.	74.	89.	91.	76.	93.	66.	77.	83.	77.
76.	77.	68.	53.	68.	70.	76.	62.	76.	80.
81.	84.	75.	53.	84.	81.	79.	73.	80.	81.
80.	89.	75.	78.	76.	77.	86.	85.	78.	64.
88.	70.	87.	65.	69.	65.	73.	81.	87.	77.
81.	70.	85.	87.	120.	89.	92.	99.	107.	94.
120.	112.	105.	106.	126.	150.	143.	152.	161.	197.
160.	216.	218.	246.	279.	279.	330.	345.	390.	467.
489.	537.	624.	697.	745.	892.	1026.	1156.	1387.	1728.
2024.	2306.	2608.	2950.	3137.	3057.	3005.	2778.	2490.	2131.
1808.	1491.	1211.	1027.	794.	718.	657.	616.	633.	604.
619.	699.	825.	914.	1025.	1087.	1090.	1064.	979.	910.
704.	617.	551.	425.	347.	303.	283.	247.	234.	237.
235.	218.	223.	214.	259.	264.	311.	328.	372.	443.
537.	657.	799.	847.	1006.	1097.	1153.	1098.	1089.	889.
837.	b31.	603.	446.	389.	305.	282.	231.	205.	161.
ταλ. Ταλ.	727.	154.	119.	113.	133.	124.	100.	95. 100	89. 100
9U. 117	93. 120	110. 110	33. 117	97. 105	τ13.	100.	133. 114	129.	128.
111.	± 4 V ·	エエフ・	، انند	100	20.	104.	114.	20.	11/-

96.	121.	117.	102.	116.	126.	129.	143.	151.	169.
200.	214.	236.	236.	299.	309.	374.	496.	652.	752.
937.	1071.	1289.	1404.	1503.	1427.	1279.	1232.	1015.	808.
103.	537. 113	418.	342. 100	259.	223.	200.	160.	139.	134.
61.	80.	83.	71.	79.	76.	95.	74.	76.	86.
71.	63.	61.	74.	78.	72.	67.	63.	79.	56.
68.	76.	71.	63.	74.	64.	75.	63.	65.	64.
77.	74.	60.	64.	59.	52.	69.	68.	60.	69.
/5.	61. CO	65.	70.	68. 75	58.	68.	62. 72	74.	63. 70
73.	67.	69.	66.	66.	77.	81.	73.	76.	92.
71.	72.	84.	96.	67.	82.	81.	74.	70.	97.
84.	100.	89.	102.	102.	104.	109.	126.	131.	113.
130.	153.	140.	136.	183.	195.	190.	183.	212.	220.
230.	∠59. 837	200.	306. 795	371. 745	464. 691	519.	544	503	132.
374.	376.	405.	400.	434.	462.	465.	570.	635.	760.
917.	1080.	1362.	1502.	1618.	1776.	1862.	2117.	2195.	2326.
2590.	2696.	2859.	2949.	2988.	2820.	2780.	2425.	2222.	2015.
16/1.	1419.	1152.	955. 370	784.	642.	534.	457.	365. 266	360.
282.	290.	354.	369.	432.	291. 504.	231. 604.	722.	885.	1082.
1303.	1474.	1650.	1800.	1786.	1755.	1636.	1487.	1350.	1197.
1036.	782.	705.	550.	464.	361.	342.	302.	252.	267.
220.	183.	179.	162.	144.	137.	138.	112.	117.	107.
109. 61	102.	94. 78	80. 68	88.	84. 71	86. 76	92.	77.	88. 73
76.	94.	83.	92.	82.	91.	100.	102.	104.	119.
125.	112.	120.	131.	138.	140.	131.	131.	118.	141.
133.	132.	135.	103.	101.	92.	100.	99.	96.	111.
116. 202	94.	109.	123.	153.	143.	159.	197.	232.	245.
170.	165.	125.	126.	113.	115.	95.	116.	204. 86.	116.
118.	105.	115.	127.	147.	179.	214.	198.	223.	266.
298.	287.	296.	285.	243.	255.	269.	248.	250.	274.
245.	291.	335.	387.	427.	487.	568.	561.	574.	507.
224.	244.	282.	415. 261.	408. 321.	298. 339.	457.	544.	200. 561.	690.
731.	719.	873.	800.	783.	697.	694.	630.	617.	522.
466.	415.	393.	395.	466.	466.	561.	539.	642.	689.
658.	671.	672.	633.	521.	491.	442.	364.	284.	268.
102.	126.	107.	134.	121.	124.	143.	122.	198.	200
225.	270.	287.	330.	394.	383.	405.	410.	369.	368.
307.	329.	283.	269.	229.	251.	260.	250.	254.	309.
299.	323.	331.	354.	354.	291.	241.	271.	222.	197.
112.	126.	135.	143. 110	146. 103	135.	106.	100.	104.	88. 195
195.	257.	277.	308.	330.	361.	320.	406.	391.	426.
416.	406.	440.	446.	466.	450.	438.	427.	428.	466.
428.	359.	322.	301.	283.	254.	256.	232.	205.	227.
200.	237.	243. 511	270.	321.	370.	437.	482.	518.	596.
198.	203.	176.	167.	475.	419.	402.	146.	157.	207. 180
184.	220.	207.	258.	274.	290.	318.	355.	322.	286.
288.	263.	224.	208.	205.	168.	156.	125.	138.	142.
126.	113.	105.	103.	98.	136.	134.	132.	114.	130.
113. 85	134.	108.	141. 114	119. 111	111.	102.	122.	132.	129.
84.	80.	99.	80.	79.	86.	70.	89.	82.	74.
83.	109.	84.	94.	115.	93.	110.	119.	113.	139.
170.	186.	209.	228.	296.	314.	375.	406.	523.	539.
5/4. 334	595. 255	579.	629. 227	575.	521.	482.	397.	361. 107	342. 104
174.	190.	216.	272.	312.	204. 331.	369.	397.	385.	387.
388.	376.	363.	421.	356.	352.	357.	332.	337.	317.
299.	277.	250.	231.	205.	198.	212.	138.	122.	120.
103.	100.	97.	108.	93.	77.	81.	76.	81.	72.

	7.0	0.5	(7	0.5	65	70	0.4	()	05
/4.	79.	85.	67.	83. 05	65.	79.	84.	02.	85.
89.	83.	/8.	100.	85.	11.	91.	110.	112.	134.
162.	182.	186.	214.	235.	211.	244.	231.	241.	194.
218.	185.	168.	158.	138.	133.	112.	105.	140.	11/.
105.	128.	121.	124.	124.	130.	128.	146.	140.	138.
159.	117.	132.	119.	130.	112.	87.	110.	85.	91.
88.	69.	64.	90.	67.	61.	65.	64.	56.	65.
62.	46.	60.	50.	55.	58.	66.	53.	66.	68.
60.	49	52.	56.	50.	56.	50.	48.	59.	61.
36	58	56	60	47	56	52	59.	55.	67.
46	40	60	30.	66	53	63	64	49	60
40. 50	49.	60.	53.	55	53.	55	61	45.	80.
59.	09.	60.	55.	55.	53.	76	601.	6J.	60.
70.	04.	04.	100	57.	105	140	140	144	102.
81.	69.	99.	102.	99.	125.	142.	140.	144.	103.
164.	154.	1/1.	127.	122.	147.	110.	112.	109.	95.
86.	95.	78.	85.	84.	70.	85.	84.	84.	94.
92.	88.	102.	98.	99.	116.	104.	105.	126.	140.
137.	121.	102.	108.	115.	113.	100.	89.	84.	96.
77.	90.	87.	87.	68.	86.	81.	79.	73.	90.
88.	89.	102.	94.	88.	108.	119.	141.	160.	211.
221.	238.	252.	330.	297.	274.	269.	287.	273.	282.
301.	273.	255.	228.	194.	201.	146.	141.	139.	121.
128	135	106.	100.	98.	109.	106.	118.	123.	142.
156	166	157	209	181	208	231	207.	176.	182.
169	154	152	131	135	127	113	105	104	99
100.	101	152.	101.	192.	27.	103	110	101.	121
101.	101.	130	124	136	126	122	117.	116	100
140.	145.	136.	134.	130.	130.	132.	111.	110.	100.
121.	104.	105.	98.	80.	60.	80.	72.	67.	70.
/4.	89.	69.	45.	/4.	70.	69.	19.	83.	11.
108.	92.	86.	95.	121.	98.	96.	115.	102.	112.
100.	117.	110.	116.	101.	110.	110.	133.	117.	121.
136.	179.	139.	177.	183.	202.	233.	282.	315.	371.
378.	406.	523.	640.	801.	960.	1167.	1255.	1363.	1455.
1475.	1494.	1401.	1336.	1230.	1155.	1085.	1038.	942.	915.
888.	807.	756.	661.	613.	549.	532.	505.	460.	381.
399.	379.	338.	333.	284.	239.	226.	225.	196.	199.
175.	187.	187.	160.	150.	155.	148.	136.	129.	106.
109.	102.	107.	78.	91.	106.	84.	92.	107.	119.
116	91	132	128	111	103	111	115	89.	98.
106	80	104	87	106	85	78	73	73	70
40	0J.	104.	50	66	55	63	60	61	63
69.	40	51.	50.	60.	55.	61	50	57	57
22.	49.	50.	. 16	63.	50.	57	70	61	70
//.	/1.	57.	76.	62.	00.	57.	70.	01.	70.
58.	68.	68.	85.	64. OF	13.	66.	08.	121	10.
95.	95.	88.	111.	95.	113.	107.	112.	131.	149.
172.	173.	169.	168.	197.	180.	204.	253.	332.	344.
342.	402.	393.	378.	365.	412.	361.	352.	308.	275.
275.	234.	262.	204.	185.	177.	157.	170.	143.	140.
153.	138.	150.	165.	176.	190.	174.	201.	188.	186.
172.	157.	175.	164.	159.	131.	140.	157.	131.	120.
118.	119.	122.	99.	102.	115.	111.	105.	123.	93.
120.	114.	124.	144.	159.	168.	211.	215.	280.	286.
329.	338.	317.	367.	325.	327.	293.	272.	304.	273.
256.	261.	244.	236,	222.	229.	248.	236.	246.	262.
287.	275.	2.87 .	341.	387.	477.	521.	600.	621.	708.
880	888	938.	884	891	884.	899.	815.	850.	758.
733	706	623	576	549	470	488	412	363	3.81
340	700.	313	281	245	263	222	214	192	175
160	162	171	100	113	100	137	120	116	110
100. 100	141	1 J J J	109.	115.	120	102	100	195	120.
100.	141.	104.	- 29.	140.	130.	123.	110	140	120.
101.	108.	105.	133.	102.	117.	122.	104	140.	110.
137.	156.	154.	149.	15/.	143.	110	124.	131.	114.
132.	110.	119.	125.	141.	123.	149.	141.	154.	120.
135.	122.	132.	121.	117.	121.	124.	141.	111.	120.
113.	128.	110.	156.	169.	196.	183.	186.	229.	204.
179.	199.	214.	176.	205.	183.	187.	189.	186.	218.
172.	160.	149.	172.	134.	125.	123.	118.	151.	142.
127.	142.	167.	142.	170.	172.	156.	197.	153.	176.
143.	145.	139.	155.	141.	122.	139.	131.	112.	97.

. 5

105	88.	87	87.	90.	104.	111.	131.	134.	142.
1 1 0	100	1 ()	1 ()	170	1.4	100	150	177	116
149.	188.	163.	108.	1/9.	140.	102.	152.	1//.	140.
145.	141.	133.	119.	123.	131.	131.	94.	98.	87.
	07		00	0.6	105	01	100	102	103
94.	97.	89.	82.	90.	105.	02.	100.	102.	101.
97.	98.	96.	111.	123.	115.	116.	123.	130.	131.
1 5 4	167	106	102	100	202	225	218	200	240
154.	10/.	100.	190.	122.	205.	255.	210.	207.	240.
240.	237.	252.	261.	267.	296.	351.	314.	328.	305.
200	360	210	ົ່ວວ່າ	310	273	200	297	255	262
323.	200.	515.	202.	512.	213.	250.	2011	200.	202.
289.	298.	251.	244.	245.	252.	247.	238.	241.	218.
226	204	227	200	213	100	231	229	217	277
220.	204.	257.	200.	213.	150.	231.	440	217.	
263.	283.	301.	273.	322.	350.	368.	413.	403.	4//.
191	100	532	589	521	545	535	560	575.	593
404.	499.	552.	507.	521.	540	555.	100.	440	414
675.	635.	672.	641.	579.	549.	565.	463.	443.	414.
402	386	371	378	320	273	269.	248.	239.	242.
402.	200.	000	215	011	220	011	200	247	200
244.	239.	223.	215.	211.	230.	211.	259.	247.	290.
295.	331.	352.	390.	372.	439.	436.	540.	601.	649.
600	710	(02	(7)	()(E 20	E 7 2	402	160	524
689.	/10.	693.	667.	020.	530.	523.	495.	409.	774.
437.	419.	397.	310.	316.	271.	208.	195.	180.	158.
160	120	104	1 4 2	123	140	107	110	131	115
102.	139.	104.	142.	123.	142.	127.	112.	131.	110.
143.	128.	105.	126.	106.	113.	133.	118.	129.	123.
106	109	107	106	93	94	89	104	108	85
100.	100.	107.	100.	100		112	101.	100.	101
106.	106.	110.	85.	100.	111.	117.	108.	85.	101.
02	105	110	83	88	66	76	68	70	72
56.	103.		0.0.		00.	70.	00,		
84.	77.	64.	61.	65.	66.	82.	85.	82.	14.
77	22	77	85	124	115	121	131	135	115
11.	00.	17.	05.	124.	11.0.	100	100	110	100
130.	115.	130.	98.	106.	114.	120.	122.	112.	106.
144	150	165	167	159	158.	176.	161.	185.	139.
111.	100.	105	107.	101	100.	1 2 0	111	100	0.5
128.	109.	125.	113.	124.	137.	132.	114.	108.	95.
96	101.	100.	75.	93.	80.	89.	98.	89.	107.
	101.	-00.	104	111	101	102	160	145	176
69.	102.	98.	104.	111.	124.	125.	100.	145.	170.
170.	186.	212.	218.	257.	301.	315.	394.	454.	502.
	5000	550	100	400	460	121	121	110	200
554.	228.	550.	490.	400.	452.	431.	424.	412.	390.
398.	319.	320.	317.	304.	259.	249.	206.	204.	181.
010	102	177	166	107	1 17	1/0	163	15/	1/7
210.	103.	1//.	100.	107.	147.	140.	105.	174.	147.
161.	214.	233.	278.	289.	299.	331.	338.	336.	313.
328	308	300	221	2.81	292	295	293	275	250
520.	500.	505.	551.	201.	252.	275.	200.	275.	220.
233.	229.	217.	204.	249.	246.	248.	301.	255.	213.
297	315	354	350	336	350	317.	321.	354.	289.
257.	515,	554.	550.	0.00	0000	040	000	010	010
259.	325.	264.	260.	267.	228.	243.	233.	210.	218.
231	243	259	270.	251.	286.	304.	236.	242.	233.
201,	100	100	200	204	100	170	157	1 4 1	1 4 6
207.	196.	198.	220.	194.	180.	170.	100.	141.	140.
109.	129.	109.	92.	110.	81.	84.	81.	81.	74.
	07	07	70	0.2	70	05	96	86	88
82.	87.	87.	70.	83.	78.	65.	00.	00.	00.
87.	111.	90.	103.	114.	118.	130.	123.	122.	113.
112	120	111	01	116	105	100	85	89	89
112.	120.		91.	110.	100.	100.	05.	05.	
97.	101.	98.	98.	93.	11.	12.	70.	/0.	70.
76	65	75	55	77	70	60.	69.	66.	52.
70.	00.	75.	22.		,	70.	02.	70	101
65.	67.	11.	61.	81.	86.	12.	83.	/0.	101.
87.	80.	59.	95.	87.	81.	97.	95.	88.	94.
101	117	1 4 0	100	170	121	260	260	210	306
121.	11/.	140.	150.	170.	251.	200.	200.	J10.	500.
299.	295.	300.	257.	253.	278.	273.	266.	288.	289.
270	200	265	202	249	10/	197	172	175	153
219.	209.	200.	292.	240.	194.	197.	172.	175.	155.
154.	174.	156.	168.	154.	119.	121.	108.	131.	134.
106	01	103	101	70	63	95	90	75	80
100.	91.	103.	101.	19.	0	9J.	50.	75.	00.
78.	107.	75.	76.	69.	89.	73.	73.	70.	70.
97	76	65	95	82	82	119	95	90	105.
07.	70.	0.5.		02.	02.	117.		005	105.
107.	122.	122.	144.	160.	155.	217.	194.	225.	207.
229	215	207	177	187	188	200.	219.	203.	248
227.	<u> </u>	207.	1111	107.	100.	200.		200.	2.10.
234.	246.	223.	270.	265.	234.	220.	229.	229.	205.
238	201	223	197	201	198.	198.	181.	186.	208.
230.	201.	223.		2010		220.	2020	2000	2000
217.	237.	252.	249.	269.	251.	212.	205.	201.	263.
239	279	316	251	244	249	249.	195.	205.	206.
222.	101	170	471	1	120	100	120	110	
215.	191.	1/0.	1/4.	164.	122.	123.	130.	TTQ.	98.
97.	108.	80.	87.	83.	64.	72.	69.	68.	66.
- · ·		50. cr	20	E0.	60	70	50	E E	EA
56.	69.	20.	. ۲۵	52.	00.	70.	39.	22.	74.
58.	67.	55.	67.	63.	62.	62.	52.	51.	54.
E E	E C	10	0.0	72	07	00	02	102	Q1
55.	.00	49.	50.	13.	21.	20.	20.	100.	21.
119.	128.	107.	153.	121.	131.	118.	128.	141.	112.
100	121	127	112.	121.	95 -	101.	104.	98.	89.

0.0	0.4	~ (0.0	110	07	1.01	110	110	110
92.	96.	84.	93.	110.	97.	101.	119.	119.	112.
157	151	131	146.	141.	159.	164.	142.	152.	125.
1.57 •	191.	151.	1.0.	1 (7)	110	107	1 4 0	127	156
146.	125.	128.	155.	167.	115.	15/.	140	157.	100.
164	175	177	211.	221.	255.	259.	257.	258.	251.
104.	11	111.	211.	001	105	104	100	105	177
229.	213.	190.	209.	221.	195.	184.	190.	103.	111.
1/3	155	139	100.	120.	95.	99.	97.	87.	97.
140.	100.	132.	100.	2001	00	71	0.4	45	20
75.	66.	66.	/0.	12.	83.	74.	94.	00.	09.
76	82	84	86	91.	86.	94.	95.	102.	124.
10.	02.	04.		201	~	1 4 7	1 0	120	150
114.	123.	100.	126.	126.	148.	147.	150.	139.	152,
1 4 1	165	150	165	142	183	170	162.	176.	154.
141.	133.	132.	101.	112.	100.	1(0)	170	1.01	111
147.	149.	167.	171.	168.	191.	169.	1/8.	181.	164.
171	160	170	158	152	152	148.	157.	173.	151.
1/1.	102.	170.	100.	1 3 2 4	152.	110.	107	110	105
144.	146.	126.	117.	127.	117.	11/.	103.	113.	105.
110	110	102	119	104	79	118	95.	96.	117.
112.	110.	102.	110.	104.		110.	122.	100	1 ()
105.	111.	103.	111.	92.	101.	120.	133.	125.	103.
105	100	200	216	207	225	234.	227.	186.	178.
100.	109.	209.	210.	201.	223.	2511	100	100.	100
194.	194.	173.	168.	163.	181.	166.	155.	153.	120.
100	124	100	102	112	102	84	85.	90.	80.
120.	154.	100.	102.	112.	102.	51.	01	70	75
93.	104.	93.	81.	75.	59.	58.	81.	78.	13.
7 4	73	83	75	76	65	74.	83.	89.	82.
74.	75.	0.0.	13.	70.	05.	71.	651	75	02.
82.	92.	86.	74.	88.	70.	84.	65.	75.	83.
0.0	72	00	70	79	54	90	92.	72.	88.
90.	15.	00.	19.	15.	54.	50.	22.		00
80.	68.	77.	60.	71.	80.	79.	83.	89.	98.
0.0	05	05	110	97	102	95	87.	87.	76.
ov.	90.	93.	110.	57.	102.	22.	100	01	00
88.	81.	84.	84.	98.	85.	87.	100.	91.	89.
0.0	C A	00	61	65	88	78	77	86.	65.
82.	04.	00.	04.	0	00.	70.		70.	0.4
68.	84.	67.	69.	76.	93.	91.	82.	78.	84.
20	0.0	77	103	74	99	96	119.	108.	103.
12.	02.	//.	103.	/4.	<i></i> .	20.		100.	200.
106.	86.	100.	105.	106.	88.	88.	96.	99.	82.
00	06	6.8	96	72	76	64	62.	48.	58.
00.	50.	00.	50.	12.		40	40	6.5	10
60.	55.	62.	58.	42.	56.	48.	40.	53.	45.
67	54	50	45	44	47.	46.	64.	70.	52.
01.	71.	50.				5.0	C C	6.2	1 4
50.	62.	58.	58.	43.	53.	20.	55.	55.	44.
61	A A	55	47	45.	56.	43.	50.	51.	45.
01. 50	11.	55.	50	4.4	4.2	6.0	57	50	53
52.	55.	58.	52.	44.	43.	52.	57.	J2.	• • •
49	54	53.	52.	64.	64.	58.	45.	57.	64.
	24	70	0.4	0.2	06	0.0	0.0	112	105
84.	/4.	19.	94.	85.	00.	90.	50.	112.	105.
132	110.	127.	100.	108.	101.	82.	86.	100.	105.
		0.0	0.4	72	70	74	64	64	75
17.	94.	83.	94.	15.	12.	/4.	04.	04.	75.
68.	78.	70.	57.	68.	45.	68.	51.	66.	51.
60	F C	63	4.0	54	16	55	46	51	59
60.	20.	65.	40.	14.	40.	55.	-10.	51.	50
50.	46.	53.	57.	44.	39.	53.	57.	54.	59.
57	61	73	70	67	55	63	72.	81.	54.
57.	01.	75.	10.	01.			7.4	70	0.4
82.	62.	73.	81.	64.	70.	76.	74.	79.	84.
63	99	103	96	91	101.	127.	111.	128.	121.
0.5.	50.	105.	100.		100	110	0.0	110	112
119.	128.	139.	129.	lli.	106.	110.	90.	110.	115.
120	120	138	126	137.	145.	146.	154.	140.	125.
120.	100	100.	100	01	77	06	100	96	85
122.	122.	102.	80.	91.	11.	00.	100.	90.	05.
107	87	76.	84.	73.	78.	72.	91.	78.	67.
101,	04		01	60	60	61	70	57	79
84.	94.	00.	01,	02.	02.	01.	70.	57.	
75.	79.	78.	91.	73.	102.	92.	81.	88.	99.
100	110	120	101	11/	96	Q1	108	97	89.
100.	110.	132.	141.	114.		210	100.	100	0.4
115.	84.	95.	97.	121.	112.	112.	109.	100.	84.
105	80	01	83	94	69	80.	95.	116.	101.
105.	50.	21.	0.5.	1 ()	1 2 0	110	100	100	111
99.	138.	121.	125.	143.	139.	118.	108.	122.	111.
1/1	120	136	132	130	145.	152.	134.	136.	137.
141.	120.	150.	132.	107	117	110	101	1 7 5	07
117.	115.	116.	11/.	107.	11/.	110.	101.	123.	51.
92	104	116	99	91	93.	117.	125.	118.	128.
24.	104.	· · · · ·		1 2 2	110	100	115	1 20	116
117.	115.	95.	118.	132.	110.	120.	112.	τZU.	110.
114	115	132	121.	121.	105.	104.	118.	124.	124.
117.	407		1 2 2	100	120	100	100	121	120
113.	TOP'	III.	123.	129.	120.	143.	160.	101.	120.
111	97.	103.	83.	83.	102.	94.	101.	102.	118.
		103	00	72	pn	20	72	87	68
114.	90.	103.	70.	13.	ov.	ov.	15.	01.	
71.	75.	73.	75.	76.	91.	87.	86.	66.	/0.
60	60	00	76	64	95	70	72	83	93.
02.	03.	02.	70.	04.	~~ .	72.	, <u>.</u> .		71
75.	98.	97.	79.	81.	81.	15.	8/.	66.	14.
90	22	ŔŔ	81	80.	89.	79.	86.	80.	91.
24.	· · ·	00. or	51. 7E	70	60	<u> </u>	62	66	65
92.	69.	95.	65.	12.	68.	00.	62.	00.	
76	61	59	61.	84.	75.	58.	65.	65.	80.
	· · ·		~ ~ .						

68.	79.	76.	97.	90.	84.	93.	91.	80.	77. 74
75. 75.	63. 78.	63. 65.	70. 68.	84. 75.	74. 60.	66. 55.	83. 71.	75. 63.	74. 58.
45.	57.	47.	46.	57.	67.	67.	45.	54.	51.
56. 57.	65. 74.	59. 71.	63. 86.	65. 96.	49. 81.	53. 100.	65. 88.	61. 98.	69. 61.
85.	71.	67.	61.	74.	70.	75.	61.	70.	79.
96. 66	69. 79	74. 62.	75. 65	54. 86	66. 94	62. 80	60. 118.	79.	73.
131.	127.	142.	122.	127.	121.	115.	108.	82.	98.
100.	87. 77	112.	86. 63	91. 77	100.	106.	107.	83. 65	87. 79
52.	43.	65.	52.	55.	61.	57.	50.	44.	63.
65. 50	44.	48.	44. 50	64.	48.	67. 55	63.	48.	56.
49.	45.	40. 54.	64.	42. 70.	- 39. 76.	66.	69.	73.	75.
85.	60.	69.	69.	70.	74.	65.	83.	72.	66.
116.	113.	100.	80. 115.	117.	92. 132.	127.	131.	98. 147.	124. 171.
124.	144.	158.	125.	110.	134.	126.	111.	128.	125.
130. 110.	124. 131.	124. 103.	133. 107.	105.	118. 110.	135.	134. 114.	120. 121.	110.
157.	154.	173.	188.	191.	171.	197.	184.	240.	208.
244. 190.	243. 218.	276. 207.	257. 212.	250. 221.	267. 219.	208.	238. 286.	227. 315.	192. 332.
340.	357.	362.	330.	252.	253.	251.	214.	180.	179.
175.	201.	$188. \\ 162.$	179. 153.	201.	228.	218. 183.	184. 202.	166. 174.	181.
186.	181.	197.	199.	196.	189.	193.	188.	162.	155.
148.	191. 130.	134. 134.	140. 125.	145. 105.	163. 112.	134. 112.	147. 106.	132.	132.
79.	92.	79.	87.	84.	76.	67.	74.	77.	70.
91. 87	69. 45	65. 55	91. 54	66. 68	72.	69. 69	75. 65	71. 69	72.
77.	85.	75.	68.	73.	86.	101.	93.	89.	94.
104.	110.	97.	84. 106	134.	97. 105	123.	121.	101.	96.
71.	87.	90.	93.	91.	105.	98. 111.	91. 99.	94. 78.	96.
95.	78.	93.	77. 75	93. 01	92.	100.	93.	86. 75	102.
90. 95.	65.	94.	75.	91. 84.	92. 67.	79. 80.	90. 90.	75.	102.
85.	103.	112.	90.	80.	99.	86.	86.	86.	92.
121.	125.	130.	104.	143.	141. 142.	155.	121. 166.	174.	190.
209.	207.	248.	237.	205.	173.	190.	165.	149. 136	122.
145.	135. 120.	120. 102.	102.	129. 99.	84.	80.	130. 91.	70.	62.
65. 75	60.	78.	63.	77.	58.	76.	65.	60.	55.
75.	77.	55. 84.	66. 79.	95.	74. 82.	48.102.	58. 77.	68.	74. 88.
102.	104.	70.	82.	77.	87.	85.	86. 70	88.	59.
73. 82.	94. 73.	80. 60.	70.	85. 65.	74. 76.	90. 91.	78. 73.	62. 79.	98. 83.
88.	108.	108.	110.	124.	123.	119.	158.	157.	148.
139. 113.	147. 90.	136. 113.	100. 112.	123. 109.	119. 145.	115.122.	113.127.	116.113.	123. 126.
99.	106.	91.	88.	81.	101.	89.	88.	93.	91.
88. 72.	101. 91.	80. 116.	82. 102.	79. 119.	85. 116.	73. 108.	75. 127.	104.	127.
119.	112.	74.	80.	83.	100.	90.	98.	80.	94.
100.	79. 69.	73. 71.	95. 71.	91. 74.	94. 89	98. 63.	83. 76.	77.	77. 60.
78.	79.	55.	75.	78.	77.	99.	81.	84.	78.
79. 94	82 - 89 -	87. 88	73. 104	64. 90	77. 92	76.	72.	88. 95	69. 93
106.	95.	82.	86.	72.	93.	89.	87.	101.	107.
100. 129	103. 103	112. 95	133.	126.	126.	125.	130.	166. 150	134. 116
142.	144.	152.	139.	137.	153.	132.	112.	99.	104.

99	103	94	91	100	100	92	94.	84.	75
96	71	02 02	51. 64	100. 81	84	75	76	81	82
00. 01	07	75	07	01. 00	04.	03	86	75	70
02. E(07. 74	75.	0/+ E0	60. 20	02. 70	63.	20.	75.	70. 6A
50.	74.	69.	28.	00.	78.	62.	60.	79.	04. 70
64.	78.	85.	11.	19.	62.	67.	69.	61. C	70.
72.	63.	12.	69.	52.	67.	62.	59.	56.	/1.
69.	63.	75.	81.	79.	76.	88.	95.	96.	95.
74.	96.	82.	74.	88.	97.	99.	77.	79.	79.
92.	94.	102.	108.	91.	97.	84.	94.	91.	65.
82.	71.	72.	83.	86.	75.	88.	89.	70.	90.
76.	69.	72.	79.	83.	56.	60.	81.	76.	72.
58.	68.	74.	77.	82.	53.	82.	74.	75.	62.
78	98	83	92	95	85	104	81	101	104
00.	100	102	125	86	80	95	97	80	90
90. 00	100.	102.	12J. DE	77	00.	110	102	106	114
105	30.	102.	100	//.	115	101	105.	100.	114.
105.	114.	103.	109.	98.	115.	101.	97.	88.	100.
96.	84.	93.	13.	83.	86.	86.	80.	84.	85.
89.	99.	88.	96.	80.	92.	87.	91.	85.	78.
80.	77.	81.	85.	100.	85.	105.	113.	112.	104.
94.	103.	105.	109.	76.	83.	88.	79.	75.	81.
77.	75.	76.	107.	93.	73.	86.	98.	93.	103.
73.	89.	89.	91.	76.	106.	89.	84.	84.	82.
79.	88.	76.	96.	70.	79.	82.	59.	68.	74.
86	72	75	91	72	77.	86.	92	86.	80.
Q1	85	80	81	85	86	73	87	83	80
76		00. 77	102	75	104	95.	109	103	130
111	101	177	102.	110	104.	1/2	100.	100.	106
111.	121.	107	134.	112.	107.	143.	100.	120.	120.
110.	102.	107.	92.	113.	92.	112.	121.	119.	139.
132.	116.	121.	107.	123.	97.	84.	92.	89.	83.
67.	75.	78.	81.	79.	/1.	75.	86.	78.	65.
84.	77.	77.	84.	67.	66.	68.	54.	80.	64.
61.	64.	58.	52.	62.	56.	53.	66.	56.	58.
57.	51.	66.	49.	73.	60.	55.	53.	52.	55.
56.	43.	68.	47.	45.	51.	52.	54.	58.	52.
47.	45.	57.	49.	46.	54.	46.	53.	46.	55.
56.	47	56.	55.	67.	47.	47.	52.	47.	52.
19	44	44	33	42	42	40	53	48	46
61	43	45	56	64	57	59	59.	67	69
50 50	43.	71		70		50		40	70
50.	49.	/1.	07.	12.	63.	50.	02.	49.	/0.
29.	80.	68.	/ 2 .	60.	69.	62.	55.	49.	00.
55.	66.	54.	58.	/1.	60.	60.	54.	78.	70.
66.	59.	68.	67.	59.	65.	66.	74.	81.	65.
62.	71.	62.	68.	60.	66.	62.	69.	65.	63.
55.	65.	69.	74.	55.	63.	62.	65.	79.	66.
75.	84.	78.	69.	90.	82.	90.	66.	76.	71.
78.	90.	82.	79.	95.	104.	103.	97.	105.	111.
111.	133.	112.	111.	108.	105.	97.	78.	92.	99.
84	84	79.	81.	85.	86.	81.	93.	108.	99.
89	103	108	107	89	99	100	116	104	103
115	10J.	103	03	80	88	81	71	67	85
73	70	105.	50.	70	75	77	00	07.	72
75.	70.	11.	. פנ	70.	75.		75	29.	75.
73.	84.	80.	11.	89.	79.	11.	75.	105	/0.
52.	78.	70.	68.	85.	88.	93.	82.	105.	87.
65.	94.	68.	80.	84.	66.	11.	82.	52.	/5.
72.	72.	63.	78.	66.	78.	83.	76.	84.	81.
82.	80.	89.	80.	88.	82.	91.	94.	84.	93.
100.	109.	121.	135.	132.	126.	133.	124.	106.	114.
111.	95.	97.	88.	89.	79.	79.	65.	88.	84.
83.	87.	92.	97.	105.	102.	90.	110.	105.	119.
88.	90.	91.	89.	79.	79.	79.	78.	83.	67.
88	77	89	90	72	85	99	91	105	94
82	107	117	112	107	112	109	141	152	138
130	120	120	175	107.	113	107	107	111	126
120	110	102.	134 134	104	116	125	120	130	105
120.	10.	101	124.	104 ·	10.	100	191	104	100.
120.	121.	124.	122.	121.	120.	102.	124.	1104.	102.
108.	101.	91.	103.	112.	125.	110.	93.	110.	104.
100.	115.	90.	99.	97.	97.	109.	112	119.	137.
99.	115.	114.	122.	148.	142.	146.	142.	135.	124.
130	139.	121	115	117.	122.	129.	112.	124.	105.

•

109.	124	135	110	147	116	112	120	105	118
113.	116.	99	85.	107.	90	89	89.	74.	84.
87.	109.	64.	109.	80.	96.	80.	90.	95.	73.
81.	72.	54.	76.	64.	64.	71.	47.	62.	67.
76.	66.	56.	60.	59.	71.	77.	67.	70.	68.
60.	83.	64.	59.	67.	73.	72.	68.	73.	75.
69.	75.	61.	60.	76.	82.	69.	58.	77.	71.
75.	63.	70.	59.	72.	88.	85.	90.	78.	105.
113.	81.	109.	105.	110.	94.	97.	84.	104.	99.
95.	85.	66.	73.	74.	83.	78.	61.	75.	82.
56.	71.	74.	70.	74.	74.	85.	92.	88.	68.
63.	79.	53.	/0.	75.	53.	48.	53.	51.	70.
51.	52.	56.	45.	40.	52.	48.	54.	52.	46.
56.	51.	58. Th	50.	50.	62.	50.	53.	58.	64.
08. 07	61. 74	73. 65	0J. 40	97.	90.	90.	70.	85.	80. 75
82	74. 68	05. 91	69. 51	70.	63. 65	63	79	79.	75.
02. 71	77	61. 60	51.	71.	47	74	70. 50	63. 67	68
70	68	61	60. 60	50	58	74.	62	83	68
58.	53.	78.	67.	79	68	58	56	66	69
54.	52.	60.	63.	47.	59.	53	47	48	57
48.	45.	68.	63.	57.	58.	55.	66.	58.	52.
60.	49.	60.	50.	46.	55.	57.	55.	58.	52.
75.	63.	66.	66.	51.	56.	55.	56.	53.	52.
68.	68.	64.	69.	70.	75.	62.	72.	72.	82.
69.	75.	59.	91.	68.	44.	66.	48.	62.	73.
82.	67.	72.	73.	67.	73.	84.	83.	77.	91.
78.	75.	77.	69.	78.	63.	75.	59.	56.	65.
78.	65.	63.	56.	67.	63.	66.	65.	66.	56.
80.	77.	70.	72.	76.	74.	79.	82.	83.	76.
100.	106.	104.	103.	91.	83.	82.	68.	86.	69.
70.	61.	66.	73.	52.	71.	60.	64.	70.	68.
60.	82.	78.	/8.	74.	80.	85.	76.	93.	85.
98.	79.	100.	94.	100.	110.	97.	90.	112.	112.
95. 76	99.	82.	85.	88.	85.	80.	77.	86.	108.
20. 07	77. 00	07.	0J. Q4	04. 70	76.	80. 76	70.	01.	12.
86	90. 86	51	64. 60	70. 86	80. 89	70.	00. 05	07. 70	20.
85	65	70	75	70	86	79.	79	82	75.
83.	90.	90.	86.	76.	85.	78	81	100	90.
79.	102.	94.	96.	88.	114.	116.	105.	104.	101.
99.	115.	103.	98.	109.	108.	137.	91.	102.	108.
112.	126.	134.	122.	116.	92.	118.	113.	103.	100.
105.	99.	109.	105.	96.	90.	90.	86.	94.	99.
92.	93.	97.	98.	101.	101.	114.	111.	136.	113.
157.	140.	120.	131.	117.	127.	110.	115.	93.	86.
116.	93.	101.	90.	97.	104.	89.	98.	106.	87.
84.	122.	112.	102.	102.	108.	90.	89.	96.	104.
87.	96.	94.	97.	105.	87.	70.	93.	67.	88.
94.	92.	89.	107.	85.	94.	81.	91.	80.	76.
88.	65.	106.	/3.	82.	/5.	94.	85.	84.	91.
99.	83.	72.	79.	76.	/2.	79.	84.	61.	66.
- 23 - 70	0/. 74	70. 20	/1.	74.	62. 72	00.	87.	68. 72	63.
01	74. 60	00. 51	12.	60. 54	13.	0J. 60	67.	/J. E1	69.
59	36	51	62	78	55	65	45	50	0J. 45
62	67	65	63	68	60	60 60	65	69. 69	45.
69.	79.	74.	66.	89.	91.	77.	80.	96	92
84.	80.	82.	77.	98.	86.	95.	77.	79.	92.
101.	83.	112.	115.	106.	116.	135.	132.	123.	153.
133.	117.	97.	95.	109.	104.	113.	112.	120.	110.
91.	99.	79.	70.	95.	98.	87.	86.	74.	90.
92.	82.	98.	86.	99.	100.	87.	104.	84.	100.
95.	95.	75.	71.	67.	93.	76.	66.	65.	67.
97.	82.	74.	76.	63.	83.	85.	52.	66.	52.
73.	59.	79.	65.	78.	76.	79.	80.	76.	92.
87.	97.	102.	89.	101.	94.	77.	89.	113.	87.
96.	82.	97.	89.	84.	84.	74.	87.	75.	80.
81.	83.	75.	65.	11.	79.	86.	80.	93.	78.

73	0.2	0.0	07	0 /	07	03	100	97	76
/3.	83.	80.	07.	04. 00	97. 70	73	62	66	67
90. 74	70.	09.	64.	61	72.	55	62.	58	74
14.	68.	64.	00.	63	73.		76	75	69
07.	70.	00.	75	76	75	66	94	74	71
87. (0	13.	75.	75.	10. 96	73.	120	84	81	115
102.	96.	90.	93.	00.	91.	120.	109.	102	70
103.	110.	112.	97.	91.	80.	105.	102.	102.	79.
95.	110.	82.	70.	81.	89.	74.	09.	73.	07.
87.	95.	80.	/5.	90.	85.	78.	94.	0/. 102	102
100.	85.	79.	85.	99.	83.	//.	80.	103.	103.
68.	111.	81.	102.	86.	95.	84.	83.		83.
75.	86.	98.	77.	82.	/3.	67.	64.	66.	/6.
81.	79.	66.	91.	69.	72.	84.	55.	67.	90.
71.	86.	72.	92.	/4.	80.	68.	17.	76.	69.
78.	85.	83.	75.	80.	85.	86.	90.	90.	81.
107.	99.	87.	95.	95.	85.	87.	101.	115.	113.
119.	125.	102.	111.	105.	109.	92.	94.	82.	99.
75.	91.	88.	84.	96.	84.	100.	99.	93.	96.
93.	122.	122.	99.	123.	113.	97.	89.	104.	99.
95.	86.	99.	105.	98.	109.	77.	92.	84.	95.
86.	96.	79.	92.	69.	98.	78.	72.	81.	86.
87.	76.	95.	109.	94.	89.	102.	96.	102.	89.
94.	101.	105.	102.	93.	93.	90.	88.	81.	90.
87.	81.	99.	88.	79.	87.	83.	57.	80.	76.
67.	80.	60.	88.	66.	83.	60.	88.	95.	82.
83.	83.	74.	74.	83.	88.	87.	83.	86.	66.
77.	81.	81.	71.	82.	70.	86.	71.	84.	91.
105.	90.	104.	95.	97.	87.	84.	112.	86.	86.
92.	91.	74.	100.	93.	93.	91.	94.	97.	84.
75.	68.	84.	81.	63.	89.	91.	96.	85.	89.
84.	87.	112.	81.	92.	90.	104.	100.	113.	111.
119.	124,	127.	112.	119.	153.	123.	138.	123.	125.
127.	109.	112.	112.	127.	119.	120.	107.	98.	118.
96.	124.	119.	108.	104.	118.	122.	107.	135.	108.
106.	105.	109.	122.	120.	106.	105.	98.	113.	135.
132.	131.	128.	139.	115.	126.	136.	110.	113.	123.
118.	124	115.	112.	123.	134.	112.	135.	114.	132.
103.	119.	117.	124.	120.	121.	114.	108.	113.	116.
129	114	113	137	138.	134.	125.	138.	136.	133.
156	151	150	164.	178.	150.	194.	172.	150.	170.
154	140	134	126	114.	102.	114.	107.	113.	109.
115	112	92	92	106	112	100.	98.	92.	123.
100	101	92.	Q1	102	101	100	106	110.	121.
1109.	121.	107	113	116	112	100.	107	100	94
110.	101	107.	115.	110. 110.	07	90	106	84	86
111	101.	יו <i>פ</i> דר	117.	00.	60 60	95	75	74	85
114.	/0.	12.	09. 71	69. 45	69.	55.	64	79.	68
6Z.	69.	07.	74.	00.	60	65.	70	60	61
19.	09. 70	70.	()	01.	07. 60	00. 73	63	67	50
84.	12.	78.	08. 70	81. 70	00.	13.	70	07. 50	דע. דע
81.	/0.	/1.	12.	70.	00. ()	00.	70.	JZ. 70	/ 1 • 7 /
83.	/6.	88.	83.	81.	63.	70.	14.	/y. 75	74.
64.	53.	11.	66.	10.	b/.	13.	01.	/ 2 .	11.
72.	70.	92.	/1.	6/.	60.	/1.	/0.	80.	90.
71.									

.

Appendix P-14: step-intensity data of the 50 wt% olivine mixture of OI+Py, step size 0.03° 2θ

19.00	.03	139.00		50%-olivine	, 0.03	degree	2-the		
90.	100.	79.	85.	. 83.	76.	80.	67.	60.	76.
81.	74.	83.	82.	. 96.	80.	82.	84.	87.	93.
104.	93.	77.	83.	. 80.	90.	81.	95.	109.	128.
130.	169.	153.	182.	. 135.	150.	137.	146.	130.	116.
98.	89,	117.	113.	. 89.	91.	90.	86.	81.	74.
81.	80.	80.	84.	. 95.	94.	92.	84.	81.	89.
95.	76.	79.	74.	. 74.	82.	71.	83.	78.	72.
67.	58.	69.	63.	. 76.	75.	68.	80.	65.	71.
78.	74.	87.	79.	. 74.	75.	77.	61.	75.	75.
60.	67.	73.	72.	. 83.	78.	85.	87.	68.	72.
77.	82.	54.	71.	. 75.	74.	95.	69.	89.	92.
70.	80.	94.	92.	. 97.	80.	90.	121.	111.	141.
155.	152.	197.	221.	. 280.	371.	423.	603.	783.	929.
1008.	985.	947.	827.	714.	526.	405.	296.	227.	175.
138.	133.	116.	123.	. 86.	93.	101.	98.	95.	89.
90.	80.	80.	105.	. 114.	115.	114.	120.	150.	192.
223.	270.	342.	335.	. 385.	388.	342.	308.	256.	221.
171.	141.	129.	105.	. 117.	106.	113.	117.	139.	110.
118.	141.	117.	129.	. 98.	92.	80.	81.	73.	78.
77.	77.	84.	65.	. 60.	77.	89.	78.	88.	90.
59.	80.	83.	84.	. 87.	102.	94.	91.	102.	129.
163.	220.	333.	344.	. 413.	472.	569.	587.	534.	500.
510.	458.	441.	345.	. 283.	242.	197.	134.	118.	97.
91.	11.	83.	11.	. 93.	70.	/6.	12.	82.	84.
/4.	85.	96.	101	. //.	78.	98.	79.	92.	113.
121.	132.	155.	101.	. 211.	278.	308.	333.	346.	315.
293.	262.	242.	107.	100.	133.	101.	106.	101.	125
82. 150	83.	91. 010	220	. 80.	80. 11.6	0Z.	120.	100.	100.
100.	140.	412. 640	ZZU - A D 1	. 297.	410.	212.	106	162.	124
100	004.	042.	401.	. 379. 73	299.	239. 97	196.	70	124.
100. 07	50	96	99. 91	. 75. 75	71	07. Q7	78	76	75.
72	J9. 86	84	76	. 75. 85	87	92.	70.	20. 89	88
68	90. 93	82	78	. 03. 62	88	83	89	95	117
75	88	103.	109	103.	134	156.	184.	211	229.
287.	280.	322.	347	428.	488.	565.	685.	909.	1062.
1263.	1631.	2023.	2478	2955.	3054.	2876.	2693.	2319	1750.
1352.	1012.	853.	719	655.	690.	753.	883.	874.	933.
983.	862.	743.	645	446.	378.	312.	243.	236.	223.
221.	259.	270.	323.	457.	564.	701.	838.	966.	1048.
1096.	1057.	862.	725.	. 568.	401.	317.	211.	173.	154.
124.	120.	95.	102.	. 106.	89.	105.	113.	111.	114.
103.	117.	96.	95.	. 125.	91.	118.	91.	99.	107.
102.	119.	123.	143	. 138.	169.	231.	232.	309.	397.
571.	805.	1003.	1187	. 1311. :	1338.	1237.	1068.	845.	615.
476.	321.	259.	206	. 166.	142.	110.	105.	87.	104.
102.	101.	91.	96	. 73.	73.	83.	72.	65.	66.
73.	74.	72.	75.	. 59.	65.	58.	79.	71.	75.
67.	62.	79.	56.	. 61.	67.	75.	65.	61.	61.
71.	66.	70.	56	. 59.	76.	75.	60.	69.	72.
70.	63.	60.	64	. 70.	63.	63.	72.	71.	75.
63.	93.	61.	68	. 95.	73.	84.	86.	111.	107.
110.	142.	152.	152	. 172.	154.	174.	183.	218.	244.
305.	411.	471.	593	. 724.	731.	749.	722.	676.	626.
550.	492.	427.	438	. 414.	513.	548.	680.	826.	1074.
1247.	1508.	1754.	2144	. 2513. 2	2731.	2943.	3027.	3111.	2849.
2689.	2275.	1867.	1415	. 1073.	757.	553.	466.	414.	364.
295.	270.	248.	282	. 270.	272.	357.	410.	531.	616.
920.	1144.	1402.	1563	. 1726.	1713.	1675.	1402.	1185.	1070.
844.	611.	474.	361	. 276.	252.	197.	178.	142.	134.
117.	119.	91.	113	. 101.	101.	96.	93.	73.	79.
76.	83.	61.	68	. 86.	75.	83.	74.	79.	84.
107.	113.	112.	119	. 114.	126.	131.	143.	150.	137.
131.	123.	105.	112	. 100.	100.	125.	104.	131.	167.

202	268	276	307	313	255	267	213	177	171
102.	200.	270.	100	100	100	100	100	146	106
132.	108.	113.	108.	105.	100.	122.	135.	140.	190.
210.	232.	272.	253.	266.	260.	239.	251.	254.	340.
334.	409.	479.	521.	524.	534.	497.	431.	355.	330.
283.	248.	226.	261,	322.	434.	437.	599.	697.	780.
804	784	755	681	598	505	512	475	520.	573.
604.	704.	(1)	661.	500.	105.	10	360	252	210
572.	6/1.	642.	661.	595.	4/4.	428.	360.	200.	210.
173.	141.	132.	133.	123.	130.	121.	127.	145.	137.
160.	192.	255.	237.	307.	309.	331.	365.	310.	298.
290.	261.	254.	238.	313.	321.	321.	323.	373.	302.
201	201	200	160	170	123	122	12/	104	114
201.	201.	209.	109.	1/2.	12	122.	124.	101.	114.
103.	132.	128.	149.	180.	213.	247.	293.	338.	333.
429.	441.	432.	464.	486.	454.	467.	431.	408.	370.
330.	280.	266.	228.	240.	204.	236.	274.	352.	412.
472	560	554	576	545	496	415	354	286.	238.
100	102	170	101	160	220.	261	255	275	315
190.	101.	170.	101.	100.	217.	201.	140	110	111
300.	295.	244.	273.	216.	170.	162.	140.	118.	111.
99.	111.	119.	101.	116.	109.	130.	116.	129.	131.
127.	127.	122.	118.	110.	108.	91.	86.	96.	91.
72	66	72	93	87	94	102	105	99.	134.
110	107	1 / 5	22.	200	222	422.	502	511	500
112.	187.	145.	21/.	290.	333.	433.	505.	744.	101
633.	553.	530.	519.	354.	338.	293.	239.	205.	181.
199.	182.	176.	202.	210.	268.	354.	327.	359.	374.
365.	397.	359.	352.	330.	310.	246.	251.	231.	167.
146	142	120	92	103	85	75	59	75.	74.
140.	70	120.	70	105.	70	100	73	00	00
84.	70.	04.	79.	04.	/0.	100.	73.	90.	100.
142.	136.	174.	177.	204	218.	206.	228.	224.	188.
184.	127.	125.	114.	122.	125.	134.	143.	142.	153.
152.	141.	143.	121.	128.	105.	104.	98.	99.	76.
74	83	69	68	66	54	73	51.	54.	55.
	E0	62.	46	50. ED	54.	43	46	63	50
58.	59.	63.	40.	52.	55.	45.	40.	05.	50.
54.	61.	54.	43.	55.	63.	54.	43.	45.	52.
55.	53.	58.	54.	47.	67.	53.	67.	58.	77.
63.	59.	58.	77.	74.	67.	97.	91.	138.	134.
156	126	179.	128	141	122.	135.	122.	91.	97.
0/	20.		66	96	06	82	106	113	114
04.	90.	90.	100.	00.	90.	102.	100.	113.	114.
100.	128.	120.	106.	93.	96.	122.	93.	00.	70.
70.	65.	85.	66.	79.	88.	98.	95.	117.	164.
157.	205.	243.	280.	315.	287.	341.	319.	299.	289.
250.	222.	205.	182.	160.	143.	136.	111.	113.	117.
147	125	154	202.	105	221	100	185	197	166
147.	133.	100	205.	12	221.	101	105.	100	100.
164.	116.	109.	101.	114.	93.	104.	94.	102.	129.
105.	115.	120.	155.	137.	143.	143.	105.	120.	127.
102.	90.	65.	77.	75.	97.	57.	73.	61.	79.
79.	105.	95.	98.	125.	110.	103.	116.	120.	113.
115	111	110	142	130	151	164	189	218	226
111.	111.	110.	142. F10	750.	1010	1140	105.	1/50	1427
284.	374.	418.	519.	759.	099.	1140.	13021	1435.	1417.
1439.	1271.	1163.	1088.	983.	911.	822.	695.	661.	577.
517.	468.	389.	368.	338.	267.	257.	236.	208.	197.
191.	170.	156.	139.	126.	119.	101.	97.	94.	109.
112	109	107	9.0	112	102	89.	92	88.	100.
112.	75	207.	04	01	70	77	61	61	66
95.	75.	90.	94.	01.	14.	· · ·	04.	01.	00.
70.	53.	65.	69.	64.	/4.	54.	45.	48.	66.
77.	76.	57.	68.	60.	64.	61.	70.	74.	57.
80.	103.	102.	108.	95.	120.	134.	126.	153.	166.
134.	212.	237.	312.	311.	341.	347.	418.	364.	384.
210	202	200	263	777	162	170	151	151	169
142	202.	100.	203.	237.	102.	1(0	1.51.	167	125
143.	205.	188.	187.	217.	182.	160.	101.	107.	100.
143.	126.	113.	102.	117.	114.	103.	131.	113.	11/.
130.	161.	187.	247.	286.	360.	362.	311.	361.	303.
301.	299.	289.	257.	233.	229.	229.	231.	273.	305.
220	307	505	609	600	702	844	871	916	896
555.	507.	505.	009. (70	090. (FO	126.	1044.	10111	210.	220.
922.	863.	129.	072.	00Z.	51/.	400.	421.	1202.	337.
313.	288.	240.	187.	195.	1/8.	156.	157.	130.	134.
145.	120.	133.	128.	146.	127.	126.	130.	122.	106.
109.	117.	149.	116.	132.	143.	159.	158.	151.	141.
159	1/5	137	119	146	149	133	112	127	129
110	107	107	146	110	110	107	116	157.	173
114.	10/.	121.	140.	110.	113.	14/.	100	100	175.
211.	180.	206.	180.	160.	183.	224.	192.	TAO '	105.

143.	155	152.	152.	122.	144.	159.	159.	173.	157.
1 1 (140	120	140	116	101	00	111	102	70
140.	142.	139.	140.	110.	121.	92.	100	105.	12.
93.	81.	102.	104.	149.	160.	165.	189.	148.	146.
159.	135.	143.	125.	132.	114.	107.	97.	101.	87.
	100.	110.	100	100		117	100	100	110
91.	96.	90.	88.	102.	88.	11/.	109.	129.	110.
141.	148.	153.	169.	174.	200.	234.	221.	251.	264.
203	257	200	302	318	301	260	264	291	289
495.	2.37 .	200.	302.	510.	301.	200.	201.	221.	205.
271.	292.	283.	232.	262.	231.	254.	209.	235.	216.
228.	252.	227.	220.	248.	255.	302.	336.	325.	400.
450	561	E10	520	622	506	500	610	611	691
459.	204.	510.	550.	100.	520.	100.	010.	011.	004.
675.	633.	573.	583.	488.	487.	404.	374.	363.	326.
296.	268.	233.	252.	242.	261.	247.	273.	291.	338.
200	400	500.	()5	705	650	665	665	505	657
369.	420.	537.	020.	705.	000.	000.	005.	595.	557.
527.	503.	427.	399.	330.	283.	240.	225.	173.	152.
153	146	127	106.	133.	128.	124.	115.	122.	131.
100	100	100	101	117	0.6	00	110	110	102
123.	109.	108.	121.	11/.	90.	99.	110.	110.	102.
117.	85.	106.	100.	91.	99.	81.	66.	106.	79.
82	80	80	66	72.	66.	71.	72.	80.	83.
110	00.	1 2 0	120	110	1 4 7	100	110	100	100.
112.	96.	132.	130.	110.	141.	120.	110.	120.	135.
131.	149.	140.	372.	150.	162.	161.	152.	147.	130.
128	144	QQ	93	124	104	81	104	87	106
100		<u> </u>	11.	1101.	100	101.	1(7)	100	100.
106.	97.	93.	114.	110.	128.	154.	T02.	100.	223.
222.	280.	336.	380.	459.	438.	486.	474.	485.	434.
300	407	338	332	283	238	184	201	160	176
101	407.	155	170	200.	230.	101.	201.	200.	210.
181.	140.	155.	1/2.	190.	218.	225.	276.	322.	314.
323.	302.	345.	300.	331.	292.	306.	322.	253.	250.
261	242	277	203	301	317	324	371	126	300
201.	242.	211.	293.	521.	271.	524.	571.	420.	522.
329.	323.	314.	288.	254.	237.	271.	213.	240.	225.
257.	251.	265.	277.	228.	228.	213.	189.	230.	199.
150	107	100	100	01	96	01	02	70	70
100.	127.	100.	109.	04.	00.	04.	32.	70.	15.
83.	87.	74.	104.	87.	84.	82.	111.	101.	121.
125.	133.	110.	123.	114.	115.	109.	88.	116.	109.
04	2001	70	07	67	60	04	74	65	70
84.	84.	76.	0/.	07.	00.	04.	74.	00.	10.
54.	66.	76.	53.	89.	73.	80.	78.	69.	100.
88.	76	111	89.	104.	134.	129.	165.	196.	250.
200.	202	202	201	205	201	201	202.	200	220.
262.	283.	283.	301.	305.	304.	521.	505.	280.	210.
253.	250.	220.	184.	179.	188.	160.	144.	139.	125.
137	142	117	106	100	88	89	79.	89.	61.
	112.	117.	1001	70	00.	05.	04	100	70
78.	84.	97.	87.	70.	88.	82.	94.	102.	70.
95.	120.	122.	130.	158.	175.	215.	208.	218.	206.
205	222	216	244	246.	252.	258.	251.	213.	232.
100	222.	2200	220	100	206	121	201	210	222.
190.	228.	233.	220.	100.	200.	232.	201.	210.	237.
250.	269.	275.	250.	257.	289.	273.	250.	232.	221.
222	217	216	209.	177.	129.	119.	133.	134.	99.
60	0.2	77	01		E /	02	75	60	55.
69.	93.	11.	91.	67.	54.	03.	75.	60.	55.
66.	52.	71.	70.	65.	54.	69.	67.	73.	66.
86	78	91	99	102	123.	119.	111.	109.	125.
100.	100	117	120	100	124	116	105	116	06
124.	128.	11/.	130.	108.	154.	110.	105.	110.	90.
102.	103.	108.	140.	137.	144.	161.	139.	161.	168.
147.	144.	118.	123.	156.	136.	155.	127.	163.	200.
216	200	225	250	212	222	216	103	204	105
210.	200.	225.	250.	610.	222.	210.	195.	204.	105.
191.	171.	156.	107.	112.	96.	114.	82.	92.	/1.
66.	65.	74.	74.	68.	75.	78.	94.	105.	93.
01	104	101	110	100	114	133	150	151	127
91.	104.	121.	119.	120.	114.	155.	100.	101.	157.
148.	147.	181.	179.	179.	171.	160.	177.	171.	184.
178.	173.	189.	175.	170.	162.	148.	149.	133.	146.
110	105	110	120	110	105	107	102	110	126
122.	125.	119.	128.	112.	102.	107.	103.	112.	120.
119.	93.	100.	97.	93.	144.	148.	152.	185.	226.
235.	235	256.	233.	198.	175.	187.	168.	169.	166
170	160	1 4 0	122	100	110	01	104	01	05
113.	100.	140.	122.	100.	110.	24.	104.	01.	00.
91.	86.	61.	76.	80.	73.	75.	72.	80.	90.
96.	90.	92	80.	79.	102.	85.	79.	83.	78
Q7	70	00	Q A	00	65	74	20	75	103
07.	10.	07.	04.	09.	. LO	14.	<u>.</u>	70.	T02.
85.	105.	105.	96.	104.	85.	88.	90.	86.	93.
96.	86.	84.	81.	103.	81.	56.	77.	60.	80.
76	71	71	71	76	80	70	80	60	02
10.	11.	14.	1	10.	00.	10.	00.	00.	22.
84.	83.	87.	104.	112.	76.	119.	86.	93.	94.
84.	84.	81.	93.	69.	69.	64.	69.	51.	73.
65	53	45	5.9	51	40	34	49	54	50
5.5 .				~					

F 1	50	E 4	с х	41	(0	40	EO	67	52
51.	50.	54.	54.	41.	60.	43.	50.	67.	55.
57.	60.	53.	63.	56.	37.	64.	51.	50.	52.
67.	65.	56.	56.	72.	58.	76.	68.	57.	68.
82.	97.	102.	91.	115.	103.	118.	105.	110.	106.
112.	88.	88.	99.	93.	81.	73.	67.	71.	63.
63	57	56	64	57.	47.	66.	58.	48.	64.
63	52	54	55	52	46	70	56	39	58
63.	52.		00.	J2.	40.	70.	JU.	60	20.
65.	65.	87.	90.	83.	81.	02.	02.	00.	
93.	72.	112.	97.	109.	111.	106.	131.	133.	111.
132.	135.	120.	112.	106.	126.	133.	163.	161.	152.
140.	107.	129.	92.	94.	94.	104.	115.	94.	92.
93.	92.	68.	80.	74.	68.	74.	73.	69.	63.
69	78	70	76.	67.	67.	84.	103.	125.	103.
111	105	96	108	100	89	117	105	101	94
114.	101.	00	111	100.	107	110	100	110	124
96.	81.	98.	111.	94.	107.	119.	109.	112.	124.
138.	135.	113.	106.	121.	116.	160.	122.	149.	140.
129.	138.	121.	134.	126.	119.	120.	114.	99.	95.
96.	98.	96.	103.	111.	107.	110.	139.	100.	127.
132.	111.	109.	103.	114.	105.	111.	111.	128.	109.
144.	120.	133.	117.	109.	92.	101.	93.	119.	92.
103	101	107	91	100	89	79	61	66	65
103.	601.	62	60	74	77	77.	65	70	74
70.	02.	05.	00.	74.		74.	100	70.	,
66.	88.	96.	8/.	89.	84.	87.	100.	75.	92.
79.	82.	83.	88.	82.	73.	82.	/1.	/1.	86.
76.	79.	62.	65.	58.	73.	66.	63.	97.	88.
91.	95.	95.	93.	81.	74.	78.	73.	71.	92.
85.	79.	59.	78.	67.	56.	72.	56.	70.	66.
61.	49.	54.	74.	59.	52.	45.	51.	63.	71.
55.	73.	68.	100.	92.	91.	87.	108.	83.	78.
66	70	73	75	81	82.	75.	74.	62.	62.
75	71	77	67	82	87	117	129	125.	133.
110	127	101	136	110	113	00	110	96	104
140.	137.	121.	74	70		70.	40	70.	50
100.	90.	12.	74.	/0.	00.	73.	09. ()	12.	59.
/1.	60.	64.	39.	60.	55.	50.	63.	40.	52.
52.	60.	44.	50.	50.	44.	61.	51.	61.	/1.
56.	52.	70.	56.	59.	66.	55.	70.	70.	84.
92.	82.	95.	83.	96.	123.	98.	99.	91.	108.
126.	119.	126.	153.	144.	152.	134.	128.	125.	134.
138.	145.	117.	124.	121.	140.	137.	133.	127.	96.
118	135	126	133.	155.	135.	146.	169.	199.	220.
221	225	270	272	274	251	224	243	215	212.
221.	200.	242	200	300	221.	207	276	275	239
222.	101	100	200.	100.	211.	200	106	273.	102
205.	191.	192.	105.	109.	217.	209.	190.	200.	192.
181.	182.	204.	196.	206.	212.	214.	215.	198.	185.
191.	169.	168.	174.	172.	142.	151.	139.	152.	146.
134.	115.	102.	115.	126.	98.	99.	91.	68.	75.
65.	82.	94.	64.	68.	78.	72.	68.	72.	91.
81.	67.	69.	72.	70.	74.	67.	81.	92.	78.
85.	98.	93.	110.	114.	113.	100.	101.	143.	117.
116	113.	94	87.	100.	86.	88.	95.	93.	102.
108	99	98	101	79	76	107	112	99	93.
100.	90	22.	70	83	70	82	91	85	75
100.	90.	100.	79.	00.	101	02.	103	0.0.4	110
12.	89.	100.	85.	89.	101.	82.	102.	94.	112.
129.	118.	118.	114.	126.	114.	133.	129.	137.	154.
194.	209.	230.	226.	213.	198.	189.	143.	149.	136.
139.	141.	151.	147.	121.	116.	129.	104.	86.	85.
92.	74.	71.	72.	53.	49.	59.	70.	60.	67.
61.	73.	75.	71.	73.	77.	74.	102.	76.	79.
106.	98.	96.	95.	97.	97.	81.	74.	83.	81.
95	83	78	102	78	93	82	68.	102	78.
70	77	0.2 0.2	111	104	120	120	142	141	146
19. 177	122	110	100	104.	111	110	100	178	115
12/.	133.	117.	110.	104.	TTT.	TTO '	144. 75	101	- L L J - 7 /
105.	111.	114.	112.	96.	96.	04.	105	101.	/4.
91.	84.	/5.	80.	17.	103.	119.	102.	131.	130.
102.	118.	97.	108.	92.	89.	84.	87.	104.	104.
94.	88.	76.	78.	96.	86.	85.	97.	73.	76.
72.	86.	75.	84.	85.	87.	81.	82.	82.	77.
79.	73.	69.	83.	70.	99.	95.	98.	92.	107.
89.	84.	87.	84.	103.	92.	105.	100.	97.	122.

135.	124.	142.	152.	149.	117.	139.	112.	116.	115.
114.	133.	131.	146.	142.	133.	125.	117.	113.	112.
100.	97.	95.	78.	98.	90.	101.	91.	89.	77.
91.	96.	97.	86.	106.	99.	81.	71.	66.	6U. 70
70.	75.	71.	63.	12.	68. E4	11.	63. 77	/o. 85	79.
61.	67.	12.	64. 00	00. 07	⊃4. 07	101	93	94	79.
80.	107	97. 111	105	89.	119.	93.	97.	85.	79.
80.	72.	82.	75.	70.	76.	63.	80.	68.	76.
80.	80.	74.	74.	78.	79.	74.	80.	120.	106.
77.	83.	101.	113.	97.	105.	123.	116.	121.	117.
104.	134.	174.	94.	99.	97.	114.	107.	119.	135.
119.	118.	126.	114.	109.	103.	100.	102.	88.	85.
96.	90.	106	81. 110	00. 111	111.	93.	96	86.	103.
78	81	68	73.	71.	63.	77.	89.	105.	86.
74.	94.	76.	85.	86.	79.	102.	91.	84.	79.
71.	61.	97.	89.	83.	81.	101.	82.	80.	85.
86.	96.	86.	88.	85.	74.	90.	84.	111.	112.
119.	122.	118.	123.	125.	116.	120.	123.	114.	107.
105.	165.	121.	111.	111.	120.	116. 01	96.	97.	91. 91
91. 72	119.	/i.	91. 76	72.	72. 61	51.	67	57.	65.
13.	79.	58	65.	58.	61.	55.	55.	53.	63.
49.	55.	47.	47.	50.	56.	49.	38.	51.	48.
50.	54.	44.	48.	49.	64.	55.	63.	51.	44.
61.	54.	59.	57.	60.	50.	47.	59.	66.	65.
70.	54.	64.	66.	80.	71.	84.	72.	72.	61.
45.	60.	105.	68.	101.	65.	72.	69. 72	62. 50	67. 71
60.	62.	59.	63. 77	78. 64	70. 66	79. 67	76.	68.	66.
63	70.	54. 70	88.	149.	69.	79.	84.	82.	80.
90.	95.	87.	116.	93.	132.	112.	114.	93.	104.
119.	104.	116.	85.	96.	111.	85.	95.	96.	109.
109.	123.	121.	125.	114.	116.	96.	93.	92.	72.
75.	72.	77.	84.	88.	76.	82.	96.	72.	99.
80.	70.	76.	67.	66.	63. 00	88.	93.	73.	105.
/1.	119.	88.	98.	94. 70	89. 90	85	93	87	181.
104	87	106	138.	122.	139.	134.	105.	105.	102.
83.	103.	107.	84.	88.	95.	93.	108.	95.	108.
95.	103.	93.	108.	78.	87.	86.	107.	90.	75.
82.	106.	81.	94.	96.	101.	110.	120.	121.	124.
146.	128.	138.	135.	127.	126.	126.	118.	143.	143.
125.	135.	125.	129.	120.	113	124.	109	110.	104.
113	110.	113	128	102	119.	125.	141.	152.	161.
151.	142.	122.	121.	114.	118.	125.	131.	126.	127.
131.	115.	147.	98.	118.	128.	120.	109.	83.	87.
95.	88.	101.	94.	68.	77.	96.	109.	71.	84.
80.	60.	79.	70.	68.	68.	77.	71.	13.	83.
93.	74.	61.	6U. 74	53.	75.	5∠. 85	71. 99	84	23.
68. 102	66. 04	69. 100	74. 108	124	91	86.	84.	76.	90.
72	66	73.	62.	74.	62.	69.	75.	82.	83.
65.	78.	59.	56.	71.	48.	51.	57.	64.	48.
63.	59.	52.	73.	57.	47.	52.	72.	46.	61.
59.	56.	50.	65.	92.	97.	91.	85.	83.	73.
86.	68.	70.	89.	74.	77.	74.	/5.	11.	96.
84.	99. 70	82.	ხშ. ვი	64. 61	11. 66	03. 77	65	61	64
//. 61	12.	77. 60	72	70.	72.	58.	61.	70.	49.
58.	64.	68.	76.	62.	45.	63.	57.	59.	60.
59.	52.	70.	60.	77.	52.	46.	71.	57.	64.
81.	97.	93.	80.	87.	75.	71.	83.	65.	68.
63.	59.	78.	80.	67.	93.	69.	80.	82.	/5.
82.	66.	43.	66. / E	81.	/j. 7/	55. 27	72. 72	כא. קר	. CC AR
69. 07	62. 80	69. 75	יבט 73	04. 72.	67.	60.	71.	69.	63.
21 .	02.	ه تر ۱	101		· · ·				•

68.	60.	70.	79.	68.	84.	84.	88.	94.	92.
81.	90.	105.	105.	89.	111.	102.	93.	98.	83.
90.	75.	83.	86.	84.	91.	91.	83.	89.	96.
94.	95.	86.	85.	71.	75.	61.	90.	84.	84.
80.	71.	78.	85.	78.	81.	109.	111.	100.	92.
103.	104.	97.	114.	104.	92.	89.	103.	108.	144.
118.	122.	109.	110.	106.	119.	122.	125.	116.	124.
124.	113.	116.	104.	122.	109.	104.	117.	96.	84.
94.	109.	106.	97.	105.	118.	127.	117.	134.	132.
139.	123.	111.	121.	100.	103.	111.	111.	88.	107.
100.	117.	114.	90.	110.	112.	96.	116.	107.	104.
92.	91.	100.	92.	81.	94.	92.	92.	67.	103.
68.	83.	93.	74.	101.	87.	96.	89.	101.	100.
101.	63.	63.	76.	85.	55.	84.	78.	60.	69.
69.	11.	73.	70.	78.	88.	64.	60.	72.	60.
85.	61.	63.	/3.	64.	70.	69.	57.	60.	68.
56.	67.	63.	/8.	54.	69.	58.	78.	63.	89.
100.	78.	94.	84.	85.	83.	86.	85.	102.	87.
85.	80.	/3.	96.	111.	111.	130.	144.	138.	117.
125.	100.	112.	111.	100.	85.	98.	//.	88.	93.
97.	89.	89.	113.	82.	120.	108.	82.	92.	84.
80.	100.	100.	80.	70.	/4.	68.	70.	· 87.	64.
82.	74.	08. 101	89.	84.	52.	80.	94.	90.	83.
104.	121.	101.	103.	91.	100.	101.	91.	78.	80.
00. 01	82.	14.	/6.	14.	/4.	81.	/1.	/5.	/4.
01.	80. 70	105.	94.	107.	95.	80.	98.	80.	92.
70	105	01.	07.	. 60	79.	/1.	86.	. 30. 77	04.
73. 92	105.	01	95.	20. 122	104	99.	104	//.	/5.
02.	94.	91.	90. 90	125.	104.	101.	104.	97.	90. 04
84	97.	23. 85	20.	103.	100.	93.	01.	70	725
91	102	96	09. 03	2Q.	86	04. Q/	104	79. 77	100
01	92	78	96	76	74	75	72	69	100.
85	87	81	87	72	77	85	84	81	88
89.	64.	63.	85.	72	94	95	86	96	103
96.	98.	107.	119.	98	106	138	115	94	92
112.	115.	105.	94	98	113	86	104	114	100
113.	108.	110.	96.	114	101	118	128	101	94
86.	101.	82.	98.	102.	84.	89.	88.	105.	91.
108.	114.	118.	130.	122.	112.	106.	100.	98.	95
88.	87.	97.	91.	79.	85.	66.	60.	93.	73.
73.	75.	98.	93.	102.	91.	112.	79.	96.	70.
69.	84.	83.	71.	79.	64.	91.	85.	92.	93.
88.	101.	87.	89.	90.	67.	107.	84.	86.	82.
88.	101.	98.	77.	95.	83.	90.	92.	101.	90.
87.	137.	118.	111.	113.	127.	130.	147.	143.	152.
140.	136.	137.	120.	106.	133.	125.	138.	110.	126.
116.	129.	118.	132.	118.	130.	122.	141.	131.	127.
135.	119.	143.	125.	149.	129.	115.	131.	138.	148.
133.	158.	142.	139.	132.	112.	96.	127.	112.	112.
107.	136.	124.	103.	126.	159.	143.	165.	155.	169.
178.	150.	164.	164.	169.	160.	148.	130.	131.	107.
116.	108.	120.	111.	107.	90.	91.	118.	86.	116.
103.	111.	127.	105.	122.	113.	124.	115.	131.	119.
108.	98.	127.	108.	100.	123.	102.	105.	91.	109.
69.	79.	69.	77.	83.	74.	79.	76.	72.	62.
63.	54.	71.	103.	75.	67.	65.	70.	79.	86.
77.	63.	65.	81.	71.	64.	71.	75.	93.	84.
101.	82.	67.	93.	72.	85.	77.	67.	72.	77.
63.	83.	60.	76.	80.	64.	69.	59.	75.	88.
95.									

Appendix P-15: step-intensity data of the 50 wt% olivine mixture of OI+Py, step size 0.04° 2θ

	19.000	0.040	139.00	50%-olivine	mixture	e, 0.04	degree	2-theta		
	98	84	84	87	77	62	94	73	90	66
	84	92	89	86	81	77	85	94	105	100
	120	119	149	162	150	155	117	114	109	102
	83	95	97	73	92	74	78	85	.90	88
	82	98	71	64	67	88	80	78	59	90
	54	82	73	80	73	77	69	70	79	69
	67	85	74	/3	69	58	74	66	70	71
	67	82	/3	/4	67	69	91	70	67	15
	83	96	20	84	88	96	1000	1100	120	100
	100	24/	347	463	134	915	1089	1102	0/0	298
	379 78	200 75	220	140 Q1	134	107	126	129	90 186	90 771
	303	386	429	348	284	194	146	129	104	201
	93	106	122	135	145	125	101	111	82	71
	68	80	74	61	69	78	67	72	70	72
	77	88	98	87	98	121	149	202	236	389
	475	545	592	513	469	386	288	230	190	109
	117	100	68	75	86	79	86	79	74	96
	85	80	68	95	74	98	114	134	155	193
	301	327	352	319	261	190	158	123	99	89
	85	96	85	79	86	86	87	109	107	131
	162	211	317	511	708	841	855	733	514	327
	215	163	135	101	94	74	76	81	68	82
	82	69	81	67	76	88	76	83	63	70
	80	69	69	86	82	82	71	80	69	84
	100	86	91	94	83	114	112	124	133	168
	182	239	255	298	399	484	1100	788	1070	14/3
	2034	2009	2973	2000	2330	1000	524	707	201	227
	221	222	254	200	394	571	224	956	1026	254
	786	514	388	250	192	144	133	108	95	107
	100	97	105	103	110	104	92	83	97	95
	116	100	119	113	154	169	208	303	406	614
	946	1328	1407	1305	999	634	399	242	190	156
	128	101	92	89	84	70	75	79	76	74
	85	79	69	60	72	71	67	70	56	66
	52	63	72	62	64	73	57	69	68	57
	64	71	63	79	64	60	77	69	57	81
	55	82	79	82	83	89	94	97	117	119
	140	168	169	189	208	205	271	387	521	632
	//1	817	724	622	454	437	388	429	512	6/3
	928	1052	1683	1977 .	2254	2605	2938	2742	2615	2147
	1004	±052	/30	488	390	1202	1()5	204	249	1201
	291 010	550	393	337	920 267	1302	176	130	115	1301
	115	99	322	85	207	71	70	79	87	132
	71	71	82	92	93	130	127	147	116	130
	138	126	107	107	97	121	112	129	183	264
	269	312	274	238	194	152	145	117	110	93
	131	127	142	170	224	279	293	303	248	253
1	255	351	466	517	562	443	418	360	276	249
	226	275	343	455	643	759	789	734	614	516
	471	395	424	551	649	668	678	519	419	316
	209	142	108	139	128	127	100	118	134	166
	247	295	363	344	354	324	294	245	267	224
	327	306	298	251	221	170	145	124	116	88
	110	116	111	135	148	182	267	338	400	422
	424	450	443	442	443	438	327	254	220	203
	∠3U 21 4	223	326	450	D4/	010	24/	458	3/1	301
	414 260	101	144 104	101	140 134	∠00 120	231	290 110	<i>414</i> 104	313 117
	∠00 100	204 100	104	105	134 118	120	111	119	100	71 V
	122	129	114 72	105	90	110	50 714	90	97 11A	29 150
	162	214	220	395	525	545	585	523	435	367
		~ ~ .						220		~ ~ i

309	239	190	173	175	201	235	318	355	431
373	398	375	384	319	310	232	202	173	173
111	87	75	79	74	65 169	193	66 246	83 221	234
189	145	136	100	$112 \\ 119$	121	115	129	140	139
127	145	135	94	90	81	70	63	60	63
60	61	56	45	66	53	56	55	57	54
49	52	58	61 61	71	54 56	68 74	61 63	46 66	50 68
22	51 91	104	155	137	173	146	126	114	116
100	78	69	76	79	88	82	93	111	98
118	117	112	90	86	79	73	57	69	65
75	90 260	101	127	152	216	261	279	263	258 125
124	200	208	222	172	168	152	150	97	93
95	80	93	124	106	126	147	127	124	106
117	111	72	74	69	65	64 111	77	120	126
80 143	105	200	244	325	360	570	807	1129	1402
1489	1349	1201	1029	986	822	682	605	509	428
428	307	274	223	203	184	170	139	144	110
113	91	88	93 74	122	119 Q1	119	109	118	93 58
65	49	52	64	58	66	60	51	60	55
58	73	69	79	79	88	96	111	118	119
133	163	178	271	307	348	373	354 190	332	292
283	240 157	123	131	121	112	120	94	112	101
120	136	160	193	265	342	344	331	320	310
297	254	206	230	221	243	294	382	526	697
804 330	906 303	220	860 199	219	171	160	132	122	128
136	145	134	130	114	115	102	128	117	128
154	148	151	157	134	127	130	138	123	139
132	178	182	119	200	116	136	145	139	129
148	149	147	170	168	142	135	116	100	99
96	88	90	91	125	141	184	188	157	149
132	132	108	100	87 126	101 120	86 178	82	81 189	104 205
217	282	285	291	317	302	316	285	273	291
246	253	246	207	198	189	191	203	232	220
254	302	299	388	409	521	558	563	508	570
605 234	627 247	625 223	522 211	410 250	295	326	389	200 516	627
712	692	583	553	479	418	411	303	214	171
152	144	128	129	117	113	108	123	119	128
95 80	88	88 96	99 80	91 78	118 57	82	110	95 59	100
90	88	83	108	103	108	109	113	122	126
128	151	164	171	142	129	124	107	108	110
176	206	89 203	78	88	88 550	87 544	107 490	139 425	384
392	349	291	249	178	177	178	153	161	180
201	227	275	331	356	309	324	314	277	264
241	222	219	248	267	287	323	304	318 268	329
210	239 196	178	170	149	122	94	200	112	243
75	81	79	76	74	96	98	91	120	118
129	123	109	94	80	105	82	85	81	91
74	68 85	62 86	104	رد 108	113	145	190	230	291
283	290	272	244	283	308	252	236	198	178
149	147	132	120	103	110	89	94	82	73
83 110	83 114	65 164	13	78 203	69 185	80 208	/1 156	92 203	±03 222
264	263	262	232	200	220	223	208	216	213
210	226	234	280	251	275	233	211	201	216
179	175	126	116	102	119	92	71	71	55

1

			~ ~	~ ~			~ ~		~ ~
70	62	67	60 70	68	59	63	55	66 104	6.5 110
20	01 11Ω	105	119	104	117	120	104	204	13/
117	132	132	148	148	161	132	145	129	161
172	216	216	259	248	209	193	177	197	165
132	100	98	20	86	209	77	85	72	73
82	97	103	92	106	121	134	117	179	140
131	157	154	183	193	155	158	154	164	157
152	155	179	172	142	144	136	100	104	101
115	104	110	117	92	113	105	116	118	144
174	206	221	214	195	211	165	170	154	177
124	126	104	91	94	75	61	67	68	60
66	76	71	83	85	100	99	94	92	73
81	91	87	81	79	84	71	77	72	87
117	106	119	102	92	81	103	85	92	77
68	72	68	77	70	82	72	69	74	53
78	94	91	97	112	107	116	106	83	100
80	67	71	71	51	52	57	48	45	31
50	52	54	48	54	54	57	41	48	62
53	47	60	42	51	52	33	54	50	22
23	20	40	100	02	00 76	04	90 07	97	74
67	57	66	109	62	57	56	57	63	10
59	52	51	50	60	60	67	70	66	73
80	71	80	80	72	74	90	104	98	137
117	123	126	89	117	123	133	149	124	115
109	87	94	112	88	81	85	97	74	63
76	77	61	75	70	64	69	67	81	90
130	121	121	80	98	93	91	112	80	96
100	98	90	107	114	110	103	137	125	119
123	133	145	129	145	98	113	138	116	104
89	96	98	115	117	122	137	125	129	111
102	100	112	97	119	108	103	125	127	118
103	102	84	82	115	115	108	89	/1	/8
/ 5	62	59	73	59	6/ 71	6Z	20	102	80
75	90 70	73	90 60	50	60	71	50	50	65
69	81	94	90	71	78	71	63	84	60
89	66	59	54	64	56	55	46	44	66
42	52	47	58	62	75	86	95	96	82
85	67	77	72	57	48	60	73	65	56
73	82	76	103	101	122	147	132	96	109
74	79	91	92	92	84	68	84	68	70
43	71	43	57	63	58	46	54	48	42
47	54	51	43	56	52	58	71	68	80
58	55	90	75	68	76	77	104	95	93
83	103	142	126	110	158	114	119	128	110
103	129	143	⊥4∠ 011	200	99 250	266	120	240	102
191	205	223	211	200	351	352	202	181	185
174	167	212	193	181	174	138	172	173	177
187	182	195	164	169	124	167	137	142	126
126	147	121	109	91	91	88	77	61	69
69	70	73	75	69	79	55	58	63	71
71	63	83	86	88	112	114	91	99	118
106	95	101	99	92	79	94	99	108	92
103	98	97	102	87	104	94	79	79	74
81	85	79	86	89	77	90	74	75	89
100	110	118	119	113	118	115	132	141	181
210	225	213	189	145	124	103	129	127	143
133	120	28	85	6/	/1	55	/4	67	57
28	5U 61	0U 07	01 70	74	19	/4	93 75	90	80 27
57	92 71	שי ז ק	10 80	83 13	00 00	09 106	133	1/1	150
144	121	127	110	118	114	97	116	113	101
125	104	85	104	85	74	70	86	90	86
81	103	98	120	135	109	103	85	85	82
92	81	90	104	86	80	80	84	68	87
59	84	93	83	99	75	77	68	78	71
91	97	107	91	83	83	90	88	100	98
-----------	----------	-----------	----------	-----------	----------	----------	-----------	-----------	----------
119	117	100	134	140	110	115	110	117	135
140	146	147	139	108	92	100	86 89	9	88
79	79	59 59	92 61	58	70	84	68	67	62
45	55	54	66	53	61	76	84	95	92
91	83	75	98	93	90	104	109	104	90
66	74	72	68	82	82	74	73	66	72
68 100	59	69 02	68 QQ	73	/8 80	74 98	94	93	91
126	108	113	120	97	97	80	84	91	91
74	83	102	90	93	80	90	91	111	119
83	92	92	99	76	90	83	85	105	97
75	77	70	64	80	77	82	76	66	72
85 75	89 80	85	100	94	131	105	133	118	82 96
103	111	113	113	125	120	119	107	104	86
70	85	80	79	85	88	65	84	68	65
65	57	61	52	57	55	54	74	39	50
50	53	61	38 54	61	45	46	41	63	46
62	47	51	55	40 61	58	67	68	56	67
72	65	57	62	62	65	63	73	60	62
55	62	65	87	67	72	75	59	67	70
63	76	61	70	83	71	77	70	83	55
87	97	92	96 87	107 Q1	112	118	128	96	119
95	92	79	60	81	76	72	81	86	87
85	72	86	73	67	72	69	78	88	88
96	71	67	77	65	78	61	76	93	88
85 109	86	87	82	84	83	117	131	137 01	96
84	94	93 66	75	74	77	81	79	93	98
98	114	107	127	137	146	143	126	112	113
126	124	148	141	125	108	133	124	115	115
120	101	108	114	82	96	107	114	107	117
114	140	146 99	136	134	113	106	115	96	97
71	98	84	76	79	70	62	66	71	76
64	61	64	62	60	100	77	67	61	57
71	66	64	88	77	77	86	87	83	87
92	95	104	94	84	70	92	71	88	12
63 49	65 56	88 58	78	62	70	67 52	54	40 50	40 62
64	81	68	83	91	63	52	85	73	64
68	63	56	70	73	71	61	49	72	65
66	71	79	60	57	68	67	78	56	50
66 55	59	55	56 20	51 60	52 59	64 55	54	61 57	57
61	59	60	81	69	74	77	74	74	49
60	67	64	63	68	83	77	63	76	78
71	54	58	70	72	68	76	60	75	98
83	91 70	85	70	76	73	76	65 104	64	64
00 97	106	77	07 86	07 96	101	90 77	95	87	78
76	98	84	90	70	92	75	83	83	82
84	88	86	72	79	82	95	101	77	75
79	92	93	108	112	115	110	105	118	111
125	131	108	112	118	99	115	105	95 113	75
101	88	118	93	92	93	94	100	99	99
81	86	94	85	89	83	105	89	79	75
83	80	90	100	91	100	83	88	83	69
82	62	65	71	64	59	70	60 5 C	79	77
13	67 52	70 58	29 79	67 69	/2 78	51 81	20 88	04 86	68 29
93	85	88	76	79	89	92	126	112	112
121	112	122	104	105	90	109	90	104	84
93	87	92	89	79	67	68	78	76	71

1

63	67	60	69	86	56	59	68	74	93
72	99	88	82	84	100	75	64	77	80
71	79	88	58	91	85	91	91	90	98
93	89	72	89	81	66	73	68	63	58
62	76	70	74	86	79	93	82	82	83
79	71	81	96	111	95	86	92	78	99
83	91	88	76	82	79	87	76	60	81
80	89	89	89	93	92	105	88	101	80
80	60	64	72	64	69	77	68	.80	84
84	87	73	85	89	98	75	92	81	95
94	85	113	82	109	112	105	121	100	81
82	99	95	84	97	100	95	102	105	98
106	111	104	103	101	85	81	84	86	83
100	90	109	106	103	87	89	89	80	91
89	70	67	55	73	81	85	83	75	87
81	81	88	64	64	63	89	70	85	93
103	103	93	80	100	92	71	87	77	94
76	88	96	84	70	97	106	116	101	107
99	134	135	107	116	130	124	111	125	108
120	114	114	125	126	119	105	119	124	139
109	115	125	143	134	102	130	118	127	112
127	106	103	112	108	109	115	138	118	113
172	155	172	154	155	139	125	136	120	87
109	80	98	103	88	86	125	120	114	93
119	97	108	101	109	85	101	101	91	69
81	87	81	76	89	91	80	88	72	82
84	70	74	74	77	77	66	85	75	59
64	64	62	64	76	58	76	87	68	61
72	69	75	74	69	62	79	61	70	72
64									

Ś

Appendix P-16: step-intensity data of the 50 wt% olivine mixture of OI+Py, step size 0.05° 2θ

19.00	.05	139.00		50%-olivi	ne, .05	degree 2	-thet		
87.	82.	78.	85.	89.	87.	83.	74.	72.	94.
73.	80.	93.	73.	95.	82.	111.	113.	161.	175.
167.	158.	157.	124.	112.	104.	104.	93.	95.	77.
83.	72.	86.	63.	94.	69.	82.	69.	86.	84.
76.	82.	68.	82.	66.	54.	83.	70.	74.	81.
70.	90.	86.	68.	98.	65.	73.	63.	68.	78.
78.	72.	88.	78.	66.	85.	76.	84.	94.	93.
102.	143.	147.	178.	233.	358.	528.	835.	1040.	1021.
841.	5/3.	306.	208.	165.	131.	123.	92.	101.	83.
104.	89.	102.	115.	120.	129.	220.	305.	367.	371.
329.	241.	182.	119.	129.	129.	128.	147.	138.	134.
129.	00. 70	91.	75.	90.	112	174	0D. 254	245	82. 501
506	577	198	440	361	257	166	120		93
87.	85.	72	79	79	84	81	96	96	107
101	151	200	256	272	328	319	236	171	128
88.	95.	100.	88.	102.	95.	108.	93.	135.	164.
248.	421.	590.	704.	730.	640.	483.	320.	173.	137.
94.	95.	99.	86.	64.	77.	77.	80.	80.	73.
81.	83.	84.	93.	93.	86.	78.	81.	74.	72.
74.	86.	92.	100.	95.	109.	109.	110.	170.	200.
252.	301.	399.	471.	631.	831.	1284.	1951.	2678.	3175.
2681.	2091.	1350.	900.	625.	666.	756.	926.	974.	841.
621.	406.	295.	244.	228.	304.	335.	553.	779.	1037.
1129.	1003.	688.	401.	246.	187.	150.	118.	116.	109.
98.	123.	121.	108.	115.	95.	106.	116.	115.	117.
136.	169.	237.	360.	544.	870.	1148.	1301.	1133.	823.
508.	258.	181.	139.	121.	99.	101.	84.	102.	54.
84. E1	65. 74	73.	65. 77	73.	//.	81.	67.	80.	67.
D1. 75	74. 64	0/. 70	11.	59.	75.	64. oc	66. 00	70.	00. 00
75.	104.	12.	122	140	164	107	, כס רבר	204	90. 457
596	667	760	652	573	462	138	445	611	9/9
1232.	1670	2185	2753	2935	3021	2547	2047	1308	873
541.	368.	282.	271.	285.	303.	366.	552.	847.	1284.
1549.	1725.	1520.	1141.	817.	484.	327.	276.	181.	176.
123.	111.	97.	96.	68.	84.	88.	86.	88.	80.
85.	92.	108.	103.	146.	134.	132.	143.	126.	112.
142.	96.	115.	131.	207.	261.	292.	270.	235.	170.
164.	113.	93.	105.	117.	175.	208.	241.	277.	256.
255.	287.	350.	480.	525.	532.	429.	346.	296.	247.
293.	391.	535.	680.	808.	762.	671.	558.	436.	484.
590.	671.	593.	521.	373.	265.	166.	130.	117.	118.
135.	131.	178.	241.	267.	327.	367.	341.	259.	274.
283.	322.	340.	314.	326.	260.	186.	14/.	99.	100.
105.	105.	146.	204.	265.	355.	396.	455.	441.	445.
419. 530	300. 506	309.	200,	204. 195	234.	200. 163	303. 107	437.	202.
308	262	256	171	100.	195.	105.	197.	243. 128	125
137	106	112	112	118	145.	98	75	81	71
79.	100.	99.	120.	138.	155.	252.	333.	436.	515.
577.	522.	411.	302.	270.	213.	202.	194.	229.	297.
348.	373.	361.	400.	351.	334.	253.	208.	141.	122.
93.	93.	73.	78.	54.	82.	81.	82.	90.	103.
109.	157.	209.	243.	225.	204.	166.	133.	122.	129.
133.	119.	128.	128.	131.	117.	111.	107.	76.	77.
49.	64.	64.	60.	50.	49.	40.	50.	53.	45.
45.	51.	53.	46.	37.	60.	53.	47.	52.	62.
63.	49.	77.	82.	78.	77.	102.	114.	172.	140.
150.	144.	116.	. 94.	102.	74.	79.	76.	90.	95.
130.	110.	130.	103.	102.	77.	79.	82.	80.	87.
0/. 171	141	155.	213.	234.	304.	299.	308.	265.	202.
148	141. 117	117 117	83 TTP:	130.	το <u></u> ς.	111.	∠15. 105	204. 139	104. 151

122.	102	96	146	85	66	63	70	88	88
120	100.		140.	100	00.	05.	12.	100.	
119.	109.	100.	111.	108.	129.	121.	150.	195.	223.
266.	420.	649.	1013.	1286.	1461.	1275.	1263.	990.	851.
763	5.80	550	406	328	272	212	105	107	151
105.	500.	5.00.	400.	520.	212.	212.	190.	107.	
118.	119.	111.	85.	110.	100.	89.	96.	94.	90.
92.	76.	77.	77.	79.	78.	63.	63.	73.	52
54	60	C A	E 7	EG	50.	00.	74	00	100
54.	60.	64.	D≠ +	28.	53.	92.	74.	83.	100.
118.	132.	123.	144.	185.	250.	283.	358.	382.	351.
371	276	240	178	176	146	192	100	105	100
351.	270.	107	110.	170.	140.	176.	100.	100.	192.
154.	163.	127.	11/.	100.	116.	111.	130.	138.	170.
253.	302.	325.	319.	295.	2.84.	258.	233.	247.	235
367	405	636	777	036	000	070	700	660	ECO.
507.	405.	050.	777.	930.	090.	070.	700.	000.	200.
433.	371.	323.	26/.	200.	188.	161.	141.	108.	114.
124.	138.	118.	126.	260.	134.	146.	142.	172.	147
1 / 5	124	120	100	101	104	1 2 2	117	100	100
145.	134.	130.	123.	121.	124.	122.	11/.	123.	125.
155.	175.	213.	216.	181.	173.	154.	184.	163.	154.
140.	157.	172.	164	135	157	167	90	121	95
110.	100	107	147	1.0.0.	140	1 47	124	121.	25.
99.	80.	127.	14/.	146.	143.	14/.	134.	148.	124.
93.	82.	88.	98.	88.	78.	116.	124.	131.	173.
182	217	239	2/3	284	211	282	300	206	270
240	217.	232.	243.	204.	511. 000	202.	505.	290.	270.
249.	278.	247.	260.	226.	238.	247.	211.	243.	239.
310.	322.	400.	484.	489.	826.	599.	704.	640.	620.
534	131	202	214	202	270	100	244	200	240
774.	451.	393.	544.	505.	270.	220.	244.	200.	546.
392.	496.	673.	/10.	642.	589.	521.	470.	346.	281.
206.	156.	161.	134.	136.	118.	110	116	113	103
00	114	00	0.0	-00	110.	110.		110.	105.
99.	114.	90.	92.	90.	84.	99.	91.	96.	83.
80.	64.	81.	67.	78.	95.	101.	103.	104.	130.
120	122	131	146	138	157	155	136	114	136
100.	101	101	110.	150.	115	110	100.	1	100.
92.	104.	101.	81.	82.	115.	112.	128.	158.	199.
247.	298.	436.	465.	488.	450.	391.	374.	307.	265.
224	179	169	157	167	1.91	205	263	340	210
222.	200	105.	10/ 1	107.	101.	695.	203.	340.	210.
344.	306.	268.	238.	231.	252.	296.	318.	363.	338.
330.	290.	271.	253.	220.	223.	231.	265.	269	253
107	170	155	100	03	01	73	01	77	00
101.	172.	100	146.	95.	91.	73.	04.		00.
82.	83.	109.	119.	106.	140.	112.	127.	107.	112.
96.	79.	84.	73.	79.	81.	61	67	93	88
00	02	01	100	107	110	1 ()	210	22.	200.
90.	95.	92.	100.	107.	110.	164.	218.	276.	329.
284.	286.	286.	307.	241.	230.	187.	179.	168.	156.
142.	109.	106	96	79	77	77	76	77	70
<u>-</u>	-0j	1100.	110	120	101	105	224	015	210
02.	91.	112.	119.	132.	181.	195.	234.	215.	219.
224.	242.	249.	237.	240.	217.	226.	216.	214.	216.
241.	265.	270.	307	248	249	200	242	180	157
107	05	0,0,0	01	2.0.		200.	2.12.	100.	107.
127.	95.	80.	84.	12.	66.	64.	80.	64.	56.
68.	66.	77.	85.	65.	78.	95.	121.	114.	84.
116.	129.	122.	109	92	88	105	109	128	133
140	104	100	100.	150	1 2 7	100.	170	100	133.
140.	104.	100.	102.	120.	137.	129.	1/8.	199.	247.
239.	227.	211.	168.	188.	156.	133.	102.	74.	77.
63.	66.	83.	80.	98	103	109	120	134	145
1 - 1	101	1 (7	150	1 (7	175	170	150.	101.	173.
TOT.	101.	107.	128.	167.	1/5.	170.	157.	193.	195.
172.	168.	149.	133.	128.	114.	151.	95.	107.	94.
113	102	00	146	140	213	221	225	011	172
1()	102.		110.	190.	213.	421.	443.	411.	1/J.
163.	188.	166.	141.	134.	111.	88.	66.	86.	96.
62.	72.	70.	77.	108.	77.	97.	92.	77.	90.
77	78	97	70	66	73	90	100	104	00
101	70.	07.	12.	00.	75.	09.	109.	104.	09.
101.	85.	91.	110.	93.	90.	57.	76.	76.	75.
84.	75.	67.	74.	84.	96.	101.	112.	114.	88.
07	114	00	0.2	63	60	4.0	47		с. г.
21.	TT4.	20.	33.	03.	00.	40.	4/.	52.	54.
43.	60.	50.	/6.	47.	53.	46.	52.	50.	50.
47.	48.	34.	42.	55.	51.	76.	65.	63.	87
22	104	100	117	122	110	104	00	00 ·	07.
00.	104.	109.	× 1 / •		112.	104.	ου.	02.	98.
91.	86.	70.	76.	57.	54	60.	60.	56.	57.
50.	61.	57.	67.	65.	58	89	82	76	88
75	00	100	110	110	100	117	114	130	100.
12.	74.	102.	112.	112.	123.	11/.	114.	130.	130.
115.	126.	128.	118.	100.	91.	71.	78.	78.	65.
98.	62.	67.	62	60.	67	72	74	96	97
02	04	04	00	210	100			20.	27.
33.	54.	54.	99.	110.	120.	98.	95.	86.	92.
111.	134.	149.	132.	139.	151.	124.	141.	140.	113.
124.	130.	113.	123.	106.	111.	111.	125.	108.	107
120	120	100	110	174	100	107	106	100.	117
1 2.37 .	1 L U +	TAO'	1 1 0 .	±20.	TOO *	10/	1 Z B .	14.7.	115.

•

106.	109.	120.	86.	81.	78.	80.	68.	67.	66.
57	60	22	86	88	20	107	87	78	75
02	20.	70	70	64		(7	71	70.	75.
93.	80.	78.	79.	64.	69.	67.	71.	/1.	/5.
70.	82.	95.	102.	81.	84.	73.	65.	83.	//.
77.	65.	57.	44.	61.	56.	53.	64.	57.	58.
65.	65.	78.	81.	80.	72.	74.	75.	78.	71.
70.	54.	60.	40.	74.	82.	128.	147.	137.	123.
104.	98.	93.	107	91	84	95	75.	58.	78
63	53	46	58	58	55	50	51	48	52
50. 50	53.	40.	70.	50.	71	01	51.	70.	01
52.	22.	124	73.	00.	/1.	91.	140	10.	91.
87.	97.	134.	87.	112.	150.	156.	143.	154.	145.
138.	133.	133.	145.	136.	120.	123.	126.	149.	158.
172.	217.	225.	285.	276.	263.	216.	206.	212.	261.
318.	291.	308.	247.	202.	208.	179.	203.	198.	201.
171.	183.	217.	220.	209.	196.	191.	187.	158.	140.
146	140	142	125	102	75	87	87	85	82
79	91	63	79	73	65	64	68	71	72.
100	110	0.0.	107	75.	117	111	100.	74. 01	72.
109.	110.	90.	107.	85.	117.	111.	102.	91.	88.
12.	100.	104.	86.	96.	93.	94.	102.	83.	87.
85.	88.	78.	82.	77.	93.	100.	78.	102.	95.
121.	121.	127.	131.	128.	135.	169.	182.	222.	203.
179.	145.	131.	139.	144.	127.	115.	80.	74.	62.
64.	58.	68.	56.	60.	85.	68.	56.	83.	74.
78.	76.	94	85.	87	86.	82.	85.	88.	90.
78	65	87	83. 83	00	126	153	130	132	117
110	122	177	103.	130	120.	110	110	152.	71
110.	133.	133.	103.	122.	122.	110.	110.	91.	/4.
96.	13.	88.	108.	95.	114.	114.	130.	87.	85.
86.	107.	79.	87.	69.	78.	87.	66.	86.	82.
101.	80.	100.	77.	95.	92.	100.	89.	85.	103.
91.	93.	116.	79.	87.	108.	111.	139.	114.	119.
108.	103.	148.	124.	153.	146.	118.	137.	106.	96.
89	105	87	103	85	90	112	110	77	81
62	64	50	77	50	71	76	70	77.	70
02.	71	JO. C1	77.	50.	/1.	70.	70.	74.	19.
01.	/1.	51.	91.	90.	93.	78.	88.	94.	103.
104.	111.	91.	79.	89.	74.	87.	81.	49.	/1.
58.	79.	57.	80.	83.	98.	82.	86.	119.	102.
102.	101.	96.	104.	86.	80.	91.	100.	110.	105.
110.	93.	96.	97.	90.	74.	90.	78.	93.	73.
92.	97.	112.	109.	108.	76.	70.	83.	106.	97.
94	110	83	99	87	91	78	74	70	97
70	110.	00.	100	07.	01	02	06	20.	
100	90.	90.	100.	93.	91.	03.	90.	04.	90.
122.	120.	133.	126.	120.	115.	121.	123.	107.	91.
95.	110.	99.	99.	64.	60.	77.	66.	91.	70.
78.	67.	64.	62.	56.	54.	62.	58.	45.	68.
56.	63.	60.	42.	50.	60.	51.	53.	54.	53.
60.	50.	50.	51.	44.	55.	63.	65.	81.	54.
71	82	71	64	59	58	56	59	66	60
63	62	53	72	75	79	71	52	64	71
70	65	20.	72.	75.	70.	71.	01	04.	100
101	65.	00.	107	73.	13.	84.	91.	82.	108.
104.	95.	117.	107.	108.	86.	90.	87.	95.	105.
110.	105.	115.	112.	88.	76.	84.	90.	91.	87.
83.	69.	79.	82.	65.	81.	74.	88.	97.	100.
89.	74.	81.	78.	83.	79.	94.	100.	99.	78.
83.	102.	108.	127.	129.	112.	97.	95.	92.	103.
101	101	91	105	74	78	70	91	90	86
00	00	112	141	170	146	124	107	120	151
33.	150	110.	141.	172.	140.	134.	107.	120.	151.
121.	150.	154.	136.	128.	11/.	114.	110.	127.	113.
123.	108.	103.	94.	113.	142.	142.	147.	159.	140.
119.	118.	129.	104.	116.	123.	139.	121.	109.	82.
80.	88.	88.	86.	87.	89.	90.	69.	80.	70.
82.	72.	86.	67.	59.	65.	79.	66.	78.	69.
60	79	67	90. 90	103	87 87	20	92	111	71
77	Ως.	60.	70	10J. 01	00	60. 63	71	ζĘ 111.	,
71.	6J. E7	0J.	70.	01. E1	00.	0J.	11.	0). En	
15.	57.	46.	53.	51.	70.	54.	64.	52.	/1.
80.	81.	96.	93.	62.	70.	62.	64.	86.	64.
80.	71.	65.	68.	65.	69.	87.	69.	71.	75.
65.	66.	68.	62.	52.	57.	65.	49.	74.	45.
63.	65.	64.	62.	54.	57.	55.	62.	49.	77.
70.	92.	108.	84.	64.	65.	83.	75.	89.	66.

79	76	84	89	71	76	72	92.	65.	64.
67	73	84	90	86.	74	63	79.	80.	80.
77	88	77	93	81	100	93	108.	106.	97.
Q1	00. 93	85	92	90	78	75	93.	98.	98
67	23. 71	102	72.	86	78	83	80	86.	89
111	114	102.	99	105	101	128	96.	112.	96
126	127	116	117	123	101.	101	100	92	105
70	110	117	134	141	128	113	99	97	110
103	115	113	113	128	101	105	92	109	20.
100.	105	95	- 11J -	120, gs	80	97	103	81	92
105. QQ	205.	74	61	72	73	76	50	65	67
50. 62	51	66	70	66	57	70.	65	72	77
Ω <u>Σ</u> ,	70	00. go	97	75	97.	86	84	94	86
124	121	135	101	120	108	113	104	91	106
05	102	103	116	120. QA	84	73	75	77	73
70	102.	105.	5.8	77. 77	82	94	90	86	111
13.	105	70.	20.	70	02. 80	24. 81	83	82	68
00.	105.	90.	90. 01	91 81	79	76	68	75	71
92. 00	105.	70.	76	01.	6A	76	80	96	02 02
105	105	102	103	106	Q.4	118	85	79	92. 8/
72	101	102.	71	71	24. 95	110.	102	96	101
13.	101.	101.	74.	/±.	01. 77	24.	60	90. 71	101.
90. 00	103.	76	03.	93. 07	6 A	0J. 70	00.	71.	106
02. 104	107	120	91.	02.	104.	70.	90. 05	09.	100.
104.	107.	104	113.	110.	108.	90.	05	80. 86	102.
0/.	109.	104.	107.	112.	95.	100	90.	136	02.
ov.	90.	75.	03.	109.	114.	103.	30.	110	107
30.	91.	79.	03.	נע. רר	106	60.	102.	110.	107.
76.	91.	70.	70.	01	100.	00.	04.	30.	02.
94.	70.	100	99.	01. 122	126	120	126	100.	106
90.	99.	109.	102.	132.	130.	149.	140.	110.	100.
110.	120.	101.	12/.	107	119.	119.	142.	110.	100
11/.	122.	128.	139.	107.	100.	143.	141.	112.	120.
110.	104.	118.	125.	160.	137.	141.	1/1.	1/5.	100.
145.	127.	117.	102.	95.	101.	102.	101.	104.	100.
132.	124.	109.	114.	123.	103.	96.	100.	89.	93.
91.	91.	//.	69.	68.	19.	6U.	/8.	//.	11.
11.	/1.	11.	84.	95.	64.	59.	69. 70	85.	bi.
82.	94.	68.	/1.	56.	65.	83.	19.	/0.	11.
86.									

19.000	0.060	139.00	50%-olivi	lne mixtu	re, 0.06	degree	2-theta		
80	95	88	82	87	70	75	68	100	91
73	111	102	95	131	162	167	159	135	112
103	88	92	90	89	87	97	87	87	85
77	66	71	63	88	78	80	74	-83	67
90	63	77	64	81	72	71	79	65	93
86	92	75	73	100	92	88	108	128	179
207	306	506	869	1231	1081	691	354	196	141
115	111	95	95	93	108	122	120	172	228
342	452	394	263	165	126	110	126	152	144
120	89	88	64	94	80	74	78	96	_86
91	- 95	119	136	192	249	462	591	595	555
411	273	155	125	100	92	58	93	81	83
/9	70	94	87	142	158	249	350	347	291
1//	109	116	93	92	104	92	103	120	134
179	332	556	876	896	654	358	217	134	125
//	99	/3	87	//	84	87	74	83	100
120	89	88	82	94	12	95	94	92	100
120	139	2054	218	200	316	447	293	910	13/1
2291	3087	3034	2112	1109	220	440	755	1027	110/
101	400	203	200	220	106	440	197	1027	1104
110	400	234	100	102	134	193	234	301	607
1036	1553	1/13	94	104	134	164	234	107	007
1020	50 7000	1412	020	41J 75	57	74	82	82	5
73	61	77	74	67	61	66	80	75	71
81	93	83	89	73	84	87	89	111	130
142	157	197	208	288	543	759	902	780	543
452	431	573	909	1449	1968	2575	3052	3017	2581
1670	932	531	376	337	282	238	362	531	818
1506	1821	1765	1114	689	376	256	204	152	131
104	124	77	97	104	87	91	78	99	113
121	164	139	111	129	104	109	127	139	202
300	339	256	191	140	103	122	142	163	223
313	303	288	298	336	551	622	498	360	258
252	316	512	777	849	725	556	433	472	648
728	649	434	273	193	134	109	135	118	188
246	406	464	355	293	245	307	343	345	260
216	152	100	94	106	114	177	242	366	411
424	468	463	463	361	267	229	258	352	571
671	540	382	274	156	167	176	235	324	314
292	237	158	123	122	140	132	137	140	123
132	128	87	96	84	85	99	83	116	142
165	254	412	603	581	556	385	301	198	183
197	285	386	421	427	375	345	273	225	147
118	111	12	82	66	11	98	70	91	131
201	253	241	216	183	120	116	134	155	140
131	141	11/	99	85	12	68	60	62	60
51	57	48	58	50	64	56	102	6Z	104
6Z	45	13	104	57	29	81	103	122	105
1/1	149	131	104	89	71	86	104	124	165
144	205	101	202	221	102	150	100	120	1 / 1
140	107	202	202	231	100	200	105	00	110
149	107	230	110	140	139	עט רר	105	95	75
105	103	120	115	112	150	1/7	167	222	272
400	103 790	120	1528	1408	1072	1004	860	631	525
400	316	247	204	169	153	134	113	116	107
116	116	110	105	101	70	223	81	60	70
59	10	51	55	76	64	62	78	82	81
89	124	139	126	187	220	364	367	389	361
263	224	165	134	163	199	199	209	190	130
129	104	106	118	132	201	303	358	355	290
288	279	250	269	334	543	746	979	1057	931
774	626	481	417	339	227	226	175	143	143

Appendix P-17: step-intensity data of the 50 wt% olivine mixture of OI+Py, step size 0.06° 2θ

1 2 2	140	1 7 7	107	150	140	1	171	100	1
133	148	133	107	153	117	153	174	1/7	138
122	144	145	147	124	134	102	130	167	209
202	195	213 125	189	1//	152	108	170	190	202
100	120	135	88	108	105	132	115	218	188
103	133	132	96 060	101	95	346	211	120	148
101	219	231	202	2/1	310	240	311	302	200
565	588	240 570	210	244	590	237	270	345	44/ 202
264	254	264	344	397	508	627	741	623	541
419	367	239	191	161	141	146	134	116	120
120	103	103	120	91	106	113	110	73	95
83	71	79	80	104	101	123	129	102	149
140	179	164	158	128	117	98	99	99	94
89	126	113	192	221	308	455	578	477	406
421	354	265	197	178	180	158	240	300	318
340	320	328	295	234	229	295	387	395	328
333	261	268	248	284	309	260	201	198	164
145	119	101	87	77	95	91	98	110	117
128	128	116	97	93	92	85	/3	88	72
280	84	99	220	80	96	116	130	199	281
115	105	290 00	105	301	200	197	102	109	122
110	133	215	238	220	229	246	279	247	254
216	223	190	225	258	279	273	287	291	226
217	159	168	119	100	88	60	53	54	64
57	75	70	63	85	82	104	125	132	122
119	121	138	123	117	107	151	152	166	155
182	154	169	176	245	304	267	274	231	179
178	122	105	86	79	92	71	100	93	100
141	136	159	125	154	206	184	165	204	190
178	185	155	171	132	131	121	98	125	129
114	114	132	176	209	253	214	193	209	200
141	113	91	93	86	66	70	70	87	97
101	90 105	101	90	92	8Z 103	88	89	83	83
83	61	88	82	92	109	92	131	111	105
100	93	80	57	47	55	55	45	48	53
53	63	51	57	48	56	58	63	53	43
56	56	53	65	77	107	118	122	114	106
121	111	78	63	64	75	66	69	57	51
54	72	70	72	64	69	82	87	88	95
115	130	105	167	123	130	132	144	130	130
120	106	92	78	85	92	73	80	71	67
98	100	82	112	114	109	103	107	119	122
102	143	108	110	140	159	150	127	145	120
124	143	104	113	124	150	111	124	106	106
127	120	84	78	90	62	59	78	89	75
75	104	89	103	88	113	98	87	87	66
67	56	76	99	88	111	96	76	59	87
77	85	66	69	49	73	67	57	66	61
60	102	93	100	80	74	82	88	76	61
86	63	101	140	133	116	105	114	108	101
90	74	88	68	54	60	48	62	58	70
65	68	51	58	70	67	80	90	75	84
	91	108	112	126	130	163	160	151	132
140	200	130	114	121	120	130	180	197	222
192	226	255	207	178	187	204	189	178	181
204	156	168	140	139	116	113	87	87	72
83	85	84	73	77	70	63	85	93	106
102	105	109	111	109	109	95	113	94	79
98	101	90	96	94	79	96	82	110	93
114	84	94	101	131	148	130	110	123	189
224	276	187	156	152	158	143	112	97	80
. 77	64	58	57	58	70	67	92	83	98
99	106	84	67	108	91	83	62	92	93
103	126	136	1/3	146	126	11/	123	131	131
112	0/	117	103	プロ	60	103	70	120	113

$\begin{array}{c} 102\\ 83\\ 105\\ 185\\ 77\\ 62\\ 104\\ 59\\ 116\\ 103\\ 67\\ 94\\ 126\\ 106\\ 558\\ 79\\ 86\\ 375\\ 109\\ 931\\ 158\\ 92\\ 80\\ 129\\ 79\\ 77\\ 45\\ 64\\ 57\\ 852\\ 94\\ 83\\ 102\\ 91\\ 94\\ 92\\ 56\\ 104\\ 74\\ 88\\ 90\\ 69\\ 103\\ 101\\ 182\\ 86\\ 751\\ 138\\ 121\\ \end{array}$	$\begin{array}{c} 98\\ 92\\ 98\\ 154\\ 102\\ 70\\ 111\\ 75\\ 102\\ 89\\ 97\\ 102\\ 128\\ 82\\ 63\\ 65\\ 69\\ 71\\ 66\\ 74\\ 70\\ 89\\ 129\\ 104\\ 148\\ 128\\ 136\\ 123\\ 70\\ 130\\ 53\\ 84\\ 78\\ 59\\ 50\\ 91\\ 136\\ 103\\ 71\\ 100\\ 124\\ 104\\ 85\\ 91\\ 71\\ 100\\ 103\\ 74\\ 80\\ 125\\ 83\\ 91\\ 77\\ 156\\ 122\\ 123\\ \end{array}$	$\begin{array}{c} 96\\ 94\\ 95\\ 156\\ 126\\ 62\\ 95\\ 69\\ 100\\ 105\\ 81\\ 126\\ 97\\ 76\\ 562\\ 79\\ 712\\ 81\\ 98\\ 125\\ 70\\ 128\\ 8125\\ 70\\ 128\\ 84\\ 97\\ 122\\ 107\\ 865\\ 137\\ 98\\ 84\\ 82\\ 106\\ 83\\ 111\\ 108\\ 97\\ 44\\ 127\\ 122\\ \end{array}$	$\begin{array}{c} 87\\ 101\\ 122\\ 124\\ 71\\ 69\\ 98\\ 104\\ 116\\ 87\\ 100\\ 82\\ 108\\ 71\\ 576\\ 67\\ 98\\ 105\\ 822\\ 90\\ 135\\ 105\\ 124\\ 93\\ 803\\ 571\\ 78\\ 49\\ 70\\ 835\\ 102\\ 132\\ 133\\ 109\\ 862\\ 79\\ 148\\ 82\\ 79\\ 148\\ 82\\ 79\\ 148\\ 82\\ 79\\ 148\\ 82\\ 79\\ 148\\ 82\\ 79\\ 104\\ 102\\ 89\\ 87\\ 113\\ 120\\ 162\\ \end{array}$	$\begin{array}{c} 87\\ 96\\ 139\\ 98\\ 312\\ 96\\ 129\\ 831\\ 126\\ 562\\ 265\\ 674\\ 375\\ 1400\\ 1056\\ 293\\ 855\\ 765\\ 128\\ 107\\ 962\\ 281\\ 415\\ 899\\ 932\\ 733\\ 305\\ 42666\\ 134\\ 155\\ 105\\ 105\\ 105\\ 105\\ 105\\ 105\\ 105$	$\begin{array}{c} 101\\ 80\\ 134\\ 110\\ 72\\ 90\\ 77\\ 85\\ 135\\ 135\\ 194\\ 94\\ 136\\ 71\\ 55\\ 64\\ 83\\ 95\\ 133\\ 100\\ 74\\ 97\\ 164\\ 130\\ 119\\ 62\\ 88\\ 76\\ 2\\ 71\\ 90\\ 63\\ 71\\ 69\\ 105\\ 105\\ 104\\ 89\\ 128\\ 149\\ 107\\ 85\\ 788\\ 122\\ 84\\ 88\\ 95\\ 89\\ 101\\ 121\\ 94\\ 126\\ 110\\ 109\\ 121\\ 94\\ 126\\ 110\\ 109\\ 121\\ 94\\ 126\\ 110\\ 109\\ 121\\ 94\\ 126\\ 110\\ 109\\ 121\\ 94\\ 126\\ 110\\ 109\\ 121\\ 94\\ 126\\ 110\\ 109\\ 121\\ 94\\ 126\\ 110\\ 109\\ 121\\ 94\\ 126\\ 110\\ 109\\ 121\\ 94\\ 126\\ 110\\ 109\\ 121\\ 120\\ 133\\ 170\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100$	$\begin{array}{c} 81\\ 74\\ 164\\ 94\\ 70\\ 98\\ 76\\ 92\\ 128\\ 99\\ 131\\ 71\\ 509\\ 67\\ 99\\ 131\\ 71\\ 509\\ 67\\ 99\\ 131\\ 71\\ 509\\ 67\\ 99\\ 117\\ 89\\ 56\\ 130\\ 92\\ 75\\ 800\\ 67\\ 72\\ 83\\ 331\\ 110\\ 128\\ 942\\ 93\\ 75\\ 99\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 852\\ 90\\ 90\\ 852\\ 90\\ 90\\ 852\\ 90\\ 90\\ 852\\ 90\\$	$\begin{array}{c} 87\\ 90\\ 124\\ 94\\ 78\\ 94\\ 82\\ 123\\ 90\\ 124\\ 82\\ 95\\ 150\\ 63\\ 250\\ 112\\ 64\\ 926\\ 35\\ 120\\ 112\\ 64\\ 926\\ 3143\\ 124\\ 135\\ 79\\ 76\\ 68\\ 83\\ 77\\ 101\\ 121\\ 109\\ 77\\ 101\\ 121\\ 109\\ 77\\ 101\\ 121\\ 109\\ 77\\ 101\\ 121\\ 109\\ 77\\ 101\\ 121\\ 109\\ 77\\ 101\\ 101\\ 854\\ 121\\ 102\\ 117\\ 854\\ 138\\ 123\\ 141\\ \end{array}$	$\begin{array}{c} 71\\ 104\\ 135\\ 107\\ 87\\ 91\\ 76\\ 121\\ 103\\ 87\\ 72\\ 87\\ 139\\ 63\\ 48\\ 62\\ 71\\ 118\\ 89\\ 92\\ 122\\ 87\\ 74\\ 63\\ 87\\ 76\\ 64\\ 72\\ 902\\ 77\\ 113\\ 126\\ 99\\ 67\\ 87\\ 716\\ 99\\ 89\\ 102\\ 113\\ 95\\ 137\\ 114\\ 130\\ \end{array}$	$\begin{array}{c} 66\\ 95\\ 96\\ 78\\ 79\\ 95\\ 77\\ 102\\ 96\\ 86\\ 112\\ 100\\ 64\\ 54\\ 67\\ 70\\ 78\\ 101\\ 141\\ 148\\ 76\\ 87\\ 103\\ 94\\ 107\\ 74\\ 107\\ 141\\ 131\\ 148\\ 76\\ 87\\ 103\\ 94\\ 89\\ 87\\ 88\\ 81\\ 87\\ 88\\ 81\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 84\\ 90\\ 83\\ 81\\ 84\\ 84\\ 84\\ 84\\ 84\\ 84\\ 84\\ 84\\ 84\\ 84$
82 86 78 151 138 121 101 138 70 72 70	91 90 77 156 112 123 95 109 80 81	88 97 94 134 127 122 99 107 82 88	83 97 113 127 120 162 86 93 68 65	72 106 116 134 155 111 106 83 71	94 126 115 120 133 170 128 83 81 86	99 95 127 138 143 173 122 96 64 70	85 94 136 138 123 141 117 106 72 82	95 85 137 111 114 130 123 68 79 84	74 100 117 125 142 125 91 61 95 90

19.00	.07	139.00		50%-olivine	e, .07	degree	2-thet		
99.	99.	85.	94.	86.	79.	87.	66.	73.	105.
103.	101.	106.	129.	185.	169.	132.	127.	103.	103.
98.	104.	102.	89.	98.	/1.	81.	89.	80.	86.
80. 02	68.	106.	69. os	6/. 70	73.	85.	70.	8.7 · 0.7	100
92.	69. 152	04.	00. 205	/0.	01.	1070	00.	571	200
153	148	192.	205.	901. QA	85	115	133	172	209.
401	431	293	195	103	109.	128.	172.	129.	113
102	84	76.	63.	78.	71.	70.	97.	122.	139
188.	284.	489.	606.	620.	508.	330.	181.	125.	99.
82.	84.	82.	87.	99.	99.	101.	125.	160.	228.
351.	367.	255.	162.	119.	107.	102.	97.	97.	126.
145.	213.	363.	672.	845.	787.	458.	224.	144.	116.
92.	64.	90.	68.	85.	85.	80.	95.	80.	100.
105.	84.	85.	92.	105.	79.	128.	127.	159.	183.
263.	365.	501.	655.	1117.	2018.	2897.	3006.	2007.	1100.
716.	779.	992.	1096.	787.	462.	255.	254.	294.	486.
867.	1195.	1105.	698.	370.	186.	144.	134.	115.	107.
151.	135.	127.	129.	127.	139.	171.	234.	372.	790.
1239.	1422.	1085.	477.	277.	160.	134.	103.	106.	92.
70.	83.	/5.	58.	76.	81.	b1. 75	85.	11.	84.
/4.	/5.	68.	11.	74.	6/. 107	75.	89.	78.	720
99. 740	96.	102.	140.	140.	197.	200.	200.	200.	2211
2804	1827	944	447. 570	352	304	318	382	579	1169
1695	18027.	1381	782	453	273	164	141	111	107
113.	70.	81.	86.	82.	95.	113.	131.	119.	130.
136.	134.	113.	131.	203.	301.	306.	267.	201.	163.
126.	127.	161.	238.	328.	282.	268.	351.	561.	579.
511.	356.	271.	339.	502.	778.	907.	769.	555.	525.
626.	689.	642.	353.	218.	158.	116.	131.	139.	190.
330.	348.	325.	305.	264.	313.	353.	355.	223.	180.
113.	98.	146.	181.	256.	376.	456.	535.	519.	460.
362.	287.	251.	275.	430.	618.	567.	456.	310.	205.
194.	208.	333.	340.	297.	232.	169.	123.	124.	161.
110.	122.	102.	116.	126.	95.	104.	95.	98.	111.
142.	191.	J43. 420	425	041.	350	442.	100	203.	120.
227. 89	299. 97	420.	427.	40J. GA	95	150	224	226	225
165	170	135	138	155	167	137	120	88.	79.
61.	67.	62.	55.	72.	65.	63.	52.	75.	62.
51.	52.	47.	55.	45.	61.	64.	61,	77.	122.
136.	170.	161.	135.	77.	90.	94.	105.	129.	161.
127.	106.	112.	76.	74.	85.	107.	184.	235.	316.
323.	303.	247.	192.	153.	128.	169.	181.	244.	209.
168.	149.	124.	115.	114.	129.	118.	133.	115.	99.
72.	82.	97.	105.	106.	118.	112.	134.	135.	166.
203.	269.	376.	710.	1219.	1543.	1403.	1093.	908.	742.
578.	400.	332.	189.	210.	164.	137.	128.	114.	103.
114.	116.	114.	89.	87.	99.	69.	69.	63.	. 59.
66. 151	70.	68.	//.	82.	12.	79.	116.	133.	156.
151.	308.	357.	448.	3//.	350.	248. 111	180.	162.	211.
210.	10/.	207	102.	117.	202	375	100. 612	242. Ω16	302. 972
035	204.	630	460	202.	293.	203	171	143	132
148	139	139	135	135	169	185	152	149	119
136.	135.	135.	129.	144	192.	229.	209.	199.	221
203.	184.	153.	165.	195.	178.	130.	115.	94.	111.
133.	203.	172.	164.	130.	143.	89.	107.	96.	109.
122.	147.	178.	229.	282.	285.	274.	318.	340.	307.
297.	316.	280.	272.	288.	258.	319.	298.	408.	512.
615.	629.	710.	754.	609.	485.	366.	285.	271.	264.
283.	355.	493.	723.	688.	679.	531.	424.	293.	226.
159.	141.	132.	127.	133.	111.	108.	112.	104.	114.

Appendix P-18: step-intensity data of the 50 wt% olivine mixture of OI+Py, step size 0.07° 2θ

101.	99.	71.	84.	75.	71.	83.	115.	124.	133.
144.	148.	152.	150.	169.	145. 352	108.	113. 550	105. 504	90. 417
378.	280.	208.	170.	176.	214.	318.	391.	394.	355.
321.	243.	272.	312.	368.	375.	368.	320.	255.	258.
271.	324. 114	256. 119	211.	164.	143.	125.	93. 97.	101.	97. 87.
74.	59.	74.	99.	88.	98.	93.	101.	139.	204.
277.	327.	315.	311.	356.	241.	213.	171.	153.	121.
118. 196.	238.	233.	277,	296.	82. 306.	243.	255.	228.	245.
271.	297.	290.	301.	251.	206.	194.	134.	119.	89.
78. 140	82. 129	72.	67. 111	74.	75.	69. 116.	81. 152.	97. 166.	132.
161.	142.	162.	169.	208.	258.	260.	238.	224.	188.
134.	89.	99. 164	88.	85.	83.	100.	117.	143.	145.
144. 128.	148.	164.140.	101.	190.	100.	139.	195.	213.	302.
254.	219.	184.	182.	137.	87.	98.	94.	110.	61.
95. 103	100.	105.	88. 100	98. 103	86. 96	79. 96	71. 90	77. 68	83. 89
60.	76.	85.	95.	110.	97.	95.	86.	80.	79.
66.	59.	62.	59.	61.	56. 71	65. 50	47.	55.	58.
54. 142.	58. 151.	117.	137.	55. 90.	109.	49.	85.	62.	42.
60.	64.	68.	60.	73.	70.	74.	71.	87.	93.
99. 103	107.	120.	139.	121.	132.	107.	163.	182.	131. 79.
96.	129.	118.	117.	91.	110.	109.	104.	110.	115.
145.	140.	162.	158.	138.	107.	117.	144.	93. 126	88.
144. 93.	135.	145. 103.	140. 96.	148. 102.	66.	66.	68.	78.	116. 93.
102.	98.	105.	81.	91.	95.	92.	78.	71.	67.
78.	80. 69	85. 49	99. 60.	95. 62.	70.	85. 72.	88. 92.	81. 96.	82.
75.	77.	81.	80.	79.	74.	90.	129.	161.	131.
100.	119.	115.	102.	105.	84. 72	61. 70	69. 02	70.	54. 70
91.	108.	97.	118.	145.	148.	158.	92. 147.	121.	142.
154.	153.	135.	145.	134.	160.	192.	248.	308.	291.
257.	239.	274.	318. 227.	315. 203.	298.	208.	206.	218. 154.	186.
115.	91.	102.	110.	95.	71.	91.	64.	68.	93.
94.	106.	103.	122.	126.	126.	146.	121.	117.	126.
90. 92.	79.	98. 117.	133.	130.	132.	129.	164.	239.	215.
178.	135.	126.	154.	116.	120.	80.	101.	72.	60.
82. 95.	73. 79.	89. 90.	88. 93.	76. 111.	96. 149.	90. 175.	81. 142.	80. 115.	135.
154.	148.	138.	103.	115.	94.	86.	98.	104.	130.
131.	112.	91. 106	93. 94	116.	98. 116	73.	78.	71.	70.
106.	140.	175.	151.	101.	126.	141.	143.	148.	124.
102.	114.	115.	79.	86.	110.	102.	74.	78.	81.
85. 103.	73. 100.	92. 113.	61. 147.	65. 105.	71. 90.	85. 92.	70. 95.	113.	78.
70.	75.	68.	89.	87.	93.	115.	119.	101.	121.
99. 87	129.	130.	148.	139.	101.	97. 88	96. 93	94. 101	127. gg
87.	90.	85.	82.	92.	95.	67.	99.	82.	78.
74.	88.	105.	121.	149.	137.	109.	131.	118.	100.
95. 59.	122. 50.	107. 66.	96. 58.	72. 71.	87. 47.	80. 50.	ьз. 57.	87. 53.	54. 62.
64.	67.	62.	53.	65.	54.	67.	72.	74.	72.
87. 72	79. KQ	57. 71	78. 76	53. 69	67. 95	78. 90	82. 95	95. 9n	68. 92
116.	119.	126.	117.	106.	88.	127.	125.	146.	140.
117.	80.	86.	90. 76	87.	94.	88.	69.	70.	86. 194
1113	107.	<u>0</u> .	70.	07.	04.	111.	1 1 1 .	114.	1 2 13 .

142.	151.	124.	106.	89.	89.	101.	106.	95.	96.
87.	84.	96.	108.	132.	150.	150.	154.	127.	122.
133.	129.	135.	135.	123.	126.	119.	112.	114.	131.
132.	151.	145.	144.	110.	123.	136.	113.	124.	129.
117.	108.	73.	122.	104.	83.	74.	70.	73.	68.
55.	85.	69.	89.	72.	80.	71.	83.	94.	108.
118.	105.	83.	71.	71.	86.	77.	86.	77.	80.
63.	67.	62.	71.	55.	58.	72.	95.	90.	79.
82.	92.	78.	89.	77.	86.	72.	80.	71.	96.
84.	82.	78.	60.	80.	71.	78.	54.	63.	59.
72.	64.	65.	75.	71.	91.	80.	97.	91.	71.
78.	79.	93.	98.	103.	71.	86.	76.	87.	90.
95.	66.	80.	77.	92.	72.	75.	64.	85.	105.
100.	101.	115.	106.	105.	84.	76.	94.	85.	84.
93.	77.	90.	75.	90.	84.	89.	111.	116.	75.
97.	116.	114.	158.	109.	96.	122.	136.	135.	110.
126.	113.	112.	118.	142.	141.	152.	124.	106.	115.
97.	102.	104.	103.	113.	96.	97.	116.	109.	85.
129.	109.	89.	79.	83.	91.	72.	84.	92.	73.
71.	80.	89.	72.	59.	70.	60.	61.	66.	95.
88.	96.	93.	103.	89.	91.	125.	135.	112.	139.
111.	118.	84.	102.	129.	114.	108.	96.	70.	77.
82.	65.	78.	95.	95.	100.	145.	104.	108.	96.
95.	85.	101.	81.	113.	107.	112.	103.	79.	86.
82.	86.	71.	83.	96.	95.	82.	91.	77.	116.
109.	97.	107.	133.	98.	112.	96.	87.	100.	84.
117.	97.	108.	100.	96.	99.	77.	90.	78.	92.
83.	90.	91.	96.	91.	112.	146.	107.	125.	120.
125.	123.	95.	100.	95.	135.	125.	125.	132.	106.
102.	76.	98.	104.	113.	133.	120.	98.	122.	108.
97.	118.	105.	74.	90.	97.	88.	111.	75.	98.
98.	97.	108.	105.	72.	90.	82.	93.	93.	92.
112.	116.	146.	161.	162.	150.	139.	116.	136.	150.
135.	121.	141.	146.	139.	128.	147.	138.	151.	153.
159.	126.	128.	120.	173.	180.	193.	170.	167.	146.
123.	106.	107.	127.	117.	123.	107.	144.	130.	120.
95.	114.	106.	91.	76.	79.	96.	82.	96.	69.
85.	83.	109.	76.	72.	100.	71.	83.	68.	64.
72.	86.	93.	86.	80.	88.				

Appendix P-19: step-intensity data of the 50 wt% olivine mixture of OI+Py, step size 0.08° 20

19.00	.08	139.00	5	0%-olivi:	ne, .08	degree 2	-thet		
80.	96.	95.	84.	78.	90.	71.	83.	86.	86.
104.	128.	160.	147.	121.	113.	90.	91.	67.	70.
99.	86.	90.	90.	80.	68.	82.	82.	87.	69.
76.	78.	73.	80.	74.	88.	72.	72.	95.	78.
79.	70.	95.	100.	107.	166.	231.	438.	788.	994.
868.	377.	167.	133.	99.	83.	86.	97.	108.	175.
251.	361.	393.	280.	169.	125.	127.	128.	140.	102.
80.	74.	75.	78.	76.	75.	79.	112.	131.	213.
351.	533.	542.	459.	265.	164.	105.	99.	78.	81.
77.	77.	83.	105.	103.	214.	302.	345.	254.	128.
99.	89.	96.	97.	106.	128.	222.	425.	773.	844.
493.	214.	129.	99.	76.	69.	85.	81.	84.	83.
82.	75.	69.	74.	76.	86.	96.	124.	104.	116.
160.	237.	326.	519.	723.	1413.	2451.	3148.	2104.	1066.
683.	789.	1041.	852.	466.	264.	244.	320.	575.	939.
1137.	825.	396.	196.	141.	106.	98.	102.	129.	119.
113.	129.	135.	1/4.	264.	597.	1144.	1381.	861.	419.
214.	113.	112.	100.	11.	91.	59.	69.	75.	76.
11.	61.	78.	/6.	62.	6∠.	6/.	63.	85.	61.
/6.	92.	70.	101.	103.	134.	158.	1/8.	231.	409.
024.	160.	005.	468.	434.	05/.	1185.	1894.	2575.	3080.
2667.	1532.	124.	389.	320.	303.	340.	630.	12/4.	1822.
1401.	941. 77	430.	110	104.	142.	114.	100.	101	110
206	206	256	10.	142.	140.	137.	110.	121.	119.
284	335	2JU. 467	554	103.	297	127.	190.	273.	291.
703	446	580	659	594	370	178	4JJ. 1/5	137	102.
165	289	375	365	272	281	344	303	260	167
127.	102	139	211	318	435	516	463	436	211
243.	282.	417.	542.	533.	377	193	172	207	270
339.	271.	204.	132.	134.	136.	134.	109.	120.	115
91.	95.	100.	99.	106.	149.	224.	366.	523.	642.
471.	321.	219.	198.	258.	339.	378.	400.	340.	261.
173.	87.	88.	98.	88.	77.	84.	118.	164.	220.
248.	158.	136.	118.	118.	124.	148.	123.	109.	94.
74.	55.	61.	60.	52.	64.	54.	59.	62.	49.
50.	71.	67.	72.	82.	72.	81.	112.	177.	135.
103.	99.	81.	90.	115.	116.	138.	109.	88.	82.
90.	78.	140.	221.	284.	309.	288.	223.	163.	123.
125.	199.	217.	197.	161.	103.	83.	99.	155.	149.
120.	106.	72.	75.	69.	79.	102.	122.	120.	123.
135.	182.	235.	374.	798.	1337.	1504.	1194.	869.	670.
541.	352.	277.	199.	150.	129.	107.	114.	119.	123.
99.	84.	92.	• 71.	78.	51.	58.	67.	70.	77.
/5.	62.	85.	85.	103.	142.	167.	250.	358.	385.
358.	292.	195.	159.	162.	195.	199.	159.	140.	122.
98.	123.	235.	331.	312.	332.	278.	256.	290.	387.
670.	948.	916.	825.	637.	448.	327.	255.	202.	170.
130.	147.	149.	124.	140.	138.	148.	153.	142.	105.
147.	143.	124.	110.	1102.	232.	440.	199.	202.	161.
167	103.	174.	140.	110.	110.	94.	103.	1/0.	100.
234	261	309	302	300	27.	200.	133.	100.	210.
286	304	408	502.	560	626	681	205.	490	301.
254	251	216	276	419	664	724	600	505	344.
229	177	131	140	130	126	102	110	118	117
79.	90	94	66	87	65	86	140	129	126
131.	172.	158.	167.	118	123	94	94	101	118
157.	203.	342.	500.	514.	426	383.	289	200	172
183.	263.	370.	375.	345.	305.	250.	280	333.	363
343.	294.	270.	243.	316.	250.	208.	173.	124.	93.
98.	90.	93.	80.	103.	114.	116.	101.	114.	97.
82.	73.	77.	77.	66.	86.	83.	99.	126.	176.
266.	305.	328.	268.	273.	183.	147.	160.	140.	115.

104	02	0.0	0.0	100	1 1 17	120	101	220	222
2/1	22. 272	225	89.	207	11/.	139.	191.	228.	223.
231.	203	235.	103	207.	193.	24/.	303. 67	544.	200.
69	73	85	123.	119	0/. 119	07.	130	101.	00.
140.	174.	171	147	157	183	218	249	229	190.
173.	127.	94	96	97	87	210.	112	125	194.
133.	162.	201.	183.	167	177	189	184	151	126
135.	104.	107.	121.	118.	145.	216.	257.	199	169
163.	107.	110.	91.	76.	82.	76.	94.	95.	81
97.	90.	77.	84.	83.	89.	128.	98.	96.	87
94.	70.	94.	94.	84.	80.	94.	104.	103.	107.
97.	85.	70.	73.	51.	55.	47.	54.	52.	57.
53.	43.	53.	44.	51.	50.	60.	69.	59.	94.
122.	138.	105.	100.	70.	81.	58.	63.	64.	64.
54.	59.	58.	60.	75.	63.	93.	80.	97.	108.
130.	134.	113.	152.	153.	128.	101.	92.	96.	96.
82.	76.	77.	74.	79.	102.	130.	99.	101.	121.
113.	94.	101.	136.	145.	134.	136.	139.	157.	139.
110.	103.	109.	115.	147.	121.	112.	123.	139.	130.
106.	99.	105.	113.	108.	91.	77.	77.	68.	83.
76.	75.	90.	96.	86.	87.	79.	65.	69.	70.
65.	101.	82.	81.	83.	83.	60.	75.	51.	56.
70.	60.	55.	69.	105.	81.	71.	80.	65.	85.
62.	71.	108.	139.	134.	106.	128.	109.	96.	70.
77.	77.	71.	49.	39.	54.	46.	61.	69.	58.
79.	74.	92.	94.	102.	136.	127.	143.	137.	126.
130.	128.	120.	106.	129.	142.	156.	177.	265.	270.
231.	224.	254.	330.	266.	193.	192.	218.	217.	210.
198.	177.	207.	183.	171.	162.	154.	133.	123.	93.
68. 100	84.	/1.	85.	63.	90.	89.	85.	94.	108.
108.	126.	103.	91.	101.	95.	121.	100.	96.	103.
85. 105	102.	92.	89.	85.	99.	125.	122.	156.	128.
185.	188.	204.	146.	136.	160.	126.	89.	72.	73.
100	61. 70	12.	67.	91.	90.	100.	94.	91.	90.
100.	78.	/3.	99.	132.	140.	14/.	118.	111.	113.
200.	90.	93.	92.	97.	81.	117.	124.	110.	91.
77.	92. 105	120.	01.	81. 67	//.	96.	112.	89.	85.
128	151	94. 151	114	07.	91.	121.	167.	150.	162.
88	77	68	70	90.	91. 70	19.	05. 40	94.	101.
91.	116	103	115	94	82	98	49.	74	22.
80.	81.	76.	99	100	103	109	94	94.	00. QQ
103.	145.	125	98	97	93	99	103	24.	71
106.	98.	95.	80.	108.	102.	93.	94	89	82
90.	82.	86.	91.	80.	98.	101	95	130	126
126.	124.	130.	126.	115.	95.	96.	83.	80.	71.
67.	62.	58.	64.	56.	66.	57.	64.	45.	40.
52.	64.	61.	37.	50.	59.	65.	66.	73.	83.
58.	71.	56.	64.	61.	81.	60.	67.	80.	76.
66.	51.	80.	85.	71.	74.	91.	90.	126.	105.
118.	97.	83.	100.	125.	105.	121.	94.	68.	75.
80.	76.	77.	92.	68.	108.	101.	67.	94.	95.
77.	104.	107.	136.	129.	110.	105.	91.	89.	105.
127.	101.	86.	88.	98.	113.	122.	125.	144.	123.
117.	126.	121.	137.	102.	127.	127.	118.	92.	127.
121.	131.	148.	141.	125.	125.	152.	142.	133.	100.
87.	96.	78.	86.	63.	62.	75.	83.	71.	73.
68.	74.	73.	74.	101.	97.	104.	103.	78.	72.
81.	89.	94.	66.	69.	58.	60.	51.	59.	58.
58.	74.	68.	76.	76.	73.	92.	72.	67.	81.
56.	82.	61.	82.	61.	82.	59.	56.	64.	53.
60.	68.	65.	73.	64.	69.	68.	82.	78.	72.
74.	81.	77.	80.	85.	66.	65.	69.	79.	92.
98.	91.	90.	/3.	/0.	79.	84.	83.	83.	90.
96. 00	98.	92.	92.	102.	83.	86.	94.	96.	87.
90. 111	09. 110	/4.	91. 91.	100.	91.	100.	117.	124.	114.
106	112.	132. 110	123.	123.	92.	109.	109.	155.	134.
100.	99. 00	118.	11/.	126.	114.	104.	113.	104.	74.
109.	89.	88.	±02.	100.	80.	83.	59.	/6.	85.

87	74	80.	80.	74.	61.	83.	71.	71.	87.
105	92.	91.	104.	103.	145.	125.	144.	120.	89.
89	101.	104.	89.	80.	76.	81.	90.	68.	78.
86	96.	112.	112.	95.	81.	76.	79.	92.	83.
88	94	76.	69.	53.	71.	92.	88.	74.	77.
76.	97.	109.	86.	100.	96.	98.	111.	83.	100.
87.	95.	91.	92.	85.	113.	90.	84.	75.	95.
82.	82.	89.	97.	79.	106.	119.	117.	107.	100.
99	86.	89.	113.	116.	122.	124.	108.	100.	79.
93.	105.	102.	123.	104.	99.	84.	85.	83.	75.
85.	87.	76.	99.	84.	72.	108.	98.	107.	96.
85.	107.	108,	114.	102.	103.	148.	183.	130.	120.
123.	111.	111.	134.	111.	129.	124.	139.	123.	131.
137.	137.	98.	109.	134.	138.	170.	169.	154.	152.
126.	112.	126.	108.	109.	128.	137.	101.	109.	114.
104.	102.	74.	76.	83.	78.	98.	70.	92.	80.
64.	80.	66.	110.	70.	78.	63.	74.	79.	69.
67.									

	19.000	0.090	139.00	50%-olivine	∋ mixtur€	e, 0.9	degree	2-theta		
	95	82	88	88	9 ő	82	80	100	103	115
	187	144	127	130	101	74	78	89	106	79
	79	74	72	77	68	80	69	77	88	71
	74	66	81	71	80	92	81	86	108	150
	212	382	846	1196	624	217	139	104	82	85
	94	132	144	297	43	305	160	102	109	137
	130	97	12	//	/ 0	82	13	96	101	138
	302	511	608	417	28_	142	110	94 1 C C	18	12
	17	76	91	144	2	282	293	100	104	102
	83	92	105	148	510	820	913	480	194	102
	07	100	60	102	115	176	253	370	583	1203
	27	3274	2107	103	613	1009	1071	573	287	261
	2330	614	1147	967	647	193	152	104	122	117
	135	014	105	119	164	279	610	1391	1368	590
	195	148	119	93	201	83	82	79	89	78
	59	67	70	48	65	65	90	83	82	81
	92	101	97	133	185	183	331	658	877	638
	413	469	830	1826	2565	3193	2451	1247	508	335
	278	270	498	1183	1918	1368	665	290	183	151
	122	111	75	66	83	86	99	148	140	122
	103	93	156	275	352	227	148	105	146	191
	361	288	252	427	581	442	281	273	527	847
	689	494	467	781	631	298	169	118	147	156
	264	425	362	280	312	363	276	150	105	112
	118	223	379	431	476	473	359	217	242	501
	635	480	248	181	173	267	351	241	137	136
	116	118	129	140	121	85	67	90	83	133
	190	352	589	588	404	207	194	223	399	430
	387	315	243	144	102	84	78	71	86	124
	193	253	233	155	129	128	156	145	91	88
	/6	57	/8	70	00	74	61 1 (F	51	5Z 112	100
	58	66	82	10	100	100	102	100	113	100
	251	220	111	129	120	114	147	200	220	124
	120	320	295	195	120	114	100	209	22.9 Q1	200
	130	90 111	101	105	172	186	317	570	1213	1548
	1236	914	615	425	271	230	185	125	125	97
	113	120	115	77	72	65	57	60	66	47
	58	55	75	90	104	136	186	276	410	418
	278	200	139	193	184	168	145	118	124	128
	191	334	383	308	269	253	342	665	949	979
	760	551	364	256	20-	161	124	149	142	130
	116	126	182	153	152	129	114	134	134	175
	205	172	205	168	141	150	189	130	118	105
	111	169	208	183	153	97	97	114	120	135
	193	229	228	300	350	319	291	274	229	223
	248	250	392	458	605	618	739	525	406	286
	233	232	305	432	661	689	553	410	235	165
	151	133	133	123	105	111	127	102	115	75
1	75	97	91	121	124	126	115	187	180	143
	129	92	89	90	129	155	238	364	607	458
	385	281	221	161	179	262	336	301	324	242
	256	340	377	326	26:	233	282	294	212	207
	141	96	79	94	22	113	121	112	105	96
	19	64	55	62 254	10	84 1 E D	100	89 117	142	220
	312	286 75	541	∠D4 101	10-	220	142	710	89 741	04 วะว
	10	2/ 117	94 ววย	161	14 301	∠∠∪ 300	219	220	204 121	207
	∠⊃0 02	21/	220 60	213 27	201	222	240 77	192	122	120
	0J 111	100	114	107	110	153	160	147	152	186
	111 756	200	193	185	110	86	. 77	47 27	97	91
	104	141	135	182	182	189	197	179	178	161
	144	173	109	139	115	167	213	224	187	175

Appendix P-20: step-intensity data of the 50 wt% olivine mixture of OI+Py, step size 0.09° 2θ

177	0.0	0.0	0.0	06	0.4	07	65	Q1	20
1/3	98	96	90	100	84	97	113	84	82
94	70	83	100	123	87	81	113	03	502
57	/6	99	101	119	110	95	63	92 40	202
59	66	50	57	57	49	63	07	40	40
62	70	65	96	107	140	93	85	79	60
83	83	49	65	57	64	50	84	83	23
93	117	131	137	89	147	124	132	89	102
93	71	72	84	79	99	129	115	92	96
88	93	124	124	121	155	145	130	106	121
119	130	153	112	118	129	131	142	116	100
113	102	81	64	67	61	90	107	82	92
89	76	72	79	61	59	86	98	92	69
75	78	56	48	68	54	55	88	78	89
78	65	69	78	83	127	149	93	106	96
87	87	62	59	57	56	56	54	45	63
66	69	68	106	98	97	117	148	171	125
153	150	112	130	137	155	218	262	251	208
270	379	273	203	212	241	189	193	217	187
147	157	129	142	90	86	92	76	84	77
147	± 37	96	105	122	110	113	97	93	102
101	99	103	98	80	91	82	84	97	132
147	120	175	212	242	171	149	153	114	103
147	133	115	612 55	242	86	20	117	94	84
83	80	00	22	100	155	1/1	113	126	110
99	19	81	82	100	100	141	113	93	97
99	105	87	87	100	108	115	00	100	106
109	12	67	95	98	90	121	24 170	140	100
107	93	112	122	141	127	131	1/3	149	108
103	116	83	91	85	86	11	/1	13	50
65	65	79	81	96	104	96	90	108	13
89	84	81	82	79	/6	91	111	106	110
95	106	121	113	98	72	86	90	98	93
118	133	101	85	78	98	98	68	83	85
89	96	89	78	92	87	112	146	111	79
120	121	122	97	101	95	73	77	72	52
56	59	55	59	39	53	53	61	53	61
48	58	54	56	81	82	75	67	58	82
64	71	68	76	73	64	60	70	82	85
83	136	125	102	109	111	116	96	115	92
91	82	86	92	79	66	87	100	88	70
78	87	93	115	110	125	104	80	105	126
89	94	90	80	102	128	125	168	127	143
114	125	141	122	98	98	131	111	127	148
144	132	131	114	103	113	103	107	80	79
79	72	69	79	76	60	71	70	72	82
126	132	103	80	60	106	96	73	74	58
66	65	40	68	76	97	90	95	85	79
73	80	72	92	79	61	66	61	51	53
73	63	63	76	62	61	73	69	103	66
60	70	98	60	84	68	76	63	82	102
106	74	90	74	95	96	114	106	103	71
106	74	05	06	20	69	74	69	90	109
104	101	100	127	120	134	110	122	107	104
116	101	120	147	129	134	119	100	107	1104
84	104	159	143	122	112	107	109	121	115
97	91	101	79	105	100	101	TOT	01	07
61	11	83	82	64	76	22	100	100	01
94	85	85	100	84	134	11/	109	102	90
96	91	95	88	93	67	84	93	87	90
92	113	84	78	81	79	97	98	91	89
75	75	92	77	76	89	88	94	117	117
117	88	87	83	105	82	84	95	100	98
98	69	83	85	84	84	102	95	102	87
108	119	125	116	95	104	113	125	114	100
86	87	105	110	113	109	98	81	80	94
82	79	89	105	97	97	95	105	102	94
100	103	97	103	117	132	149	142	128	123
118	144	124	110	135	138	147	128	155	127
112	141	146	171	178	154	135	112	104	93
113	145	122	97	84	100	87	81	81	66
74	80	74	67	66	67	75	95	78	86

1

00 01 91 99	80	84	91	99	84
-------------	----	----	----	----	----

ţ.

Appendix P-21: step-intensity data of the 50 wt% olivine mixture of OI+Py, step size 0.10° 2θ

19.00	.10	139.00		50%-olivir	ne, .1	degree 2-	theta		
101.	106.	81.	77.	91.	91.	105.	98.	104.	138.
162.	139.	110.	110.	85.	79.	100.	93.	74.	89.
79.	80.	88.	73.	80.	104.	83.	67.	87.	88.
84.	86.	79.	101.	91.	105.	150.	232.	554.	996.
966.	394.	172.	105.	113.	92.	117.	132.	234.	356.
371.	208.	122.	138.	137.	109.	89.	85.	70.	80.
102.	83.	124.	165.	340.	589.	582.	363.	167.	98.
85.	77.	85.	81.	103.	108.	209.	280.	311.	195.
107.	101.	98.	104.	159.	225.	552.	789.	538.	252.
129.	86.	99.	85.	75.	76.	81.	68.	91.	76.
93.	85.	93.	116.	1//.	249.	372.	721.	1316.	2619.
3014.	1470.	/1/.	811.	1028.	661.	333.	220.	351.	768.
1198.	760.	302.	156.	119.	129.	135.	105.	109.	118.
137.	253.	550.	1251.	1255.	557.	187.	124.	101.	99.
70	02.	01.	/9.	84. ()	100.	124	15.	70.	/5.
70. 615	00. 773	616	97.	69.	1015	134.	100.	196.	302.
570	773.	320	444.	002.	1611	2339.	2120.	2901.	1073.
137	133	320. 97	401.	690.	1011.	1097.	920.	312.	197.
110	107	204	204.	270	145	140	117	241	109.
289	335	531	495	342	280	565	830	241. 737	211.
574	642	423	174	124	145	174	298	373	300.
278	394	314	162	107	130	153	290.	435	497
434.	348.	268	295	485	641	439	183	455.	207.
359	271.	124.	123	160.	125.	111.	108	93	95
84.	111.	134.	241	483	621	476	287	173	231
403.	376.	398.	245.	185.	101.	91.	69.	73.	231.
120.	204.	246,	177.	109.	143.	137.	146.	105.	97.
79.	63.	48.	56.	65.	54.	66.	46.	50.	57.
61.	68.	77.	94.	158.	165.	127.	90.	81.	94.
103.	123.	98.	86.	69.	102.	168.	306.	305.	264.
171.	123.	149.	211.	239.	177.	107.	104.	117.	142.
128.	113.	102.	78.	94.	118.	100.	134.	131.	209.
269.	646.	1309.	1454.	1083.	822.	573.	347.	260.	191.
144.	109.	128.	118.	99.	82.	70.	72.	63.	64.
53.	54.	72.	80.	96.	114.	130.	208.	266.	399.
410.	244.	179.	168.	206.	187.	143.	117.	109.	136.
310.	363.	338.	282.	235.	341.	622.	945.	946.	698.
479.	330.	224.	163.	139.	123.	129.	147.	143.	148.
160.	147.	148.	124.	129.	149.	197.	219.	199.	174.
148.	163.	159.	147.	106.	106.	135.	190.	171.	140.
110.	92.	92.	126.	121.	190.	234.	278.	331.	294.
294.	273.	247.	274	268.	316.	462.	553.	641.	702.
5/5.	439.	307.	228.	271.	398.	660.	715.	586.	367.
227.	153.	146.	131.	133.	108.	102.	114.	80.	73.
100	/5.	85.	95.	136.	130.	150.	141.	147.	138.
129.	18.	102.	104.	181.	195.	422.	513.	412.	366.
211.	168.	193.	286.	299.	343.	318.	258.	307.	3/7.
332. 06	281.	244.	246.	269.	238.	182.	103.	12.	102.
90.	110.	100	124.	121.	200	85.	81.	62.	80.
92. 130	/0.	103.	109.	296.	299.	317.	297.	198.	178.
770.	111.	10.	78.	12.	93.	103.	152.	224.	220.
244.	204.	24J. 67	220. 50	220.	204.	JZZ. CC	289.	247.	198.
110	101.	03. 110	102	13.	141	55. 104	81. 140	105.	135.
232	124. 212	10. 10/	103.	100. 115	141.	104. 22	148. 00	100.	223. 124
161	167	100	100	3UC 1131	90. วกก	00. 157	02.	100	110
112	157.	130.	133. 770	200.	200. 102	100	113. 194	120.	117.
71	1JJ. 66	50. T 70.	270.	230. 00	100.	190.	134.	07. 02	00. 172
103	71	02. Q2	55. 62	סכ. רי	102.	101.	04. 90	JZ.	110 110
101	74. 86	0J. 71	03. 70	/J. 51	04. 10	12.	09. 51	04. 57	113.
52	56	68	59	51.	47. 88	טב. 130	טע. 117	. رو ۱۹۸	0J. 107
83	47	52	55.	60	58 58	150.	57	70	£07. Q1
96.	110.	125.	135.	120.	137.	123.	124	108	78
				****					1 5 4 -

75.	84.	81.	78.	103.	110.	92.	103.	117.	92.
118.	140.	150.	151.	140.	142.	116.	118.	112.	119.
126.	122.	121.	122.	123.	109.	108.	107.	82.	76.
71.	61.	74.	95.	94.	89.	91.	76.	58.	61.
//.	84.	82.	/5.	/8.	74.	54.	50.	58.	50.
58.	84.	88.	81.	85.	69. 70	84.	74.	126.	150.
122.	112. 61	102.	77.	75.	12.	49.	12.	- 22. 150	142
118	146	90. 117	125	159	193	201.	120.	234	243.
347	328	224	202	196	159	179	192	204	165
192	153	119	89	69	132.	76	75	84	92
109.	98.	115.	122.	125.	84.	92.	90.	108.	106
77.	86.	95.	86.	89.	124.	136.	134.	218.	225.
174.	147.	151.	101.	88.	63.	69.	65.	62.	78.
97.	98.	99.	97.	102.	81.	96.	126.	147.	139.
117.	121.	125.	94.	119.	90.	86.	119.	135.	91.
84.	96.	82.	98.	87.	76.	96.	88.	91.	109.
85.	96.	112.	127.	137.	128.	137.	126.	141.	111.
98.	101.	97.	102.	101.	96.	73.	82.	66.	54.
68.	99.	91.	100.	78.	119.	88.	93.	72.	74.
72.	78.	76.	108.	104.	106.	104.	92.	83.	134.
133.	73.	67.	105.	89.	92.	132.	115.	77.	96.
102.	74.	95.	79.	91.	86.	81.	85.	82.	91.
109.	128.	135.	110.	144.	122.	91.	89.	89.	97.
83.	67.	61.	67.	62.	50.	51.	46.	52.	73.
54.	54.	51.	55.	67.	64.	82.	70.	59.	70.
71.	70.	81.	75.	68.	64.	75.	86.	72.	83.
125.	103.	99.	110.	97.	112.	114.	98.	/8.	83.
85. 03	91.	120	107	108.	101.	92.	62. 100	81.	/5.
93. 07	127.	150	107.	109.	130	105.	109.	07.	134
145	107	132.	164	154.	130.	133	143	118	104.
92	92	108	76	64	85	56	70	65	67
66.	83.	100.	127.	85.	100.	84.	70.	76.	52.
63.	62.	67.	59.	80.	65.	78.	75.	88.	81.
83.	76.	80.	74.	92.	82.	74.	58.	60.	82.
84.	49.	81.	64.	73.	65.	82.	73.	68.	72.
85.	97.	69.	71.	72.	84.	94.	82.	80.	77.
71.	67.	89.	96.	124.	97.	103.	102.	100.	81.
83.	90.	93.	81.	81.	108.	131.	111.	119.	134.
133.	142.	121.	101.	102.	104.	130.	138.	118.	84.
109.	122.	127.	105.	78.	98.	94.	72.	94.	82.
82.	69.	71.	72.	86.	71.	73.	58.	64.	69.
62. 100	85.	99.	88.	92.	108.	142.	117.	103.	88.
100.	102.	113.	78.	81.	103.	/5.	69.	89.	100.
102.	113.	/4.	85.	76.	97.	97.	86.	/4.	89.
105	04. 104	108.	92.	00. 100	104.	109.	114.	111.	91.
10J. QQ	104.	97. QQ	101.	100.	101.	123	127	104	112
101	117	11	101	105	101.	76	105	104.	104
113.	101	93.	87	80	92	89	88	92	112
102.	98.	96.	100.	96.	99.	129.	149.	181.	142
137.	100.	118.	125.	142.	133.	133.	125.	141.	123.
120.	137.	169.	186.	178.	158.	117.	102.	105.	130.
132.	147.	123.	109.	108.	113.	108.	88.	78.	78.
96.	76.	82.	84.	76.	94.	86.	72.	92.	75.
69.									

Appendix P-22: step-intensity data of pure muscovite, transmission geometry

8.00	.02	116.00	pure m	uscovite					
433.	386.	408.	377.	411.	438	415.	403.	420.	410
390	407	3.81	407	396	459	469	466	463	110.
490	514	524	545	523	630	596	663	400.	472.
720	720	065	047	070	1025	1140	1204	1424	1540
1700	1050.	800.	847.	912.	1035.	1149.	1284.	1424.	1542.
1/88.	1859.	1552.	1325.	916.	729.	566.	456.	448.	391.
419.	355.	392.	358.	363.	314.	297.	351.	328.	337.
320.	348.	325.	303.	312.	330.	325.	330.	299.	284.
313.	307.	332.	309.	290.	302.	283.	289.	332.	334.
291.	293.	311.	312.	313.	282.	341.	304.	278.	283.
307.	290.	273.	285.	278	308	273	279	295	254
268	288	239	247	309	303	279	305	203	234.
200.	200.	252.	257.	202.	240	272.	202.	295.	270.
200.	274.	200.	201.	294.	240.	272.	211.	240.	276.
200.	282.	244.	262.	238.	241.	249.	240.	269.	267.
280.	270.	273.	244.	268.	244.	284.	248.	256.	247.
241.	247.	253.	251.	255.	209.	268.	215.	270.	250.
242.	227.	220.	244.	290.	246.	235.	236.	243.	232.
253.	254.	240.	224.	234.	241.	238.	239.	254.	238.
233.	211.	256.	245.	225.	263.	239.	2.47	278	206
263.	258	226.	230	239	239	227	245	215	248
202.	220.	220	210.	210	232.	100	245.	213.	240.
202.	221.	220.	210.	102	210.	105.	200.	212.	244.
203.	200.	223.	202.	193.	242.	240.	222.	220.	234.
245.	232.	242.	216.	231.	21/.	220.	205.	254.	189.
195.	207.	238.	241.	243.	220.	228.	242.	237.	208.
238.	211.	221.	254.	222.	228.	185.	231.	228.	197.
226.	215.	221.	200.	216.	210.	215.	204.	230.	181.
209.	203.	209.	187.	217.	195.	213.	191.	223.	214.
216.	184.	224.	205.	193.	212.	224	259	221	226
198	201	219	253	197	229	223	222	222.	200
226	201.	212.	222.	256	222.	225.	233.	222.	200.
220.	242.	244.	239.	200.	220.	233.	233.	221.	217.
247.	227.	222.	230.	444.	217.	244.	223.	198.	212.
221.	225.	217.	190.	225.	240.	202.	211.	209.	192.
198.	184.	216.	226.	201.	215.	225.	208.	213.	183.
213.	179.	182.	207.	195.	198.	184.	203.	179.	220.
181.	182.	169.	206.	214.	193.	163.	209.	177.	195.
177.	189.	219.	200.	204.	169.	206.	179.	201	205
154	186	185	179	168	201	191	178	180	213
200	204	201	194	211	171	170	160	100.	170
160	104.	170	104.	211.	171.	170.	109.	100.	1/3.
100.	104.	175.	189.	108.	156.	1/5.	1/5.	179.	191.
155.	179.	1/3.	128.	150.	186.	207.	187.	172.	180.
177.	198.	143.	152.	192.	151.	155.	173.	158.	165.
170.	182.	175.	179.	201.	166.	189.	166.	152.	168.
158.	205.	167.	165.	182.	160.	197.	179.	160.	191.
173.	176.	169.	168.	138.	163.	171.	178.	159.	151.
184.	182	169	188	180	139	169	188	154	177
137	182	183	165	163	186	195	190	167	207
177	142	100.	160	176	160.	101	100.	107.	207.
175	160	150.	140	170.	100.	101.	100.	197.	109.
175.	100.	159.	148.	170.	163.	221.	200.	187.	181.
1/4.	203.	184.	219.	204.	204.	202	238.	255.	312.
306.	349.	416.	443.	495.	587.	595.	572.	550.	425.
339.	242.	232.	221.	214.	158.	193.	174.	182.	169.
192.	149.	152.	191.	177.	160.	169.	154.	163.	165.
160.	178.	162.	147.	140.	168.	170.	162.	164	160
186.	162	163	126	135	174	149	129	151	157
172	107	163	147	150.	161	160	100	172	164
174.	140	105.	147.	102.	101.	102.	102.	173.	164.
170	140.	101.	100.	109.	101.	14/.	1/0.	1//.	153.
1/2.	131.	162.	163.	160.	163.	166.	162.	154.	153.
147.	1/1.	161	179.	168.	175.	167.	167.	151.	159.
151.	196.	154.	168.	208.	193.	207.	172.	202.	274.
291.	284.	307.	379.	467.	539.	601.	658.	842.	948.
1132.	1374.	1492.	1602.	1784.	1956.	2033.	2077.	1968.	1697.
1329.	933.	698	514	496	386	378	355	397	392
428	355	451	341	334	264	316	220	224	252.
220.	185	201	247.	222	204.	210.	2000	224. 070	200,
240.	707.	201.	209.	405	610.	202.	220.	270.	208.
141J.	202	4111	48/	11 11 11	5/11	415	21 (11)	7 4 4	

347	274	259	244	234	220	100	216	189	208
161	207	200.	103	10/	220.	100.	106	107	100.
191	191	213.	202.	192	194.	100	164	197.	163
184	199	100	107	224	254	271	280	300	235
403	465	458	446	408	386	3/3	317	235	250
202.	201	120.	157	192	193	193	155	181	101
183	159	131	177	167	165.	103.	173	170	194.
172	187	101	202	167	202	101.	230	186	200.
264	234	330	280	298	252.	260	236	220	204.
201.	224.	230	234	228	234.	2553	261	220	360
396	410	488	577	641	803	906	926	207.	200.
682	613	469	410	329	249	243	220.	211	210
193	164	198	188	161	189	178	164	177	174
196.	168	184	179	183	196	175	202	242	245
243.	236.	263.	293.	342.	367.	383.	453	528	630
726.	856.	904.	770.	824.	675.	579.	529.	397	350
286.	241.	229.	211.	207.	187.	201	154	190	169
135.	170.	139.	165.	136.	130.	133.	165.	145	160
162.	131.	146.	148.	156.	149.	138.	149	140	126
168.	155.	134.	171.	135.	142.	164.	142	157.	187
137.	185.	163.	173.	183.	177.	190.	198	190	197
193.	160.	177.	172.	175.	227.	196.	191.	202	190
214.	249.	239.	242.	292.	327.	326.	367.	437.	508.
569.	598.	707.	919.	1016.	1213.	1189.	1161.	1196.	1086.
878.	751.	663.	548.	445.	370.	299.	306.	294	263.
242.	215.	240.	209.	243.	210.	190.	171.	173.	171.
196.	184.	203.	175.	163.	146.	200.	169.	214.	179.
202.	170.	203.	211.	216.	232.	215.	237.	248.	292.
310.	332.	363.	397.	390.	438.	566.	610.	786.	893.
1038.	1200.	1414.	1558.	1586.	1587.	1634.	1603.	1490.	1262.
983.	772.	579.	418.	377.	321.	265.	250.	249.	246.
214.	225.	186.	217.	195.	227.	193.	202.	169.	171.
162.	190.	153.	162.	163.	189.	184.	203.	169.	175.
178.	177.	156.	188.	159.	181.	221.	187.	208.	222.
238.	253.	287.	260.	264.	347.	413.	439.	508.	544.
667.	725.	819.	1000.	1003.	1024.	914.	906.	851.	602.
540.	403.	404.	340.	295.	277.	246.	186.	219.	217.
220.	229.	197.	185.	184.	144.	155.	167.	158.	169.
181.	157.	167.	165.	169.	183.	167.	181.	197.	217.
216.	228.	178.	188.	181.	166.	176.	174.	169.	166.
160.	159.	148.	160.	130.	151.	155.	139.	149.	139.
136.	131.	139.	132.	128.	154.	141.	141.	126.	133.
123.	126.	123.	147.	134.	151.	158.	130.	131.	147.
145.	166.	180.	168.	187.	196.	199.	218.	195.	202.
236.	267.	265.	271.	315.	312.	368.	431.	485.	589.
600.	/94.	824.	1002.	1065.	1047.	862.	862.	683.	631.
538.	4/5.	347.	303.	287.	302.	232.	190.	174.	241.
212.	1/2.	129.	173.	143.	154.	136.	107.	132.	138.
146.	142.	134.	134.	123.	151.	132.	136.	123.	165.
128.	126.	131.	132.	114.	123.	115.	101.	134.	148.
148.	144.	101.	137.	152.	160.	141.	172.	170.	149.
196.	175.	225.	252.	245.	242.	317.	334.	431.	480.
527.	578.	610.	666.	679.	648.	589.	484.	435.	339.
342.	264.	269.	213.	220.	168.	199.	152.	153.	169.
124.	132.	193.	145.	163.	160.	156.	15/.	130.	180.
161.	1/4.	187.	204.	243.	223.	276.	275.	359.	366.
378.	480.	506.	484.	524.	439.	452.	406.	3/3.	249.
259. 120	209.	201.	221.	209.	155.	166.	159.	152.	143.
130.	123.	141.	106.	98.	110.	11/.	114.	111.	111.
0J. 07	54. 107	84. 71	101.	128.	У/. 00	118.	TIU.	100.	99.
0J. 07	107.	/1.	98. 07	93.	98. 01	99.	92.	93.	99.
0/.	13.	93. 07	97.	88. 77	01. 70	92. 102	84. 07	88. 100	84.
90. 90	10.	02.	04. 00	11.	70.	100	ys.	T00.	104.
09. 101	04. 01	90. 00	0U. 01	02.	93. 104	100.	92.	94.	98. 07
02 TOT'	74. 00	70. 05	01. 01	0∠. 00	104.	۶/۰ 00	95.	Ø1.	8/.
90. 97	. KK	90. 90	92. 102	00. 107	90. 01	92. 71	94. 115	95. 100	93. 107
107.	- 22. 101	90. QA	178	1/7	94. 136	14.	101	102.	107.
172	±∠⊥• 201	101	251	14/ -	130.	141.	121.	100	1/0.

727	700	702	046	000	766	7(0	700	761	(21
757.	790.	195.	040.	020.	100.	/00.	199.	754.	051.
711.	689.	673.	693.	694.	720.	816.	904.	1075.	1234.
1442	1732	1920	2171	2439	2475	2496	2220	1876	1665
1200	1040	1220.	7 4 4	576	2473.	2420.	22200	10701	1005.
1392.	1049.	828.	144.	576.	533.	407.	393.	331.	283.
304.	283.	255.	220.	216.	234.	168.	212.	178.	176.
173.	169	180	193	226	107	187	218	226	201
222	200	100.	2,40	220.	257.	107.	220.	220.	170
231.	209.	233.	240.	246.	255.	262.	201.	228.	179.
180.	159.	134.	144.	163.	147.	168.	145.	125.	109.
146.	127.	141.	163.	146.	147	174	222	203	218
217	200	254	272	405	4 E C	400	520	543	400
217.	290.	274.	575.	405.	400.	402.	550.	545.	409.
434.	386.	374.	303.	243.	265.	251.	245.	257.	287.
238.	279.	290.	296.	245.	297.	275.	244.	236.	216.
1.87	159	157	172	107	87	125	131	133	144
150	137.	101	172.	107.	107.	125.	1.0	155.	144.
150.	146.	121.	150.	170.	137.	164.	162.	165.	137.
157.	161.	189.	193.	179.	216.	234.	273.	270.	324.
313.	339.	378.	348.	386.	395.	413.	419	443	457
177	515	534	551	400	517	110	202	251	2571
4// .	777.	774.	551.	422.	517.	410.	392.	351.	254.
249.	220.	195.	178.	163.	140.	149.	162.	133.	132.
122.	95.	113.	98.	106.	105.	78.	97.	75.	97.
77	86	90	71	82	97	86	99	84	70
77.	50.	04	7 4	62.	57.		22.	04.	70.
12.	59.	84.	14.	66.	/1.	11.	19.	90.	75.
66.	61.	62.	80.	78.	68.	64.	91.	78.	84.
93.	74.	76.	83.	75.	54.	88.	84.	69.	67.
65	70	96	00	6 1	75	70	00	00	60
05.	10.	00.	80.	04.	75.	10.	90.	00.	00.
11.	6/.	78.	/4.	68.	68.	81.	108.	76.	70.
91.	87.	77.	81.	69.	65.	95.	89.	88.	84.
58	87	75	95	84	95	96	123	103	123
107	107.	164	140	104	104	20.	125.	105.	125.
127.	12/.	104.	142.	194.	194.	250.	200.	263.	286.
320.	293.	288.	279.	276.	286.	274.	267.	270.	274.
229.	186.	215.	200.	202.	160.	173.	158.	154.	152.
163	108	104	105	110	1 47	120	122	120	107
10.0.	100.	109.	100.	110.	147.	132.	132.	120.	127.
114.	101.	162.	172.	200.	1/9.	222.	231.	233.	240.
278.	242.	252.	251.	299.	227.	225.	224.	191.	199.
168	186.	186.	167	150	144	164	206	191	192
100	200.	200.	220	100	225	101.	101	100	1 47
190.	411.	207.	669.	223.	223.	196.	181.	150.	147.
157.	137.	145.	153.	131.	129.	141.	127.	111.	158.
111.	130.	143.	171.	158.	160.	199.	224.	188.	224.
261	273	292	294	318	400	403	3.85	400	355
201.	275.	272.	274.	200.	400.	403.	303.	400.	JJJ.
329.	336.	355.	319.	322.	357.	352.	426.	422.	4//.
496.	508.	604.	563.	610.	581.	589.	554.	566.	485.
373.	403.	350.	282.	233.	237.	232.	225.	189.	193.
182	161	1.95	153	155	167	150	140	160	1 / 1
102.	172	100.	155.	133.	107.	100.	142.	102.	141.
153.	1/3.	154.	150.	136.	1/8.	15/.	182.	180.	166.
180.	188.	197.	234.	245.	226.	266.	272.	286.	232.
212.	253.	231.	198.	197.	204.	200.	156.	145.	154
155	136	134	116	144	144	127	160	361	1 47
1.0	100.	104.	110.	144.	144.	157.	100.	104.	147.
169.	139.	138.	180.	146.	146.	135.	133.	156.	151.
161.	173.	167.	149.	176.	178.	191.	173.	216.	207.
177.	168.	155.	167.	125.	136	152	153	145	143
145	136	115	133	106	122	103	1/3	127	116
100	110.	100	1.10	100.	12	105.	14.).	137.	110.
123.	119.	129.	149.	93.	114.	105.	141.	112.	120.
103.	99.	117.	117.	92.	93.	100.	114.	112.	116.
106.	125.	136.	108	150	156	139	113	178	235
217	276	200.	200.	275	400	401	470	470	434
217.	270.	202.	322.	375.	422.	451.	470.	472.	424.
427.	371.	278.	281.	229.	230.	193.	182.	138.	160.
142.	132.	152.	145.	136.	125.	152.	149.	127.	152.
127	123.	168.	166	172	204	199	200	205	229
242	222.	200.	200.	222.	204.	222.	2001	2020	222. 915
243.	414.	2/1.	293.	336.	290.	254.	200.	248.	215.
198.	180.	172.	192.	135.	152.	137.	116.	119.	123.
134.	121.	135.	115.	138.	139.	134.	126.	130.	146.
179	190	178	1.80	134	175	164	157	157	150
110	1 / 1	120.	100	100	101	114.	100	101	100.
129.	141.	132.	139.	123.	104.	111.	108.	104.	83.
82.	98.	90.	76.	74.	90.	77.	91.	67.	71.
51.	66.	51.	81.	81.	57.	62.	65.	66.	69.
86	40	60	77	10	62	70	51	50	60
50.	57	00.	60	12.	70	, O •		J2.	· · · ·
57.	57.	dU.	00.	0/.	19.	22.	09.	02.	60.
64.	61.	75.	70.	60.	76.	46.	62.	63.	74.
79.	73.	60.	61.	68.	70.	81.	72.	90.	66.
68	64	78	62	76	Q1	68	80	67	61
	51.		J 2 +	10.	~	00.	. uu	01.	01.

s

53	80	90	82	79	70	94	97	96	80
100	00.	50.	02.	, , , , ,	19.	34.	27.	, JU,	02.
109.	96.	103.	83.	90.	/6.	106.	97.	95.	82.
62.	105.	88.	91.	82.	76.	83.	71.	79.	79.
58.	73.	68.	79.	51.	86.	84.	58.	67.	60.
68	84	82	66	54	59	76	63	72	7 /
74	(7	75	70		55.	70.	70.	72.	/ .
14.	67.	15.	78.	64.	64.	/6.	73.	/1.	82.
55.	53.	66.	55.	54.	66.	49.	50.	78.	65.
57.	56.	60.	55.	58.	52.	71.	68.	60.	71.
64	76	69	54	61	59	61	72	68	88
70	70.	60	45	60	50.	40	50	40	40
70.	70.	69.	40.	69.	59.	49.	50.	40.	48.
48.	48.	60.	54.	/4.	50.	65.	52.	54.	64.
45.	59.	70.	62.	60.	52.	61.	50.	48.	53.
56.	58.	59.	46.	74.	52.	56.	69.	52.	63.
61	61	44	60	50	55	60	60	50	66
50	01.	44.	09.	32.	55.	69.	00.	59.	00.
50.	65.	53.	64.	64.	52.	67.	66.	60.	69.
59.	63.	53.	77.	74.	52.	76.	88.	75.	92.
66.	80.	85.	86.	82.	78.	82.	83.	91.	62.
66	61	95	84	59	67	73	57	50	71
74	77	70	C1.	() ()	70	75. CE	71		, <u>,</u> ,
/4.	73.	70.	61.	62.	/8.	65.	74.	90.	82.
63.	82.	81.	100.	88.	115.	115.	100.	114.	135.
136.	163.	164.	159.	132.	169.	181.	149.	166.	197.
163	166	200	175	165	152	154	166	177	180
100	100.	200.	175.	105.	1 ()	100	100.	166	100.
189.	169.	178.	1/5.	164.	163.	196.	184.	166.	167.
157.	117.	127.	141.	146.	119.	122.	122.	117.	112.
104.	106.	92.	117.	115.	78.	73.	98.	85.	110.
90	77	106	113	109	123	151	113	101	111
00	100	114	112	06	123.	101	07	201.	
98.	108.	114.	113.	86.	87.	101.	87.	80.	89.
86.	104.	114.	89.	105.	119.	125.	124.	136.	152.
148.	181.	162.	145.	147.	179.	148.	167.	171.	150.
119	142	151	136	149	119	122.	138	127	125
117	111	146	100.	112.	117	121	120.	100	120
111.	111.	140.	125.	112.	11/.	151.	129.	120.	120.
132.	99.	123.	116.	151.	104.	170.	142.	170.	146.
171.	125.	154.	154.	145.	153.	157.	159.	175.	124.
175.	158.	166.	175.	189.	235.	159.	168.	182.	216.
221	200	260	217	102	250	240	250	240	122
231.	209.	200.	217.	195.	259.	240.	200.	240.	232.
195.	240.	239.	211.	201.	226.	236.	221.	263.	241.
263.	247.	292.	261.	288.	301.	320.	303.	331.	341.
383.	395.	372.	393.	401.	341.	342.	335.	321.	304.
307	280	275	261	202	250	288	278	265	264
242	200.	275.	201.	292.	400	200.	171	203.	204.
242.	204.	215.	225.	196.	190.	169.	1/1.	190.	167.
176.	158.	159.	171.	167.	176.	190.	206.	200.	194.
196.	173.	195.	182.	203.	169.	182.	186.	170.	150.
167	152	142	180	174	154	193	177	184	190
106	196	202	210	206	210	170	216	101.	106
100.	100.	203.	210,	200.	219.	1/2.	210.	107.	190.
191.	190.	193.	210.	150.	180.	198.	222.	205.	206.
209.	263.	241.	304.	273.	259.	308.	356.	293.	290.
307.	283.	304.	321.	303.	259.	236.	223.	231.	224.
197	187	187	194	183	156	132	132	126	142
154	120	140	107	200.	100	04	110	101	
104.	139.	140.	107.	86.	96.	04.	112.	121.	69.
93.	76.	97.	87.	84.	75.	65.	/4.	63.	69.
89.	68.	98.	72.	77.	82.	50.	55.	77.	84.
86.	64.	73.	66.	77.	92.	87.	106.	103.	103.
103	0.2	117	70	06	102	01	76	04	100
103.	34.	117.	13.	90.	102.	100	70.	24.	100.
83.	104.	87.	104.	105.	104.	100.	90.	108.	102.
122.	111.	133.	143.	119.	98.	130.	141.	142.	149.
145.	136.	141.	180.	177	178.	180.	146.	165.	173.
176	1/2	157	152	102	200	120	116	100	130
170.	142.	107.	100.	102.	69.	132.	110.	109.	130.
127.	124.	131.	102.	105.	129.	105.	105.	105.	83.
131.	107.	105.	117.	96.	83.	87.	74.	107.	117.
182.	106.	108.	122.	100.	139.	130.	125.	139.	90.
151	120	157	152	126	136	155	152	13/	160
171	107.	77/ .	104-	150.	100.	101	776,	1J4.	100.
1/1.	193.	225.	211.	128.	102.	191'	200.	718.	210.
214.	199.	160.	144.	215.	198.	164.	126.	177.	141.
164.	145.	125.	128.	139.	152.	131.	123.	152.	131.
143	131	123	107	126	152	122	169	131	156
10/	157.	160	2011	100.	170	107	107	101.	205
100.	120.	103.	211.	. 201	1/3.	10/.	197.	202.	205.
206.	270.	203.	262.	287	271.	296.	347.	346	445.
459.	543.	571.	562.	667.	690.	766.	805.	772.	778.
721	730	700	675	640	526	465	436	354	324

303	261	275	244	208	100	105	108	155	130
154	137	136	244 · 124	126	130.	195.	135	149	132.
131.	134	126	123.	121	137	141	125.	130.	120
119.	123.	118.	119.	115.	105.	119.	115.	116.	125.
104.	80.	117.	113.	106.	114.	122.	130.	113.	104.
129.	124.	93.	111.	109.	96.	97.	91.	103.	108.
82.	114.	57.	101.	93.	71.	84.	87.	100.	94.
128.	95.	93.	80.	84.	98.	92.	103.	87.	84.
96.	95.	84.	83.	98.	88.	123.	117.	128.	119.
122.	123.	136.	102.	85.	128.	94.	106.	92.	104.
101.	73.	90.	75.	80.	93.	73.	63.	91.	65.
68.	82.	54.	69.	80.	71.	72.	75.	72.	77.
80.	66. 70	74.	64.	72.	54.	69.	85.	73.	75.
88. 00	79.	70.	80.	78.	101.	/4.	12.	/1.	88.
00. 98	90. 134	70. Q/	92. 111	00. Q1	112.	10.	91.	10.	90.
115	87	89	78	86	88	73	92.	65	102. 64
78.	73.	80.	77.	66.	58.	56.	64.	55.	71.
72.	80.	70.	90.	85.	81.	92.	82.	72.	79.
74.	96.	78.	101.	60.	100.	84.	94.	81.	83.
110.	79.	101.	90.	83.	92.	93.	90.	84.	110.
95.	117.	99.	96.	94.	114.	105.	98.	96.	98.
103.	116.	54.	102.	89.	94.	87.	73.	83.	83.
89.	74.	85.	105.	88.	94.	62.	93.	80.	88.
97.	80.	91.	83.	86.	87.	86.	96.	85.	67.
83.	82.	88.	80.	82.	87.	95.	59.	89.	64.
57	70.	12.	10.	80.	59. 74	57.	/1.	61.	81.
91	82	82	87	79	24.	01. QQ	87	89. 80	09. 07
99.	83.	93.	105.	115	126	117	121	140	140
163.	151.	159.	179.	155.	146.	133.	142.	128.	119.
134.	129.	119.	131.	90.	133.	114.	110.	103.	140.
104.	86.	94.	101.	117.	103.	113.	83.	113.	97.
86.	71.	98.	137.	96.	117.	106.	133.	112.	120.
98.	109.	129.	108.	149.	127.	120.	130.	108.	156.
145.	158.	188.	132.	198.	170.	210.	223.	214.	270.
237.	263.	261.	227.	228.	231.	206.	247.	215	214.
150	200.	190.	159.	178.	109.	102.	101.	101.	100.
146	96	110	141	139	165	129.	188	146	178
194.	181.	214.	201.	202.	185.	173.	220	183	200.
180.	132.	150.	131.	130.	149.	144.	115.	138.	116.
121.	123.	130.	97.	119.	97.	99.	97.	81.	86.
85.	92.	102.	91.	97.	86.	87.	79.	96.	84.
102.	87.	80.	81.	120.	75.	92.	94.	73.	90.
124.	93.	89.	89.	126.	86.	80.	98.	78.	99.
80.	84.	82.	83.	81.	99.	74.	65.	69.	82.
78.	/6.	80.	58.	68. 74	/b. 70	11.	/3.	66. or	69.
62.	00. 73	72.	60. 68	74.	73.	70.	95. 63	8D. 64	07.
70	68	75	79	79	73	72.	71	73	Q. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
77.	79.	102.	78.	70.	69.	69.	73.	106.	100.
114.	110.	101.	98.	103.	147.	129.	107.	125.	137.
153.	175.	160.	180.	187.	197.	209.	214.	246.	266.
254.	256.	266.	237.	274.	300.	256.	268.	286.	279.
270.	239.	284.	232.	242.	252.	249.	218.	195.	199.
219.	200.	224.	205.	213.	182.	180.	173.	157.	189.
147.	132.	156.	168.	159.	120.	146.	151.	128.	134.
106.	107.	110.	87.	131.	87.	99.	141.	106.	99.
110. 115	125.	119.	108.	122.	121.	134.	121.	99.	113.
110.	125.	140.	00 T22'	128. 110	102.	148.	106.	128. 122	109. 110
100	157	104. 107	29. 143	164	101	167	1/5	122.	119. 136
114.	109.	108.	133.	109.	97.	90.	79.	104	103
85.	85.	85.	93.	84.	76.	79.	104.	102.	99.
101.	92.	99.	131.	97.	97.	93.	92.	64.	80.
93.	74.	99.	79.	74.	71.	75.	65.	102.	62.
90.	96.	94.	90.	89.	77.	84.	103.	59.	91.
101.	105.	87.	90.	109.	100.	72	107	117.	106.

94	114	00	101	135	100	197	120	163	1 2 1
24.	114.	00.	101.	1.5	122.	127.	129.	105.	101.
136.	138.	1/1.	131.	166.	154.	198.	182.	153.	181.
176.	168.	213.	202.	166.	185.	180.	179.	190.	184.
159.	193.	167.	168.	186.	159	139	146.	153.	168
160	171	107.	150.	172	100	101	1 (/	101	100.
100.	1/1.	168.	102.	173.	103.	181.	104.	191.	103.
175.	157.	162.	148.	134.	140.	123.	135.	129.	120.
124.	123.	125.	109.	105.	120.	112.	102.	95.	95.
05	117	01	07	110	101		101	05	02
91.	11/.	91.	97.	110.	94.	99.	101.	95.	93.
103.	81.	85.	12.	/8.	73.	70.	108.	64.	80.
77.	65.	77.	87.	85.	95.	77.	87.	87.	88.
82	101	02	117	115	101	120	115	103	01
117	101.	120	111.	107	101.	120.	104	100.	101.
11/.	127.	132.	131.	107.	150.	120.	124.	148.	105.
126.	119.	139.	133.	96.	155.	115.	125.	141.	139.
118.	140.	115.	101.	127.	115.	122.	107.	129	113
00	01	05	02	70	05	05	07	04	
<u> </u>	51.	50.	92.	12.	85.	95.	97.	04.	02.
85.	14.	68.	79.	100.	17.	59.	95.	108.	/4.
82.	96.	85.	103.	88.	96.	101.	77.	79.	74.
99	88	83	104	92	80	83	77	95	03
110	00.	05.	101.	22.	00.	101.	11.	22.	
118.	94.	80.	91.	116.	91.	101.	113.	93.	108.
84.	97.	97.	92.	119.	98.	93.	69.	82.	112.
102	85	108	125	82	95	85	115	83	86
02.	110	100.	70	02.	100	100	104	05.	101
95.	119.	90.	79.	87.	100.	100.	104.	69.	101.
86.	96.	102.	92.	102.	95.	83.	76.	118.	112.
97.	105.	95.	96.	85.	78.	122.	92.	105.	74.
00	04	00	100	00	02	107	120	107	01
09.	04.	90.	100.	88.	83.	107.	138.	107.	91.
121.	127.	94.	69.	94.	88.	119.	72.	84.	111.
84.	78.	83.	103.	111.	86.	83.	80.	70.	98.
96	63	02	86	113	85	07	95	1 2 3	00
20.	22.	100	117	110.	114	27.	2.41	125.	90.
98.	93.	100.	11/.	96.	114.	82.	141.	93.	93.
117.	98.	97.	84.	105.	72.	79.	72.	85.	71.
59.	78.	49	74	71	81	71	86	83	72
70	71	05	02	62	62	41	600	<u> </u>	()
19.	/4.	95.	92.	65.	05.	41.	65.	68.	62.
51.	63.	52.	58.	59.	53.	65.	59.	62.	63.
51.	76.	63.	69.	76.	53.	68.	62.	44.	45.
46	64	69	51	60	8 1	4.4	37	51	00
40.	04.	05.	31.		01.	44.	57.	54.	09.
6/.	54.	62.	79.	//.	65.	59.	69.	57.	59.
59.	52.	53.	68.	68.	75.	59.	46.	55.	74.
47.	72	69	74	85	76	57	74	74	68
54	70	57	50	70.	70.	71	7 1 . (E	07	
54.	70.	57.	50.	12.	/3.	74.	62.	87.	69.
48.	96.	62.	87.	65.	111.	69.	75.	74.	60.
65.	77.	80.	64.	64.	59.	87.	68.	68.	75.
54	61	73	80	5.8	67	69	62	71	50
53.	51.	13.	001	50.		05.	02.	/ 4 .	50.
68.	54.	61.	b∠.	63.	41.	66.	/1.	41.	54.
54.	62.	45.	49.	74.	66.	52.	46.	47.	47.
52.	68.	47.	73.	54.	55.	49.	63.	53.	42.
56	4.9	43	50	54	50	70	40	17	50
50.	40.	43.	56.	54.	50.	70.	40.	47.	50.
61.	55.	13.	50.	56.	65.	56.	6/.	54.	65.
51.	40.	67.	73.	54.	67.	59.	65.	58.	45.
62.	54.	57.	75.	67.	96.	62.	54.	58.	71.
66	79	60	6.4	70	65	01	00	00	77
00.	70.	09.	04.	12.	0	04.	00.	90.	11.
84.	79.	107.	59.	78.	65.	91.	114.	86.	68.
70.	79.	88.	87.	82.	92.	67.	73.	82.	75.
85	77	63	78	72	76	50	67	64	68
71	57	сг.		(2)		50.		04. 71	00.
74.	57.	65.	67.	63.	64.	68.	/4.	/1.	68.
80.	67.	69.	49.	75.	76.	58.	90.	64.	64.
73.	62.	69.	71.	91.	84	89.	74.	67 .	82
100	07	77	1 2 1	70	70	70	05	02	01
100.	31.	11.	131.	70.	/0.	10.	32.	93.	81.
95.	89.	T00.	79.	133.	123.	IU6.	108.	117.	98.
102.	121.	98.	101.	112.	113.	97.	121.	100.	103.
113	92	88	85	73	102	70	96	83	01
	~~.	70	<u> </u>		102.	70.	<u> </u>		21.
83.	90.	12.	6∠.	ъ/.	90.	92.	69.	52	68.
55.	78.	62.	55.	64.	44.	82.	61.	52.	70.
68.	79.	77.	67.	81	61.	69.	82.	48	70
75	75	62	22	105	75	111	Q1	06	00
	14.	0.0.	0	T03.	14.	T T T •	01.	00.	<i>77.</i>
84.	90.	89.	80.	97.	76.	94.	91.	84.	72.
68.	62.	56.	69.	81.	70.	53.	62.	54.	83.
69.	51.	82.	59	67.	56	48	40	47	37
72.	50	54	50	E0	17	20.	10.	E0.	27.
13.	50.	54.	50.	20.	41.	30.	40.	58.	31.
76.	52.	51.	61.	46.	35.	46.	54.	63.	38.

34	49	50	50	60	60	50	35	52	51
51.		59.			02.	52.	55.	. 20	51.
60.	32.	39.	51.	63.	60.	35.	63.	41.	48.
53.	67.	62.	43.	60.	48.	46.	55.	75.	54.
50	16	40	57	40	40	40	50	66	50
12.	40.	40.	J7 -	40.	49.	40.	50.	00.	52.
66.	67.	57.	55.	80.	89.	70.	75.	59.	56.
54.	79.	58.	69.	78.	62	67.	92.	61.	86
66	60	70	C E	C A	47	77	E 2	<u> </u>	со. го
65.	ъ0.	79.	60.	ъ <u>4</u> .	4/.	//.	52.	65.	52.
78.	65.	44.	75.	75.	77.	56.	52.	54.	69.
57	85	5.0	61	57	56	60	70	4.8	50
57.	70	50.	(7)	57.	50.		70.		50.
66.	13.	69.	67.	58.	69.	70.	69.	19.	58.
66.	81.	62.	58.	57.	58.	59.	66.	63.	87.
65	55	63	64	50	5.8	50	50	66	60
00.		05.	04.	52.	50.		50.	00.	00.
82.	83.	43.	66.	53.	52.	66.	39.	52.	63.
53.	70.	56.	60.	47.	56.	70.	68.	54.	61.
70	60	65	74	6.6	50	05	55	76	01
70.	00.	05.		00.	52.	20.	77.	70.	01.
61.	41.	55.	87.	6/.	/4.	95.	80.	100.	82.
77.	78.	81.	87.	64.	62.	69.	70.	81.	87.
70	76	70	70	72	73	62	65	60	E0.
10.	70.	70.	70.	13.	13.	02.	65.	ου.	59.
66.	62.	67.	53.	69.	59.	65.	69.	88.	54.
60.	76.	47.	65.	67.	69.	63	62	68	72
70	67	6.6	50	с. сс	C F	<u> </u>	72,	40	40
70.	07.	00.	50.	22.	55.	60.	15.	49.	40.
62.	78.	78.	64.	73.	81.	69.	65.	69.	75.
74.	85.	78.	85.	73.	84	109	89	69	70
06	00	01	76	70,	C 1	105.	70		, 0.
80.	88.	82.	/6.	//.	01.	81.	79.	//.	86.
61.	62.	64.	77.	59.	51.	68.	67.	59.	72.
68	46	42	66	66	75	65	11	50	69
сс.	10.	50	70.		75.	0.5.	77.		05.
65.	64.	58.	70.	66.	70.	63.	70.	68.	52.
48.	84.	51.	66.	75.	52.	55.	61.	80.	68.
58	83	50	60	102	40	61	00	61	71
	05.	50.		102.	42.	69.		01.	74.
61.	87.	66.	67.	66.	68.	69.	60.	89.	69.
78.	63.	67.	83.	58.	63.	63.	64.	57.	60.
53	53	51	50	74	67	73	75	51	70
55.	55.	54.	55.	/	07.	13.	7.5.	51.	70.
68.	54.	63.	51.	60.	b∠.	64.	59.	64.	59.
51.	86.	61.	60.	63.	73.	56.	56.	60.	74.
77	54	50	30	62	46	50	63	60	57
17.	54.	52.	55.	02.	40.	JZ .	03.	00.	57.
45.	53.	61.	63.	35.	/1.	62.	64.	72.	52.
70.	64.	52.	57.	52.	75.	71.	71.	66.	54.
63	60	73	20	40	60	57	56	41	01
05.	02.	75.	00.	40.	50.	57.	50.	41.	02.
40.	54.	70.	55.	62.	53.	58.	55.	72.	58.
58.	52.	63.	49	63.	60.	66	44	61	57
50	50	57	C E	67	E 2	(1		4.4	47
J <i>2</i> .	52.	57.	00.	57.	55.	01.	00.	44.	43.
55.	57.	69.	55.	53.	68.	50.	48.	75.	45.
66.	61.	64.	54	60	57	59	52	62	65
55.	40	67	EO	cc.	()	45	6.4		45
.در	42.	07.	20.	00.	63.	45.	04.	44.	40.
63.	67.	44.	66.	57.	57.	66.	54.	80.	66.
57.	56.	65.	53.	63.	73.	58.	74.	58.	63.
01	47	76	61	68. 68	4.4	71	72	70	70
01.	47.	/0.	01.	65.	44.	/1.	13.	78.	76.
78.	64.	81.	69.	78.	61.	78.	88.	67.	71.
74.	76	75	70	103	66	90	74	83	77
00	0.0.0	77	00	100.	70	00.	72.	00.	
99.	83.	76.	89.	92.	12.	82.	75.	98.	80.
95.	80.	65.	83.	91.	73.	82.	81.	84.	79.
73	83	73	61	ΔQ	59	82	73	87	71
70.	55. FF		30			50	13.	57	71.
12.	55.	59.	12.	56.	64.	59.	44.	56.	57.
72.	57.	61.	66.	83.	64.	68.	46.	44.	70.
61	90	62	57	67	70	69	61	80	53
70	20.	02.	77.	07.	70.	02.	04.	09.	
12.	83.	85.	/6.	78.	93.	89.	80.	88.	84.
92.	85.	86.	117.	87.	84.	74.	80.	110.	75.
73	81	80	77	<u>85</u>	00	77	00	07	07
	01.		77.	0.5.	69.	11.	09.	07.	07.
83.	6U.	64.	13.	90.	64.	86.	/1.	74.	83.
63.	76.	76.	68.	65.	79.	68.	56.	78.	73.
77	50	85	01	71	53	01	100	80	70
11.	J.J	00.	24.	11.	55.	71.	100.	ου.	10.
99.	85.	67.	69.	75.	69.	93.	65.	76.	65.
73.	59.	65.	81.	52.	62.	80.	58	50.	84
70	57	20	51	- -	76	10	75	20.	76
10.	. / د	59.	51.	0/.	10.	40.	10.	09.	10.
80.	61.	53.	82.	90.	45.	53.	66.	82.	51.
70.	69.	53 -	84.	60	75	67	49	85	78
70	61	66	 	70	с л	70	<u>.</u>		
14.	01.	00.	04.	20.	64.	18.	82.	ο/.	82.
84.	75.	75.	79.	93.	69.	92.	70.	68.	85.
95.	96.	66.	96.	79.	89.	76.	80	104.	84

87	84	110	106	99	104	107	99	94	85
130	106	70	100.	05	104.	1107.	76	04	116
100.	100.	10.	102.	0J. 1FC	108.	118.	70.	04.	110.
108.	93.	100.	116.	156.	/6.	93.	111.	81.	77.
100.	111.	86.	85.	82.	71.	66.	83.	77.	64.
94.	53.	77.	71.	61.	68.	60.	59.	51.	68.
62.	59.	72.	61.	56.	73.	59.	66.	61.	59.
62.	76.	76.	70.	64.	75.	63.	75.	67.	86
68.	62.	69	66	90	70	81	73	89	92
98	87	63	20	07	104	101	110	02. 02	124
90.	07.	110	110	57.	104.	101.	10,	32.	124.
96.	99.	112.	118.	11/.	100.	103.	126.	93.	99.
111.	99.	111.	114.	95.	112.	104.	110.	125.	98.
131.	102.	92.	78.	102.	101.	96.	117.	116.	72.
102.	114.	103.	78.	104.	105.	88.	107.	79.	95.
72.	77.	88.	105.	76.	93.	98.	82.	93.	77.
96.	85.	90.	62.	94.	68.	59.	81.	73.	76
87.	63.	97	91	81	84	115	73	94	85
105	68	11/	69	86	07. 07	102	, J . Q1	21.	100
100.	00.	114.	100.	105.	02.	102.	122	09.	108.
100.	95.	115.	100.	105.	97.	90.	133.	98.	95.
84.	11.	116.	98.	91.	/4.	12.	107.	85.	87.
94.	105.	88.	81.	84.	90.	78.	70.	97.	94.
74.	81.	90.	70.	95.	56.	78.	87.	78.	96.
64.	91.	91.	95.	85.	76.	85.	88.	93.	79.
74.	88.	83.	72.	87.	69.	77.	75.	78.	72.
60	77	81	66	70	84	64	68	73	55
00. 02	62	52	40	56	70	67	56	50	47
72.	02.	52.	49.	50.	70.	67.	50.	22.	47.
12.	/1.	58.	66.	57.	79.	4/.	65.	39.	53.
56.	44.	42.	36.	56.	52.	72.	47.	45.	71.
81.	60.	44.	79.	54.	45.	30.	61.	58.	57.
61.	57.	52.	62.	59.	60.	70.	57.	38.	55.
43.	57.	56.	58.	44.	40.	56.	71.	43.	64.
58.	34.	54.	54.	69.	42.	50.	51	68	63
46	46	51	65	63	47	36	58	51	48
50	62	50	56	62	 66	40	50. 60	71	40.
50.	72	50.	50.	02.	41	40.	02.	/1.	60.
62.	12.	53.	50.	48.	41.	58.	39.	45.	41.
48.	66.	4/.	64.	51.	68.	69.	50.	81.	66.
63.	48.	64.	43.	100.	59.	62.	81.	52.	83.
67.	63.	73.	63.	75.	67.	63.	55.	54.	75.
67.	41.	75.	79.	67.	73.	52.	86.	57.	54.
68.	69.	80.	55.	53.	66.	56.	70.	59.	53.
67.	69.	61.	64.	67.	45.	55.	82.	64	62
82	64	55	58	58	65	39	63	61	50
62	51	53	68	51	71	59	72	62	66
74		55 . re			/ I . (F		74.	02.	00.
74.	07.	65.	55.	44.	65.	78.	/1.	66.	11.
/1.	48.	54.	51.	60.	63.	/1.	62.	65.	64.
63.	76.	68.	34.	56.	90.	78.	52.	77.	67.
50.	55.	58.	64.	77.	80.	67.	72.	57.	66.
70.	71.	59.	69.	64.	90.	47.	61.	56.	48.
69.	64.	45.	60.	51.	58.	61.	58.	43.	61.
45.	60.	54.	57.	75.	60.	57.	57.	55.	60.
71	67	89	54	79	55	62	72	50	71
53	49	10	47	50	61	52.	65	55. 60	71.
	40.	40.	47.	50.	04.	52.	24	60. 70	/5.
75.	96.	74.	64.	28.	83.	61.	74.	70.	52.
55.	80.	/3.	63.	11.	68.	54.	68.	59.	49.
51.	71.	53.	66.	63.	94.	78.	54.	48.	74.
74.	75.	59.	42.	50.	51.	53.	57.	51.	50.
49.	72.	49.	57.	72.	53.	77.	55.	56.	82.
48.	53.	73.	60.	49.	60.	69.	50	44	76
55	55	76	63	69	63	55	71	66	۰۰. ۵۱
63	50	60	61	55	80. 80	62	50	60.	БЛ. БЛ
60	20. 01	60. 69	70	 5 -	69. 67	62.	20.	07.	34. 71
09. EC	ο <u>ι</u> .	00.	70.	52.	. Co	o∠.	59.	03.	12.
D0.	84.	bр.	89.	86.	68.	59.	69.	61.	51.
81.	83.	13.	94.	88.	82.	64.	91.	77.	79.
75.	67.	97.	93.	84.	72.	66.	85.	77.	88.
89.	82.	91.	81.	97.					

Appendix P-23: step-intensity data of pure muscovite, reflection geometry

8.0000	.020	138.0000		muscovite	on the	Phillips			
423.	463.	461.	471.	476.	520.	492.	528.	459.	567.
538.	573.	569.	594.	577.	606.	666.	624.	689.	763.
801.	814.	854.	898.	988.	1106.	1167.	1270.	1358.	1462.
1558.	1733.	1859.	1818.	1845.	1714.	1679.	1406.	1172.	1124.
913.	751.	659.	617.	526.	471.	461.	443.	428.	383.
356.	355.	375.	342.	380.	309.	336.	365.	340.	363.
332.	321.	344.	342.	310.	325.	347.	302.	342.	340.
306.	314.	324.	293.	265.	309.	298.	328.	302.	301.
309.	301.	299.	310.	317.	347.	283.	308.	300.	293.
297.	319.	271.	282.	292.	327.	277.	282.	297.	269.
324.	301.	284.	246.	292.	259.	296.	296.	286.	267.
286.	311.	308.	298.	308.	304.	293.	279.	279.	266.
266.	258.	316.	289.	274.	268.	279.	278.	277.	240.
269.	268.	262.	298.	268.	252.	216.	267.	261.	288.
283.	257.	274.	276.	265.	275.	286.	272.	285.	292.
277.	251.	251.	251.	279.	269.	305.	262.	271.	281.
231.	288.	248.	295.	255.	246.	288.	272.	253.	251.
235.	260.	273.	257.	269.	280.	273.	259.	282.	271.
255.	259.	238.	278.	252.	253.	242.	228.	242.	258.
250.	267.	261.	215.	268.	249.	224.	228.	254.	280.
257.	254.	209.	263.	251.	239.	263.	234.	255.	253.
216.	228.	251.	252.	264.	248.	253.	226.	250.	252.
247.	226.	257.	244.	285.	223.	240.	220.	250.	246.
274.	236.	217.	226.	230.	243.	223.	237.	249.	226.
239.	252.	212.	217.	250.	229.	245.	220.	249.	234.
217.	231.	219.	234.	231.	243.	283.	232.	234.	225.
227.	222.	260.	227.	220.	242.	226.	232.	225.	229.
221.	234.	223.	260.	218.	251.	237.	229.	251.	246.
187.	230.	201.	260.	246.	227.	237.	233.	212.	227.
227.	220.	191.	190.	202.	227.	200.	217.	234.	236.
228.	206.	248.	219.	240.	224.	198.	229.	224.	252.
225.	237.	209,	240.	231.	210.	235.	213.	209.	203.
244.	232.	198.	200.	205.	204.	204.	240.	206.	251.
209.	232.	233.	195.	218.	228.	192.	225.	228.	219.
218.	241.	192.	200.	220.	219.	218.	188.	244.	217.
241.	219.	235.	206.	205.	208.	207.	222.	229.	219.
234.	225.	195.	229.	224.	218.	189.	220.	213.	226.
230.	213.	201.	209.	214.	196.	193.	216.	205.	204.
202.	224.	236.	213.	226.	200.	227.	226.	231.	198.
213.	206.	227.	215.	203.	214.	201.	189.	212.	191.
181.	208.	198.	203.	220.	223.	187.	199.	216.	223.
199.	226.	199.	212.	201.	207.	226.	181.	220.	184.
199.	202.	246.	238.	218.	215.	191.	208.	218.	198.
198.	226.	222.	214.	214.	193.	214.	198.	216.	217.
224.	209.	175.	233.	232.	205.	216.	219.	225.	229
216.	203.	258.	232.	233.	264.	265.	269.	286.	251.
271.	321.	309.	320.	338.	364.	376.	426.	463.	518.
559.	634.	692.	793.	792.	855.	955.	1007.	984.	989.
887.	817.	687.	619.	570.	470.	445.	335.	371.	309.
304.	270.	273.	228.	241.	234.	227.	248.	232.	219.
211.	223.	210.	208.	201.	209.	192.	239.	210.	242.
214.	202.	204.	236.	204.	210.	199.	212.	194.	172.
216.	191.	194.	217.	206.	209.	204	211.	191.	201.
200.	204.	194.	230.	177.	202.	221.	223.	215.	215.
187.	237.	207.	216.	216.	222.	219.	243.	219.	231.
209.	217.	249.	220.	217.	252.	238.	256.	232.	261.
278.	298.	292.	308.	344.	372.	374.	388.	488.	529.
580.	638.	733.	822	876.	1047	1140.	1389	1479.	1709
1811.	1990	2072.	2319	2451	2624	2718	2583	2680	2623
2533.	2371	2036.	1876	1641.	1398	1206	999	926	810
774.	680	697.	648	636	577	522	486	521	465
451	395.	397.	405.	424	404	416	460	507	531
569.	559	617.	686	682	731	719.	739	685	646
649	586.	573.	501	465.	407	358	371	354	317
304	298	271	231	291	275	279	241	256	237

230	261	257	202	230	259	320	312.	304.	309.
2001	201.	201.	2021	220.	222	146	410	530	525
304.	322.	309.	340.	570.	509.	440.		530.	400
556.	601.	682.	636.	635.	615.	558.	531.	212.	465.
444.	389.	397.	405.	339.	329.	289.	290.	283.	316.
275.	260.	250.	298.	254.	280.	287.	265.	278.	279.
309.	299.	333.	322.	346.	317.	328.	364.	390.	375.
409	417	447	448	444	466	467	472	467.	393.
408.	417.	447.	440.	444.	400.	407.	472.	506	400
435.	468.	520.	459.	511.	546.	550.	002.	1005	092.
797.	835.	947.	982.	1073.	1181.	1158.	1251.	1285.	1320.
1290.	1251.	1180.	1076.	998.	882.	845.	673.	645.	561.
518.	437	425.	391.	401.	353.	374.	353.	375.	348.
307	361	326	345	358	396	376	443.	411.	487.
597.	501.	520.	(77)	550.	700	040	0.21	955	1077
521.	521.	536.	633.	009.	109.	1104	1001	1020	10/7.
1122.	1188.	1245.	1296.	1250	1276.	1194.	1081.	1039.	993.
875.	766.	688.	607.	532.	500.	462.	395.	344.	326.
342.	305.	288.	263.	287.	282.	295.	235.	286.	284.
294	270.	260.	280.	268.	278.	258.	265.	249.	278.
202	272	2/9	276	279	261	277	274.	280.	301.
292.	212.	242.	270.	217	2010	306	349	370	3/1
307.	341.	326.	340.	517.	343.	500.	120.	370.	100
359.	384.	386.	363.	391.	392.	3/5.	438.	399.	498.
517.	527.	562.	643.	638.	733.	799.	880.	1001.	1024.
1181.	1209.	1455.	1554.	1680.	1864.	1934.	1972.	2075.	2029.
1969	1840	1707	1562	1488.	1343.	1125.	987.	902.	749.
774	615	505	555	508	465	448	440	400	427.
774.	015.	202.	222.	200.	410	410.	204	200	401
399.	403.	362.	3/5.	397.	410.	415.	504.	590.	401.
409.	477.	437.	466.	411.	578.	546.	579.	625.	. 603.
747.	816.	897.	964.	1097.	1229.	1351.	1506.	1579.	1777.
2060.	2198.	2516.	2660.	2761.	2964.	3019.	3011.	3171.	2969.
2701	2636	2300	2034	1777	1584.	1267.	1057.	953.	756.
606	2050.	500.	400	510	169	138	402	376	373
090.	011.	200	400.	400	102.	200.	265	345	305
399.	372.	385.	359.	400.		333.	303.	545.	505.
363.	388.	409.	387.	391.	414.	464.	442.	526.	539.
576.	631.	622.	661.	694.	790.	902.	1019.	1047.	1164.
1260.	1364.	1476.	1525.	1610.	1689.	1695.	1753.	1583.	1628.
1456	1314	1121.	1032.	992.	836.	758.	663.	590.	528.
14JU.	1011.	202	406	370	380	404	311	344	381
504.	400.	393.	400.	379.	2020	244	200	247	350
314.	331.	306.	324.	325.	337.	544.	322.	347.	JJ0.
349.	390.	362.	345.	381.	352.	338.	359.	308.	317.
280.	298.	273.	263.	269.	272.	268.	233.	256.	256.
253.	252.	239.	223.	252.	263.	236.	243.	305.	243.
234	271	266.	270.	297.	259.	296.	272.	281.	317.
355	372	310	376	364	402	416	442	416.	497.
333.	572.	510.	370.	747	902.	061	049	1036	1186
5/3.	536.	645.	129.	141.	1505	1(50	1740.	1651	1501
1271.	1390.	1501.	1561.	1606.	1585.	1659.	1/42.	1651.	1521.
1455.	1307.	1184.	1122.	980.	848.	739.	662.	612.	584.
486.	432.	421.	436.	380.	357.	350.	320.	308.	324.
287.	265.	277.	278.	273.	287.	286.	284.	247.	242.
248	247	300	270	253	263.	278.	288.	295.	292.
240.	217.	200.	214	340	360	362	373	408	449
300.	207.	290.	514.	C10	640	601	777	935	807
432.	521.	495.	576.	010.	049.	1100	1004	1071	1001
991.	1063.	1170.	1153.	1215.	1248.	1189.	1234.	10/1.	1081.
933.	876.	779.	751.	716.	642.	556.	517.	460.	440.
434.	417.	413.	368.	374.	425.	381.	393.	461.	436.
448	447	440.	495.	513.	580.	641.	664.	696.	792.
000	0/1	017	930	977	970	951	877	876.	784.
7(0	641.	C 1 E	500.	504	470	302	404	346	221
/68.	664.	645.	590.	504.	470.	392.	404.	240.	231.
304.	289.	294.	238.	245.	258.	219.	253.	202.	210.
209.	207.	207.	212.	209.	189.	204.	184.	186.	1/1.
156.	178.	164.	184.	184.	164.	167.	165.	170.	170.
179.	162.	173.	169.	171.	161.	172.	164.	177.	172.
177	170	193	163	188	158	164.	188.	176.	181.
160	160	105	105.	170	175	195	163	175	175
132.	109.	100.	103.	100	1/2.	170	155.	172	196
1/6.	219.	163.	184.	103.	100.	1/2.	120.	717.	100.
166.	181.	174.	196.	191.	186.	196.	1/0.	207.	198.
181.	219.	207.	227.	206.	212.	226.	222.	254.	261.
260.	226.	293.	268.	281.	342.	316.	358.	383.	387.
421	476	579.	600.	667.	669.	828.	880.	981.	1016.
1107	1234	1320	1455	1555	1554	1613	1592	1636	1712
1665	1700	1701	1806	1804	1908	2039	2143	2240	2508
1000.	1120.	1/04.	T000'	10201	T700.	40320	L	4470.	

2638.	2760,	3026.	3208.	3331.	3425.	3475.	3478.	3509.	3378.
3002	28/1	2660	2/11	2004	1007	1571	1449	1245	1101
5052.	2041.	2000.	2411.	2004.	1027.	1714.	1440.	1245.	1121.
965.	841.	705.	690.	612.	597.	539.	507.	489.	426.
457.	417.	454.	415.	412.	454.	443.	429.	479.	454
404	101	400	E 0 0	E 4 0	E 0 0	F 1 0	500	500	550
404.	401.	400.	244.	542.	502.	519.	522.	502.	220.
478.	463.	432.	414.	396.	353.	347.	361.	334.	318.
362	354	362	336	351	306	401	131	197	403
502.	554.	502.	550.	331.	550.	421.	431,	407.	495.
532.	598.	608.	630.	/18.	688.	730.	823.	748.	798.
803.	792.	727.	757.	732.	715.	635.	667.	674.	602.
660		570	520	500	r or	F 01	со г.	401	474
552.	220.	570.	539.	596.	282.	201.	212.	491.	4/4.
462.	410.	376.	366.	385.	345.	349.	317.	318.	320.
317	328	326	327	340	3/1	330	367	373	300
227.	520.	520.	527.	540.	341.	557.	507.	575.	550.
383.	420.	415.	448.	497.	467.	481.	558.	604.	641.
673.	705.	708.	748.	749.	771.	817.	903.	874	932
050	071	034	0.0	0.51	0.01	002	0(7	775	750.
952.	971.	924.	960.	951.	901.	003.	807.	705.	/5/.
697.	612.	585.	537.	493.	405.	415.	357.	348.	339.
289	297	237	251	250	253	217	232	102	221
205.	227.	237.	2.1.1	230.	235.	247.	232.	174.	421.
246.	230.	248.	241.	211.	245.	209.	191.	1/1.	165.
164.	165.	150.	149.	165.	138.	148.	162.	152.	145.
116	130	161	154	1 4 2	150	127	120	153	100
140.	134.	101.	174.	142.	100.	157.	150.	151.	130.
158.	164.	143.	162.	151.	144.	151.	115.	140.	127.
148	151	140	146	142	151	152	132	143	145
1 4 (107	10.	1 1 0 .	1 4 4	170	1.00.	156.	145.	140.
146.	157.	151.	131.	144.	1/2.	146.	156.	154.	159.
157.	139.	143.	154.	152.	164.	176.	148.	167.	178.
1.81	170	177	218	107	205	217	220	245	207
101.	170.	1//.	210.	197.	205.	217.	220.	240.	207.
263.	276.	280.	335.	343.	403.	357.	429.	449.	445.
458.	531.	505	482	519	502	479	503	491	470
402	460	4 4 1	100.	207	201	400	220	221.	1,0.
492.	462.	441.	440.	397.	381.	400.	338.	335.	333.
333.	301.	334.	307.	313.	258.	304.	283.	313.	318.
304	333	317	334	346	3/3	3.87	403	163	135
405	460	474	.01	102	140		405.	405.	433.
455.	469.	4/4.	481.	493.	463.	4/3.	4/4.	429.	408.
430.	387.	416.	389.	360.	370.	366.	359.	329.	362.
300	270	204	360	250	400	266	250	220	222
300.	570.	504.	509.	339.	409.	300.	330.	330.	556.
334.	345.	315.	322.	291.	305.	287.	270.	278.	272.
300.	341.	341.	356.	354.	389.	390.	407	448	497
500.	511.	511.	550.	650	(12)	671	717	766	007
507.	221.	222.	560.	652.	643.	6/1.	/1/.	/55.	807.
787.	766.	776.	772.	777.	746.	781.	853.	834.	862.
889	903	940	975	010	980	974	1000	031	950
001	202.	740.	250	242	500.	574.	1000.	251.	052.
831.	854.	/66.	/52.	/1/.	607.	561.	553.	490.	473.
437.	390.	378.	398.	325.	359.	347.	354.	355.	346.
333	301	364	303	357	204	401	400	130	121
555.	501.	504.	393.	337.	394.	401.	408.	428.	431.
455.	493.	499.	480.	537.	534.	560.	589.	581.	630.
538.	563.	566.	562	535	520	507	471	433	416
4 4 4	200	200	252	204	240	2011	202	245	410
444.	500.	200.	202.	394.	549.	304.	304.	342.	412.
346.	350.	332.	330.	333.	383.	281.	351.	353.	330.
292.	347.	320.	306	322	282	289	347	353	354
210	244	211	202.	222.	202.	2020	247.	000	077
210.	544.	211.	297.	323.	281.	292.	319.	282.	277.
248.	280.	251.	214.	228.	204.	235.	226.	240.	242.
250	293	312	278	370	357	372	300	316	330
220.	2000	200	270.	075	557.	572.	500.	510.	550.
331.	292.	289.	293.	215.	278.	268.	253.	302.	301.
323.	331.	339.	345.	375.	427.	440.	473.	470.	574.
528	646	654	7.05	768	973	000	0.00	014	073
520.	040.	014.	103.	700.	075.	009.	300.	914.	973.
961.	1027.	969.	882.	/84.	755.	685.	608.	635.	535.
455.	405.	412.	389.	386.	350.	355	348	338	368
212	250	201	א די כ	222.	410	410	420	457	470
313.	550.	302.	574.	511.	410.	419.	439.	457.	4/9.
490.	460.	528.	508.	516.	526.	534.	490.	521.	488.
493.	431.	402.	426.	371.	412	365	315	324	317
222	200	205	262	207	207	202.	212.	347	211.
344.	299.	305.	262.	291.	307.	292.	JJ2.	31/.	301.
332.	303.	307.	361.	332.	326.	375.	310.	271.	297.
294	283	268	250	257	221	225	225	221	204
2221	200.	200.	100	477	441.	200.	44	234.	200.
204.	210.	200.	169.	1/6.	183.	147.	143.	147.	132.
141.	142.	161.	125.	136.	132.	128	126	133	114
127	1/0	124	116	124	100	110	160	100	110
141	120.	120.	110.	104.	144.	117.	104.	102.	110.
141.	137.	118.	112.	118.	120.	121.	118.	131.	127.
130.	119.	144.	122.	116.	138.	129.	132	148	147
146	1/0	1 / 1	160	140	1/0	160	160	1 5 7	1 (0
140. 140.	147.	141.	102.	149.	142.	100.	102.	T20.	100.
150.	165.	160.	147.	177.	150.	184.	154.	150.	173.
157.	177.	158.	159	174	163	176	161	166	161
101	100	105	175	101	170	104	101	177	101.

185	207	189	191	179	179	175	190	159	164
162	154	130	160	132	140	1/3	129	109	129
135	130	127	100.	137	131	130	164	152	120.
130	150.	127.	167.	140	131.	132.	104.	102.	140.
130.	120.	120.	101	145.	139.	114.	114.	122.	129.
146.	132.	145.	121.	141.	124.	134.	126.	140.	138.
131.	124.	126.	127.	129.	123.	135.	130.	138.	136.
125.	128.	121.	122.	132.	147.	146.	120.	140.	141.
144.	128.	123.	107.	128.	127.	115.	108.	107.	108.
112.	105.	102.	109.	112.	116.	115.	107.	98.	106.
109.	113.	105.	103.	115.	106.	110.	106.	109.	100.
132.	116.	120.	96.	109.	114.	114.	104.	107	111.
123.	138.	107.	102	145	131	105	121	102	107
102	128	128	134	110	121	113	123	11/	115
102.	130	13/	128	141	117	133	133	136	175
140	150.	104.	120.	121	117.	133.	153.	140	155.
120.	101	160.	155.	131.	144.	100.	132.	142.	150.
150.	101.	163.	139.	130.	160.	122.	1/6.	1/1.	162.
162.	184.	162.	1/5.	206.	183.	188.	200.	205.	191.
230.	216.	233.	214.	233.	251.	277.	253.	267.	315.
305.	311.	340.	347.	348.	365.	363.	428.	381.	431.
394.	398.	394.	420.	421.	434.	425.	384.	420.	403.
447.	386.	371.	383.	354.	422.	391.	384.	384.	346.
377.	395.	326.	326.	311.	304.	268.	314.	254.	261.
248.	244.	263.	241.	237.	228.	242.	197.	221.	230.
226.	232.	205.	228.	227.	232.	229.	225.	231.	264.
245	247	253	253	220	243	235	221	230	242
220	241	228	227	220.	253	255	265	253	296
284	320	223	207	305	222.	314	205.	222.	200.
204.	309	314	257.	202.	271.	J14. 261	270.	212.	209.
277.	200.	J14.	231.	272.	273.	201.	207.	277.	200.
200.	202.	200.	269.	248.	230.	244,	261.	256.	280.
286.	294.	201.	269.	264.	299.	286.	282.	289.	313.
342.	331.	341.	341.	333.	323.	370.	362.	333.	346.
373.	363.	414.	381.	399.	419.	416.	416.	427.	428.
433.	509.	481.	506.	462.	491.	489.	519.	524.	513.
504.	496.	554.	498.	530.	575.	539.	531.	560.	593.
605.	597.	599.	592.	612.	668.	666.	713.	689.	733.
737.	764.	794.	738.	780.	755.	764.	725.	755.	714.
672.	709.	614.	652.	668.	607.	635.	563.	545.	546.
536.	548.	548.	508.	476.	465.	457.	464.	404.	386.
374.	410.	387.	371.	385.	368.	389.	378.	376	358
395.	361.	392.	379.	374.	394.	389.	382	375	335
364	394	395	398	395	394	408	361	415	388
408	420	385	385	435	453	400.	475	415.	441
443	490	505.	160	455.	455.	420	570	470. E06	441.
525	490. 560	571	400.	400.	400.	423.	520.	500.	550.
777.	509.	571.	520.	539.	619.	600.	593.	665.	503.
404	000.	029.	595.	571.	202.	202.	603.	590.	524.
404.	495.	472.	446.	415.	402.	390.	393.	349.	322.
327.	345.	330.	270.	277.	247.	247.	233.	211.	249.
207.	213.	210.	207.	218.	193.	192.	172.	211.	172.
162.	184.	154.	183.	171.	162.	184.	186.	174.	160.
177.	171.	181.	174.	204.	177.	190.	196.	173.	203.
192.	176.	160.	216.	205.	212.	206.	190.	208.	204.
200.	219.	202.	209.	247.	222.	221.	215.	258.	240.
260.	271.	276.	243.	294.	270.	268.	269.	281.	320.
303.	336.	314.	309.	338.	313.	354.	330.	358.	315.
323.	299.	330.	308.	302.	287.	290.	281.	312.	251.
276.	263.	264.	262.	227.	244.	239.	211.	217.	249
228.	254.	261.	227	225	226	261	187	232	221
223	220	262	226	232	248	271	261	284	285
271	280	279	307	303	240.	312	330	309.	334
367	200.	316	307.	JUJ. A16	401	121	136	440	137
1507.	702.	J40. AEC	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	410.	401.	431.	400.	442.	320
402.	403.	400.	444.	443.	440.	414.	391.	3/3.	369.
390.	403.	330.	349.	370.	366.	345.	362.	334.	334.
313. 205	297.	514.	546.	331.	348.	355.	382	351.	366.
385.	413.	400.	396.	452.	442.	430.	463.	527.	492.
550.	530.	550.	629.	621.	697.	641.	737.	742.	778.
864.	896.	994.	988.	999.	1072.	1108.	1164.	1161.	1197.
1221.	1182.	1104.	1092.	1116.	1059.	1021.	945.	913.	835.
852.	755.	722.	650.	608.	557.	496.	509.	428.	408.
385	340	325	305	355	329	312	309	302	281

291	257	270	254	267	274	276	271	249	266
2/1.	257.	270.	254.	207.	274.	270.	271.	240.	200.
202.	267.	231.	258.	233.	275.	247.	239.	248.	240.
272.	235.	233.	243.	243.	234.	257.	208.	240.	218.
251.	226.	236.	233.	224.	222.	233.	246.	232.	234.
211.	214	231	216	175	238	186	189	176	101
199	204	105	210.	102	100	100.	105.	102	101.
100.	204.	195.	200.	195.	180.	181.	196.	193.	201.
232.	218.	193.	222.	220.	209.	224.	225.	240.	252.
232.	295.	237.	241.	216.	260.	228.	248.	218.	189.
242.	197.	193.	188.	200.	186.	150.	165.	186.	170.
166	170	148	169	151	1/9	163	157	167	150.
147	1(0)	140	105.	101.	142+	170	164	107.	154.
147.	102.	149.	165.	166.	160.	170.	164.	164.	156.
120.	1/5.	167.	170.	184.	179.	171.	181.	171.	187.
186.	222.	243.	265.	253.	320.	311.	271.	245.	245.
250.	266.	257.	293.	271.	276.	257.	250.	253.	240
231	239	242	224	205	103	107	206	101	175
176	100	100	170	101	170	1/7	170	104.	17.1
1/0.	109.	182.	172.	181.	170.	167.	172.	161.	1/4.
162.	185.	180.	172.	186.	198.	187.	176.	181.	182.
209.	202.	196.	209.	218.	220.	204.	197.	195.	228.
203.	222.	224.	222.	202.	196.	217.	203	203	219
217	242	217	234	230	246	221	234	222	222.
217.	212.	217.	2.34.	200.	240.	221.	234.	255.	237.
220.	218.	249.	241.	243.	235.	202.	205.	209.	218.
198.	217.	208.	191.	193.	223.	197.	184.	195.	173.
215.	181.	219.	170.	199.	172.	192.	159.	191.	184.
182.	186.	170.	181.	173.	212.	172.	156.	188	173
178	171	160	197	163	103	104	106	165	161
150.	1 4 1	100.	107.	103.	100.	174.	100.	100	101.
159.	141.	183.	181.	187.	198.	1/2.	182.	199.	209.
206.	204.	211.	196.	235.	219.	205.	228.	254.	279.
244.	233.	257.	277.	241.	265.	262.	282.	310.	305.
288.	320.	343.	327.	343.	294.	301.	324.	308.	317.
341	258	284	301	279	270	300	231	271	247
240	250,	204.	201.	272.	270.	200.	231.	271.	247.
240.	200.	201.	200.	200.	227.	224.	248.	209.	238.
232.	211.	242.	231.	265.	245.	245.	263.	267.	267.
288.	235.	288.	277.	271.	304.	289.	291.	345.	341.
352.	325.	389.	363.	406.	379.	438.	429.	468.	480.
460.	487.	491.	523.	502.	499	497	513	514	479
460	470	440	430	400	305	410	202	200	220
400.	472.	440.	434.	409.	202.	410.	303.	390.	558.
357.	329.	324.	343.	314.	310.	320.	298.	323.	300.
321.	325.	317.	318.	338.	394.	344.	338.	352.	371.
343.	381.	397.	382.	396.	403.	358.	384.	393.	367.
365.	411.	354.	356.	359.	295.	305.	303.	266	304
289	274	262	256	230	222	210	242	200.	300
102	105	102	200.	239.	100	210.	243.	220.	200.
103.	195.	103.	107.	219.	182.	204.	204.	204.	207.
193.	160.	207.	203.	204.	235.	177.	200.	184.	190.
168.	194.	189.	172.	206.	192.	212.	203.	174.	194.
203.	223.	180.	206.	166.	182.	188.	152.	161.	153.
174.	173.	160.	151	137	171	147	145	137	145
151	125	144	165	153	1/2	164	145	157.	150
151.	140	194.	100.	1	143.	104.	145.	150.	159.
150.	149.	134.	138.	145.	164.	149.	150.	152.	148.
161.	124.	149.	172.	177.	155.	194.	168.	153.	137.
165.	169.	173.	176.	175.	193.	185.	198.	182.	221.
199.	218.	226.	238.	233.	250.	260.	265.	316.	316
281	301	315	329	358	377	401	417	354	306
427	459	463	457	350. AEE	400	401.	417. FO1	534.	590.
447.	400.	403.	437.	400.	490.	481.	501.	510.	511.
460.	509.	4/1.	477.	465.	423.	458.	474.	467.	418.
432.	444.	401.	365.	398.	415.	390.	341.	340.	374.
347.	350.	345.	313.	317.	312.	303.	301.	300.	282.
310	285	280	248	265	239	238	223	2/0	265
221	2020	200.	240.	202.	222.	230.	223.	242.	2017
221.	231.	22J.	233.	202.	230.	275.	200.	202.	217.
245.	265.	268.	259.	269.	263.	215.	271.	273.	222.
250.	279.	270.	247.	263.	248.	254.	269.	244.	273.
254.	245.	246.	263.	248.	240.	238.	275.	270.	260.
255.	220.	235	229	192	218	201	221	227	211
238	208	101	170	100	100	100	221.	221.	100
200.	104	104	100	122.	エブブ・ 170	102.	410.	207.	199.
203.	184.	184.	190.	183.	1/9.	192.	187.	T98.	194.
182.	203.	199.	174.	171.	145.	170.	155.	159.	173.
177.	170.	168.	192.	165.	158.	179.	166.	167.	205.
198.	184.	191.	207.	206.	217.	183.	228	210	208
200	230	234	240	255.	227	261	220,	220	200.
200.	200.	204.	240.	2714	221.	201.	270.	230.	200.
411.	300.	293.	204.	325.	304.	298.	332.	321.	340.

,

221	222	215	255	255	221	2.01	224	212	222
221.	221.	272.	300.	200.	221.	301.	524.	545.	555.
344.	325.	339.	315.	346.	359.	344.	323.	338.	350.
363	220	222	200	360	220	214	337	327	311
502.	559.	333.	322.	500.	550.	514.	337+	521.	J44.
338.	285.	296.	329.	310.	289.	278.	274.	272.	268.
278	300	238	259	243	231	215	241	234	231
270.	500.	200.	232.	445.	234.	213.	231.	100	251.
203.	196.	201.	183.	197.	185.	192.	193.	182.	201.
195	176	170	186	146	184	167	170	179	145
100	170.	170.	100.	110.	104.	107.	170.	101	172.
187.	182.	1/1.	1/5.	193.	184.	192.	1/3.	184.	1/3.
200	191	189	211	216	178	222	225.	210.	215
200.	171,	102.	221,	210.	170.	077	222.	242	215.
251.	259.	212.	299.	293.	270.	211.	283.	243.	259.
260.	249.	254.	253.	263.	2.81.	262.	269.	272.	289.
2.02	210	240	257	0.45	220	226	225	121	206
203.	210.	Z48.	201.	241.	229.	230.	233.	232.	200.
190.	193.	221.	226.	209.	186.	169.	181.	199.	188.
170	176	217	166	170	166	175	150	170	168
170.	170.	217.	100.	170.	100.	115.	130.	170.	100.
173.	155.	190.	170.	164.	170.	149.	180.	195.	184.
190	149	173	175	202	176	182	204	183	208
100.	142.	175.	175.	202.	100.	102.	201.	100.	200.
187.	194.	187.	18/.	177.	190.	212.	197.	1/9.	187.
193	200	190	186	211	191	219	186	202	192
120.	2001	1000	1001	000	101.	105	100.	100	1.0
203.	200.	180.	188.	201.	209.	195.	191.	182.	168.
175.	194.	190.	206.	168.	190.	192.	178.	183.	191.
100	100	201	1.0	1 5 0	100	210	214	100	177
199.	198.	201.	103.	159.	180.	210.	214.	192.	1//.
215.	188.	177.	199.	190.	192.	168.	180.	177.	191.
207	100	201	196	202	216	100	196	215	170
207.	190.	201.	100.	203.	210.	109.	100.	215.	112.
204.	187.	184.	205.	200.	187.	215.	172.	214.	169.
206	201	105	176	224	161	106	100	205	10/
200.	201.	101.	170.	224.	101.	190.	100.	201.	194.
205.	181.	184.	202.	164.	176.	191.	202.	211.	173.
212	201	178	175	191	168	190	197	165	163
4.45	201.	100.	112.	1/0	100.	1.00	150	100.	100.
165.	184.	188.	165.	168.	186.	105.	159.	160.	166.
159	138.	142	161.	154.	142.	120.	138.	133.	123.
107	140	100	105	107	1 2 0	110	117	100	100
137.	148.	130.	125.	127.	130.	110.	11/.	120.	125.
133.	127.	128.	126.	119.	125.	108.	99.	119.	110.
100	00	102	112	100	104	111	1 7 2	111	102
144.	99.	105.	112.	102.	104.	111.	123.	111.	105.
106.	108.	113.	114.	121.	106.	122.	128.	120.	123.
124	120	121	112	127	112	118	122	128	124
127.	120.	107	112.	107.	108	100	100.	120.	121.
114.	129.	12/.	136.	127.	127.	127.	115.	148.	134.
140.	110.	138.	144.	126.	140.	132.	109.	140.	115.
110	120	110	1 4 0	1 7 5	1 2 0	1 7 0	1 7 4	1 4 5	1 1 0
119.	138.	110.	140.	131.	120.	135.	134.	140.	148.
135.	148.	135.	140.	126.	130.	161.	148.	147.	148.
157	107	1 / 0	1 4 1	126	1 / 1	1 1 1	120	121	134
107.	107.	140.	141.	1201	141,	141.	139.	131.	124.
136.	151.	120.	113.	148.	140.	139.	106.	123.	141.
128	1/0	139	120	115	94	128	111	125	117
120.	147.	100.	127.	100	23.	120.	111.	123.	11/ •
134.	99.	128.	104.	108.	125.	116.	100.	100.	96.
102.	111.	104.	117.	87.	110.	113.	95.	99.	93.
	110	1 7 1	101	100	00	110	00	110	01
96.	110.	101.	101.	100.	90.	110.	94.	110.	91.
105.	93.	117.	102.	103.	77.	122.	109.	119.	104.
102	115	109	73	92	116	112	103	112	118
102.		105.	13.	92.	110.	113.	103.	112.	110.
112.	111.	117.	129.	127.	134.	136.	108.	136.	121.
109.	130.	149.	133.	125.	135.	116.	156.	158.	139.
1 4 2	100.	1 4 7	100.	100	100.	1 4 7	170	170	100
142.	131.	143.	132.	102.	152.	143.	1/2.	1/3.	160.
153.	163.	139.	167.	124.	131.	162.	152.	152.	153.
150	150	166	151	120	100	100	1 / 1	126	120
122.	150.	100.	101.	139.	123.	120.	141.	150.	152.
147.	129.	147.	141.	124.	163.	121.	138.	111.	136.
1 / 1	119	125	120	100	1/3	146	12/	130	152
141.	110.	123.	122.	166.	140.	140.	124.	150.	104.
120.	157.	128.	130.	152.	128.	152.	163.	169.	136.
140	146	148	153.	140	159.	154	172.	185.	175.
140.	100	1 - 0 -	100	140.	1 . 1	101.	202	101	21.0
167.	182.	159.	182.	169.	161.	207.	207.	184.	214.
207.	188.	204.	209.	195.	224.	196.	158.	165.	185.
100	200	170	165	107	100	175	104	105	154
190.	202.	112.	102.	101.	190.	1/3.	104.	193.	100.
175.	187.	173.	165.	157.	146.	147.	152.	153.	127.
130	117	1 4 4	176	152	120	121	120	162	126
130.	11/.	144.	120.	100.	127.	134.	172.	102.	120.
130.	137.	152.	138.	130.	128.	150.	150.	148.	135.
115	131	131	1.21	171	1/9	150	150	1/5	125
117.	104.	174.	101.	1/1.	140.	100.	10.	747.	
135.	155.	140.	149.	161.	158.	160.	161.	157.	142.
161	172	147	151	144	131	138	138	132	103
101.		4 4 77		1 7 7 4	140	100.	100	100	
139.	144.	14/.	116.	130.	148.	⊥JJ.	126.	120.	141.
102.	102.	97.	112.	108.	90.	99.	92.	117.	103.
05	07	102	117	05	110	00	104	111	07
90.	01.	103.	TT1.	90.	110.	09.	100.	TTT.	0/.
94.	108.	95.	105.	95.	82.	101.	101.	90.	105.
99	108	100	94	92	93	87	112	114	100

100	1.0.1	10/	70	07	07	100	00	107	0.0
100	101.	104.	/6.	97.	97.	100.	ου.	107.	00.
105.	108.	104.	111.	108.	121.	102.	115.	117.	130.
107	136	137	113	107	124	133	112	127	119
101	100.	107.	101	170	147	133.	1 4 2	100	112.
124.	136.	137.	151.	130.	11/.	143.	143.	125.	131.
137.	132.	137.	137.	143.	128.	145.	135.	139.	122
135	1 2 2	10/	100	1 2 5	120.	120	110	110	100
125.	125.	124.	122.	120.	152.	130.	110.	119.	128.
116.	147.	119.	130.	129.	127.	141.	121.	123.	137.
113	124	1 2 2	126	137	126	1 2 2	00	124	101
117.	124.		120.	157.	130.	123.	90.	154.	101.
127.	129.	124.	143.	125.	131.	127.	105.	117.	139.
143	116	127	116	137	111	1 7 7	121	120	100
110.	110.	101.	110.	101.	111.	1	121.	120.	109.
127.	119.	±12.	106.	101.	127.	111.	115.	108.	122.
104.	112.	102.	116.	121.	114.	121.	131.	124.	127.
101	112	105	107	100	1 2 7	110	101	114	174
121.	113.	105.	107.	123.	157.	112.	101.	114.	134.
130.	124.	149.	141.	145.	137.	131.	150.	117.	123.
131	142	117	139	134	155	123	135	1 4 7	152
120	1	100	100	151.	120	124	110	100	142
139.	155.	123.	126.	156.	139.	134.	140.	125.	143.
126.	139.	138.	134.	127.	128.	137.	132.	135.	122.
105	1 7 2	110	102	110	107	101	1 1 2	107	100.
125.	125.	110.	125.	115.	127.	121.	122.	127.	122.
110.	144.	134.	117.	125.	117.	139.	131.	125.	126.
121	125	143	118	128	130	11/	151	124	146
100	125.	133.	110.	120.	130.	111.	1.51.	124.	140.
120.	145.	134.	150.	125.	147.	141.	140.	145.	154.
152.	153.	159.	149.	148.	139.	135.	120.	161.	139.
160	150	140	120	120	1 ()	175	120	140	100
150.	100.	140.	120.	120.	102.	T/2.	130.	148.	130.
131.	139.	137.	140.	124.	122.	141.	128.	132.	144.
1/3	126	127	125	152	122	120	136	145	111
110.	120.	127.	12	152.	144.	100.	150.	140.	144.
140.	154.	139.	135.	145.	135.	153.	152.	139.	144.
137.	146.	129.	136.	134.	148.	131.	162	170	134
156	1 2 0	167	120	160	105	100	1 / 1	120	120
100.	129.	107.	139.	102.	125.	100.	141.	1201	130.
143.	117.	128.	138.	131.	121.	127.	115.	132.	130.
111	139	112	137	120	110	122	89	84	97
1 2 1	101	100	2011	140	101	100	102.	100	
131.	121.	109.	99.	112.	101.	109.	133.	100.	111.
91.	106.	114.	81.	120.	102.	113.	104.	104.	111.
104	0.4	114	100	110	103	77	07	116	107
104.	24.	114.	100.	119.	103.	11.	01.	110.	107.
101.	105.	108.	107.	96.	94.	96.	90.	105.	97.
104.	109.	111.	104.	92.	107.	105.	113.	99.	95.
104	104	120	01	02	111	07	110.	1 27	100
100.	104.	150.	91.	93.	111.	97.	85.	137.	108.
101.	98.	108.	98.	107.	114.	100.	104.	99.	101.
121	86	119	119	100	95	91	102	96	86
100	100.	117.	100	100.	20.	21.	102.	50.	00.
102.	106.	85.	100.	98.	102.	81.	88.	84.	99.
106.	100.	93.	87.	100.	85.	93.	93.	100.	95.
104	70	105	01		100	105	07	107	02.
104.	12.	105.	91.	99.	120.	105.	97.	107.	93.
119.	112.	87.	90.	86.	114.	93.	87.	92.	95.
96	109	112	95	90	106	101	110	Q1	115
00.	100.	110.	107		100.	101.	117.	140	111.
93.	129.	112.	12/.	90.	115.	106.	113.	112.	105.
130.	123.	110.	104.	117.	119.	113.	136	133.	141.
112	121	127	120	1 1 1	124	110	110	127	107
11	1	157.	139.	122.	134.	110.	119.	157.	127.
129.	141.	136.	134.	166.	118.	149.	141.	145.	140.
159.	151.	154.	154.	145.	167.	149.	161.	154.	143.
122	1 5 6	1 5 4	3 4 4	1 4 4	120	121	1 ((107	1 4 6
132.	100.	104.	144.	144.	139.	154.	100.	157.	140.
128.	129.	163.	132.	132.	146.	129.	137.	142.	127.
127	148	146	132	145	106	134	123	121	126
101.	100	190.	100	120	100.	1.1.1	140	140	120.
131.	123.	128.	128.	129.	139.	144.	149.	142.	124.
123.	154.	120.	139.	125.	139.	159.	126.	132.	153.
140	1/0	154	1 4 0	146	156	170	1 4 2	154	145
140.	147.	134.	140.	140.	100.	112.	142.	174.	143.
1/4.	153.	183.	171.	166.	165.	181.	165.	173.	186.
169.	159.	169.	174.	168.	171.	155.	142.	149.	152.
170	151	172	120	151	140	161	140	104	1 4 0
1/0.	TOT -	1/3.	139.	101.	142.	104.	102.	100.	103.
151.	136.	160.	133.	151.	149.	161.	160.	137.	154.
148	160	154	139	162	160	163	147	167	141
1 10.	100.	1.0	140	102.	100.	100.	170	1 4 1	127.
140.	121.	167.	148.	152.	134.	138.	139.	141.	150.
149.	138.	146.	138.	131.	134.	131.	140.	123.	132.
121	110	120	125	107	114	101	114	135	120
110	TTO.	127.	120.	10/.	114.	141.	110.	132.	134.
118.	94.	114.	130.	119.	120.	137.	110.	109.	120.
124.	122.	128.	132.	133.	129.	119	119.	120.	133
120	120	122	161	100	151	1 2 1	104	1 4 6	100.
136.	129.	133.	101.	124.	154.	131.	134.	140.	132.
148.	130.	145.	119.	128.	146.	142.	122.	161.	154.
160	148	146	176	152	182	152	167	193	1.92
100.	199	1-10.	110.	101	104.	100	TO1.	103.	103.
183.	177.	161.	149.	181.	171.	199.	176.	168.	174.
212	200	161	200	182	183	173	1.81	187	151

202	100	157	100	166	1/0	100	13/	170	164
203.	192.	157.	192.	100.	160.	189.	134.	179.	104.
173.	163.	151.	175.	159.	145.	142.	162.	154.	158.
155.	147.	138.	143.	147.	110.	151.	159.	146.	122.
120.	154	146	128	126	127	131	132.	142.	136.
117	120	116	122	130	120	104	140	101	110
122	100.	11.0.	130	120	110	124.	120	121.	150.
133.	125.	141.	130.	130.	140.	118.	139.	133.	153.
134.	167.	178.	131.	155.	154.	165.	145.	172.	157.
176.	162.	199.	168.	192.	164.	185.	177.	190.	167.
183	182	188	185	171	190	182	185	181	177.
100.	102.	100.	202	100	110.	102.	100.	105	160
190.	104.	195.	203.	100.	212.	100.	102.	105.	102.
171.	173.	206.	168.	182.	195.	164.	180.	1//.	160.
183.	172.	155.	160.	174.	161.	167.	167.	175.	179.
139.	184.	147.	145.	153.	141.	153.	162.	175.	165.
180	139	166	153	151	156	167	163	185	141
140	140	140	1()	170	170	107.	101	165.	170
140.	149.	140.	105.	1/9.	170.	172.	174	105.	170.
183.	178.	148.	1/3.	169.	1/9.	163.	1/4.	187.	1/5.
162.	161.	178.	172.	167.	191.	175.	186.	177.	175.
185.	172.	189.	149.	169.	156.	172.	166.	180.	179.
156	146	176	169	1.85	162	169	192	145	159
161	150	170	167	150	150	160	151	161	140
101.	159.	172.	157.	150.	150.	102.	101.	101.	142.
151.	144.	14/.	152.	160.	139.	141.	148.	160.	124.
128.	143.	143.	136.	136.	139.	136.	126.	119.	130.
140.	136.	124.	125.	115.	121.	115.	132.	97.	96.
105	126	95	116	118	106	98	92	96	104
105.	100	101	101	104	114	20.	120	06	1041
95.	102.	101.	101.	104.	114.	94.	120.	90.	95.
107.	102.	99.	99.	81.	95.	98.	93.	100.	108.
99.	97.	102.	86.	98.	86.	93.	106.	92.	85.
89.	94.	92.	90.	91.	110.	103.	108.	90.	81.
94	83	96	105	106	100	115	82	93	83
111	101	101	202.	100.	100.	113.	02.	05	77
111.	101.	101.	02.	03.	93.	90.	93.	30.	//.
87.	87.	106.	88.	97.	111.	104.	94.	97.	87.
106.	92.	96.	111.	95.	101.	84.	118.	96.	92.
109.	95.	95.	107.	104.	97.	97.	117.	103.	115.
117	112	106	108	100	113	125	117	99	126
101	110	00.	100	110	110	110	06	122	120
107	119.	<u> </u>	109.	110.	112.	100.	20.	107	120.
107.	121.	95.	116.	116.	110.	100.	113.	107.	112.
146.	109.	110.	112.	117.	106.	119.	110.	120.	126.
132.	94.	133.	103.	103.	101.	101.	138.	119.	125.
97	118	104	113	117	105	108	99	119.	108.
100	100	105	102	100	103	101	118	122	112
105.	100.	10	102.	110	100.	101.	110.	100	112.
82.	111.	114.	122.	115.	129.	107.	112.	100.	98.
106.	99.	107.	110.	117.	111.	97.	104.	111.	119.
119.	97.	115.	127.	118.	122.	121.	110.	135.	117.
117.	98.	115.	117.	106.	115.	114.	134.	118.	125.
120	122	119	117	87	119	116	120.	121.	109.
116	110	132	124	114	105		113	105	117
110.	112.	122.	144.	114.	10.0.	99. OF	115.	110	120
116.	11/.	119.	110.	104.	11/.	95.	112.	119.	130.
95.	118.	119.	107.	123.	104.	107.	117.	100.	113.
117.	102.	114.	113.	111.	102.	101.	103.	108.	82.
99.	102.	101.	114.	116.	124.	102.	118.	101.	111.
110	121	07	124	103	130	106	100	103	120
104	07	00	101	110	110	100.	100.	100.	120.
104.	97.	98.	101.	118.	119.	105.	103.	132.	132.
149.	120.	113.	117.	125.	102.	100.	120.	107.	108.
112.	108.	100.	104.	113.	104.	106.	120.	114.	104.
101.	104.	115.	119.	109.	108.	110.	98.	111.	100.
100	104	104	102	110	122	139	122	89	118
100.	117	110	117	100.	110	100	107	114	100
100.	11/.	110.	11/.	123.	119.	100.	107.	114.	122.
100.	114.	114.	104.	130.	118.	114.	129.	106.	97.
126.	103.	122.	107.	129.	128.	116.	132.	105.	152.
135.	135.	128.	146.	130.	137.	118.	124.	114.	139.
144	138	152	140	182	156	161	156	159	163
111	100.	120	100.	104.	1//	1 / /	1/0	170	166
140.	100.	130.	133.	130.	144.	144.	140.	1/3.	T00.
150.	155.	148.	136.	149.	150.	1/1.	148.	156.	162.
168.	188.	163.	168.	177.	164.	153.	159.	176.	147.
139.	154.	137.	149.	173.	129.	125.	142.	147.	146.
143	129	160	141	138	153	162	135	125	140
120	120	120	+ · 1 0 0	100.	166	192.	100	110	107
132.	130.	130.	122.	123.	100.	120.	140.	117.	140
146.	142.	141.	134.	112.	133.	100.	118.	134.	118.
131.	131.	132.	134.	144.	125.	124.	103.	137.	111.

1 1-1 - 10-
1.00	104	100		100	105	4.40	1 2 0	1 7 0	3 4 F
109.	124.	122.	131.	138.	125.	143.	132.	132.	115.
153.	143.	139.	134.	145.	147.	150.	155.	152.	135.
154	1/3	154	140	137	153	110	151	160	1/10
1) 4 .	143.	104.	140.	157.	100.	110.	104.	100.	149.
168.	152.	150.	162.	151.	161.	151.	166.	196.	171.
1 8 1	156	1 87	160	169	170	176	175	170	185
101.	100.	107.	109.	109.	170.	170.	17.7.	170.	101.
204.	166.	160.	205.	192.	179.	151.	179.	178.	183.
202	171	198	200	178	177	169	1.80	177	101
100	1/1.	170.	200.	170.	177.	102.	100.	100	1/1.
180.	201.	1/5.	167.	1/1.	1/1.	1/3.	1/4.	183.	160.
197	204	189	169	170	178	196	180	166	176
177.	204.	105.	-0	110.	170.	190.	100.	10,0,	170.
1/8.	206.	1/1.	1/5.	166.	1//.	1/6.	180.	155.	182.
164.	174.	181.	161.	173.	176.	177.	169.	170.	153.
100	1 4 6	100	107	1 (4	175	160	1 / 1	107	1 5 0
1201	140.	100.	100.	104.	1/2.	100.	141.	107.	100.
172.	170.	149.	156.	175.	183.	165.	173.	171.	180.
190	150	160	170	170	106	101	100	170	150
100.	1.10.	105.	170.	1/5.	190.	101.	100.	1/0.	139.
173.	170.	176.	181.	193.	163.	170.	161.	149.	180.
146	153	183	149	149	138	151	146	171	169
1.10.	100.	105.		140.	130.	151.	140.	1/1.	102.
161.	146.	144.	153.	149.	146.	155.	156.	169.	156.
162	143	173	127	115	159	142	162	149	140
1 2 0	1 1 3 4	120	140	1.40	100.	100	102.	100	120
139.	151.	138.	146.	142.	136.	120.	132.	128.	129.
116.	147.	137.	124.	138.	153.	143.	126.	138.	143.
1 5 1	126	120	1 1 6	140	120	105	120	100	1 2 2
151.	130.	130.	140.	140.	130.	125.	130.	100.	100.
168.	111.	122.	141.	142.	161.	162.	141.	110.	125.
130	130	132	146	146	137	1/0	120	1 4 4	110
100.	100.	152.	140.	140.	137,	149.	120.	T44.	142.
147.	140.	135.	128.	132.	104.	122.	120.	121.	151.
150	163	128	117	125	134	135	1/2	131	129
150.	103.	120.	111.	125.	137.	100.	170.	1	127.
131.	131.	120.	120.	137.	133.	120.	129.	143.	105.
106	136	148	126	139	137	138	130	126	132
100.	100.	1 4 5	1 2 0	101	100	110	100	140	100.
126.	139.	145.	120.	124.	130.	119.	128.	146.	135.
149.	149.	141.	130.	124.	136.	148.	144.	150.	158.
146	127	150	157	1 4 2	150	102	1 / 0	120	120
140.	137.	152.	157.	140.	105.	103.	140.	155.	139.
146.	142.	164.	157.	146.	165.	171.	165.	173.	151.
166	155	120	159	155	157	151	144	129	165
100.	100.	120.	132.	155.	157.	1 1 1 1	111.	122.	10.5.
167.	146.	136.	135.	156.	151.	149.	1/3.	163.	144.
155.	163.	146.	144.	156.	150.	142.	143.	152.	174.
100.	170	170	100	1 - 1	1.00	1 27	120	1 (5	120
131.	172.	179.	TDQ.	151.	100.	13/.	139.	105.	139.
163.	147.	161.	180.	166.	147.	128.	169.	159.	144.
140	100	150	1 6 1	1 5 1	150	170	1 4 5	140	100
140.	100.	152.	TOT -	+) + .	159.	170.	140.	149.	100.
159.	159.	153.	134.	150.	131.	151.	138.	170.	179.
160	153	150	171	1 8 3	174	165	168	170	190
100.	100.	132.	171.	100.	1/4.	105.	100.	170.	100.
163.	166.	161.	150.	182.	180.	163.	191.	191.	147.
159	156	166	1.83	179	197	217	198	202	177
177	100.	1 ()	170	172.	010	170	170	202.	100
1//.	183.	163.	112.	204.	213.	1/6.	1/5.	203.	190.
186.	196.	169.	194.	186.	183.	188.	185.	180.	170.
107	100	106	212	177	100	105	100	101	177
107.	102.	100.	212.	1//.	100.	195.	109.	191.	177.
154.	176.	191.	166.	148.	202.	181.	176.	154.	168.
165	169	142	162	156	185	176	151	162	150
100.	100.	172.	102.	1.30.	100.	170.	151.	102.	150.
162.	169.	153.	155.	144.	159.	1/3.	158.	162.	1/3.
161.	150.	163.	143.	145.	146.	150.	154.	158.	143.
150	165	1 / 0	167	160	1()	165	140	1 47	140
152.	100.	140.	10/.	109.	102.	100.	140.	147.	140,
134.	164.	137.	176.	171.	162.	161.	150.	189.	173.
141	150	162	157	127	152	15/	1/7	147	152
1 4 4 2 2	150.	102.	131.	121.	152.	1.1.1.	147.	147.	154.
163.	158.	151.	120.	164.	159.	140.	144.	135.	167.
147.	132.	165.	151.	168.	143.	149.	160.	147.	154.
140	1(1	100		100.	100	1	1 - 1	171	100
149.	101.	130.	128.	100.	130.	100.	101.	1/1.	154.
191.	158.	152.	127.	137.	165.	144.	143.	140.	152.
151	140	1 / /	140	167	152	155	165	1 47	154
101.	140.	144.	149.	107.	100.	100.	102.	14/.	154.
159.	143.	143.	123.	155.	139.	156.	161.	141.	145.
152	135	158	142	150	126	2.01	160	158	163
1 1 7	153.	145	170	100.	100.	1.00	100.	100	100.
14/.	15/.	145.	139.	150.	102.	162.	159.	164.	142.
133.	159.	143.	153.	145.	125.	160.	150.	151.	144.
160	101	171	175	1 477	170	140	120	157	100
100.	104.	1/1.	TID.	14/.	T10.	148.	128.	T22.	103.
153.	178.	183.	163.	148.	152.	166.	138.	151.	174.
150	146	170	150	160	177	172	160	171	140
116.	140.	1/0.	105.	100.	111.	1/5.	102.	111.	142,
145.	163.	168.	185.	158.	1/1.	165.	151.	187.	152.
171	185	161	151	172	173	165	149	157	157
100	100.	101.	170	100	1(2)	170	170	107	1.0
1221	160.	184.	170.	105.	163.	1/9.	1/0.	126.	160.
180.	164	188.	181.	165.	163.	162	155.	157	174
170	1 (7	160	1 < 0	105	177	140	150	1 (5	170
119.	10/.	103.	TON.	T92'	111.	148.	120'	T02.	±70.
159	178	165	163	164	182	146	171	136	161

<pre>138. 155. 148. 154. 142. 142. 174. 180. 173. 193. 186. 180. 173. 193. 186. 181. 215. 215. 215. 215. 215. 215. 219. 197. 220. 202. 182. 174. 191. 199. 191. 182</pre>	<pre>169. 164. 156. 156. 159. 148. 175. 160. 170. 162. 196. 205. 189. 215. 175. 220. 199. 215. 237. 199. 207. 209. 201. 198. 164. 194.</pre>	149. 143. 174. 150. 164. 160. 159. 155. 161. 157. 193. 162. 204. 188. 212. 227. 223. 196. 240. 221. 213. 194. 207. 194. 197.	<pre>182. 145. 147. 178. 169. 185. 170. 160. 159. 171. 167. 195. 172. 197. 200. 198. 208. 209. 205. 198. 201. 203. 201. 196. 190. 178. 197. 189</pre>	139. 181. 154. 130. 166. 160. 137. 142. 163. 185. 185. 185. 185. 195. 219. 198. 202. 176. 202. 217. 210. 196. 174. 202. 217. 210. 176. 202. 217. 210. 176. 202. 217. 210. 176. 202. 217. 210. 176. 202. 217. 210. 176. 210. 176. 210. 176. 210. 176. 210. 176. 210. 176. 210. 176. 210. 176. 210. 176. 210. 176. 210. 176. 210. 176. 210. 176. 202. 210. 176. 202. 210. 176. 202. 217. 210. 176. 210. 176. 210. 176.	<pre>167. 141. 140. 178. 154. 156. 157. 129. 178. 185. 177. 191. 186. 194. 185. 220. 216. 212. 223. 200. 216. 212. 223. 200. 207. 209. 185. 184. 248. 165. 168. 203. 170</pre>	<pre>161. 160. 174. 171. 155. 144. 154. 162. 168. 190. 181. 183. 176. 203. 197. 205. 209. 209. 209. 209. 209. 209. 209. 209</pre>	153. 170. 156. 170. 145. 157. 166. 179. 171. 181. 165. 203. 203. 208. 209. 212. 213. 194. 229. 213. 205. 208. 205. 208. 205. 208. 209. 213. 194. 213. 194. 213. 194. 213. 194. 213. 205. 208. 205. 208. 205. 208. 205. 208. 205. 208. 205. 208. 205. 208. 205. 208. 205. 208. 205. 208. 205. 208. 205. 208. 205. 208. 205. 208. 205. 208. 205. 208. 205. 208. 205. 205. 208. 205.	155. 139. 165. 170. 177. 126. 154. 171. 169. 165. 176. 203. 193. 225. 188. 201. 220. 185. 221. 238. 219. 210. 224. 215. 193. 194.	$149. \\ 183. \\ 156. \\ 164. \\ 149. \\ 163. \\ 163. \\ 178. \\ 178. \\ 174. \\ 188. \\ 192. \\ 209. \\ 182. \\ 195. \\ 216. \\ 200. \\ 202. \\ 193. \\ 209. \\ 228. \\ 244. \\ 200. \\ 198. \\ 186. \\ 173. \\ 187. \\ 197. \\ 197. \\ 190. \\ 188. \\ $
199.	198.	194.	197.	202.	168.	197.	179.	195.	197.
191.	196.	197.	177.	210.	203.	197.	177.	206.	190.
196	194.	197.	148	1/6.	183	180.	192.	194.	171
195. 187.	185.	178.	163.	192.	178.	191.	176.	162.	176.

Appendix P-24: step-intensity data of fluoro-phlogopite

See a

8.00	.02	128.00	Pure	phlogopite					
233.	234.	228.	237.	229.	264.	239.	221.	227.	242.
232.	234.	245.	256.	253.	239.	224.	220.	244.	275.
225.	262.	268.	265.	282.	274.	306.	343.	351.	343.
421.	490,	463.	473.	555.	615.	692.	743.	837.	1012.
1176.	1351.	1421.	1233.	1033.	609.	396.	275.	260.	268.
220.	211.	219.	204.	208.	169.	216.	205.	216.	184.
196.	187.	180.	188.	214.	174.	198.	211.	179.	192.
172.	158.	175.	179.	201.	182.	167.	166.	164.	191.
166.	197.	185.	161.	160.	167.	198.	176.	153.	165.
157.	196.	142.	149.	174.	159.	165.	156.	163.	165.
182.	192.	162.	162.	159.	177.	164.	163.	167.	168.
165.	171.	203.	181.	187.	172.	148.	208.	181.	160.
192.	214.	203.	210.	169.	178.	172.	162.	145.	152.
151.	172.	165.	162.	133.	154.	158.	179.	160.	161.
162.	154.	174.	146.	133.	143.	110.	148.	151.	147.
132.	128.	156.	149.	153.	144.	138.	144.	148.	159.
139.	128.	119.	134.	168.	142.	174.	152.	136.	163.
125.	136.	134.	128.	163.	126.	132.	152.	113.	169.
140.	132.	118.	150.	136.	139.	127.	143.	137.	148.
134.	140.	154.	139.	119.	135.	127.	132.	135.	136.
122.	108.	132.	130.	122	111.	134.	118.	126	139.
126.	119.	181.	133.	131.	161.	148.	109.	125.	162.
132.	104	140.	127.	134.	122.	114.	123.	138.	138.
144.	133.	136	133.	123.	116.	126	146.	136.	125.
134.	171	130	131.	121	123.	132	136	110	106
131.	109.	127.	128.	134.	130.	141.	112.	124.	127
114	122	131	133	135	129	129	112	113	124
131	141	131.	126	126	144	125	143	106	135
121	118	115	123	100	124	109	128	113	135
106	138	137	156	153	122	128	150	138	126
139	126	139	102	126	- 02	106	118	107	136
150	109	107	116	128	100	98	117	107	- 100. QQ
109	119	113	102	112	127	115	128	116	128
121	106	122	95	1/1	126	122	92	123	111
106	114	136	107	411.	107	97	92.	104	113
117	20	95	107.	92.	107.	12/	<u>a</u> a	09.	08
9/	116	105	134	20. 07	402.	115	80	103	115
100	100.	112	134.	27. 110	112	117	110	105.	111
100.	102.	107	107	100	112.	106	107	100.	111.
102.	103	113	107.	108.	94. 01	100.	107.	9J. 07	03
201.	105.	113.	100.	108.	91. 91.	110.	99.	97.	93. 07
00. 92	111.	23. 77	50.	90. 101	110	10.	95.	120	120
02.	90.	104	101.	121.	110.	104.	107	120.	1120.
93. 70	90.	104.	114.	94.	104.	100.	±27.	90.	113.
102	91.	119.	100	123.	104.	01.	04.	97.	90.
103.	83. 96	03.	100.	94.	106.	91.	91.	112	98.
107.	00.	100.	107.	101.	105.	90.	105.	115.	90.
93.	91.	127.	109.	101.	105.	70.	107.	110.	85. 05
93.	90.	93.	90.	90.	105.	90.	104.	147	100.
107.	110.	92.	105.	120.	105.	140.	133.	147.	121.
121.	11/.	90.	100	110.	97.	91.	114.	82.	113.
11.	90.	87.	108.	98.	100	108.	93.	87.	107.
//.	95.	92.	105.	76.	100.	93.	107.	85.	82.
94.	12.	101.	70.	90.	83.	96.	110.	95.	69.
12.	69.	106.	97.	83.	69.	/6.	98.	88.	/5.
/4.	90.	90.	90.	94.	92.	88.	83.	86.	93.
98. 170	89.	89.	102.	102.	126.	101.	119.	141.	154.
1/9.	215.	272.	320.	421.	416.	319.	355.	313.	280.
254.	294.	266.	299.	310.	384.	411.	367.	322.	217.
189.	135.	166.	157.	129.	139.	128.	153.	124.	169.
165.	114.	104.	112.	116.	119.	138.	116.	114.	91.
107.	104.	106.	114.	117	119.	122.	119.	120.	148.
144.	158.	117.	99.	101.	91.	79.	82.	88.	95.
91.	79.	90.	91.	84.	92.	96.	87.	98.	98.
82.	88.	91.	68.	62.	84.	84.	104.	83.	87.
86.	86.	102.	90.	97.	97.	96.	107.	83.	101.

130.	97.	128.	85.	106.	90.	127.	103.	117.	100.
109	107	111	92	110	87	118	93	105	78
100	107.			110.	07.	110.	100	105.	, 0.
106.	105.	91.	97.	94.	88.	87.	109.	84.	95.
89.	82.	102.	87.	79.	77.	77.	80.	135.	113.
98.	88.	104.	110.	74.	104.	95.	92.	94.	82.
98	66	110	66	97	101	66	81	110	100
20.	00.	110.	00.	21.	101.	00.	01.	110.	109.
111.	92.	116.	80.	117.	90.	102.	86.	109.	83.
78.	107.	76.	86.	99.	87.	101.	127.	116.	148.
129	183	1.80	225	213	228	105	162	1/0	131
122.	100.	100.	423.	213.	220.	190.	102.	142.	101.
137.	122.	97.	110.	119.	100.	129.	118.	119.	107.
117.	97.	100.	93.	79.	84.	79.	87.	97.	92.
82.	83.	104	87.	80	87	91	102	88	112
06	07	06	112	00.	05.	100	104	100	107
00.	07.	00.	115.	96.	85.	100.	104.	106.	107.
85.	96.	108.	101.	87.	86.	102.	92.	95.	83.
102.	83.	83.	82.	106.	90.	92.	89.	97.	80.
70	86	104	100	94	112	91	114	128	126
10.	1 4 4	104,	100.	21.	112.	24.	111.	120.	120.
112.	144.	165.	180.	244.	254.	307.	364.	444.	41/.
392.	370.	337.	246.	226.	166.	196.	165.	122.	98.
90	122	82	114	100	103	101	84	95	ga
105	07	111	100	100.	105.	101.	04.	110	110
120.	67.	111.	122.	96.	81.	95.	95.	110.	118.
94.	96.	126.	134.	108.	103.	129.	107.	122.	135.
142.	145.	143.	136.	137.	149.	154.	168.	154.	164.
182	168	173	105	244	238	270	201	304	3/3
202.	200.	175.	100.	244.	200.	412.	291.	1504.	J9J.
303.	301.	286.	253.	219.	187.	179.	167.	159.	145.
135.	116.	145.	131.	104.	122.	135.	127.	115.	117.
122.	157.	121.	141.	139.	113.	147.	156.	188.	232
210	201	2 4 1	220	410	400	617	670	610	532.
219.	204.	541.	330.	410.	499.	017.	0/0.	610.	542.
442.	366.	282.	219.	228.	192.	196.	165.	191.	147.
170.	239.	233.	266.	375.	448.	565.	760.	892.	1069.
aan	747	505	201	195	1.85	138	122	1/8	130
111	191.	100.	4.24.	120	101.	100.	144	140.	130.
111.	104.	128.	110.	138.	150.	196.	144.	158.	110.
132.	105.	95.	131.	148.	134.	151.	111.	137.	128.
124.	133.	119.	118.	95.	134.	102.	127.	98.	84.
100	104	101	112	75	110	100	100	104	01.
100.	104.	101.	113.	15.	110.	100.	102.	104.	02.
102.	84.	92.	85.	101.	88.	89.	114.	98.	97.
106.	79.	105.	97.	103.	117.	123.	123.	167.	170.
165	179	148	166	135	164	212	197	208	222
105.	210	200	440	4.43	101.	477	157.	200.	222.
200.	319.	399.	442.	441.	4//.	477.	452.	318.	213.
227.	195.	186.	134.	128.	124.	106.	88.	116.	110.
90.	107.	117.	79.	114.	93.	73.	86.	76.	94.
01	02	100	63	102	96	100	07	03	07
21.	107	100.	0	102.	00.	100.	07.	03.	<i>91</i> .
13.	107.	87.	92.	85.	84.	100.	6i.	95.	93.
93.	75.	79.	79.	99.	83.	107.	97.	91.	100.
109.	99.	100.	109.	105.	77.	103.	100.	82.	91.
80	92	81	20	Q1	03	66	70	10	77
70	22.	01.	20	21.	20.	00.	72.	42.	100
78.	99.	66.	70.	86.	82.	82.	78.	82.	100.
92.	96.	105.	123.	122.	122.	99.	112.	87.	73.
97.	105.	91.	100.	84.	76.	97.	116.	104.	118.
113	142	152	145	196	207	238	266	325	31.0
110.	310	152.	104	100.	145	150.	111	525.	510.
351.	316.	256.	194.	180.	145.	150.	111.	98.	99.
81.	85.	80.	69.	84.	85.	62.	53.	60.	60.
85.	81.	72.	65.	45.	68.	70.	64.	67.	53.
60	70	67	50	54	01	60	60	62	06
165	19.	107.	54.	. 00	01.	69.	09.	03.	90.
165.	140.	102.	81.	69.	48.	/5.	87.	59.	53.
83.	78.	81.	67.	79.	75.	58.	53.	54.	62.
73.	93	77.	58	65	77	60	71	65	60
57	<i>C</i> 1	70	<u> </u>	70		00.	(2	70	
57.	61.	12.	64.	19.	67.	82.	63.	12.	63.
68.	97.	92.	85.	92.	91.	112.	91.	112.	87.
91.	79.	55.	55.	69.	67.	79.	68.	62.	61.
69	62	64	69	68	61	70	50	50	Ω1
	74	04.	117	110	1	100	100		101.
11.	/1.	84.	113.	118.	131.	196.	190.	210.	192.
201.	193.	170.	161.	154.	121.	120.	95.	94.	83.
69.	61.	69.	72.	65.	78.	77.	55.	74.	48
56	75	86	02	83	102	120	159	171	725.
202	200	500.	24.	· · · ·	120.	107.	10,	1/4 +	200.
202.	388.	529.	610.	6/1.	683.	554.	4/9.	394.	312.
254.	213.	226.	211.	224.	242.	260.	333.	430.	537.
659.	961.	1224.	1589.	1613.	1777.	1538.	1204.	980	654
506	300	305	250	170	166	150	110	176	125
110	J94.	303.	4.22.	1/2.	100.	102.	110.	120.	120.
1 1 1 1	98.	122	+ / 1	141.	125.	160.	108	Ч 4	44

115.105.105.259.284.318.245.223.224. 120. 137. 340. 347. 126. 85. 169. 138. 172. 381. 398. 344. 264. 242. 198. 183. 151. 72. 116. 117. 134. 127. 121. 113. 104. 88. 95. 94. 150. 148. 89. 88. 110. 80. 123. 180. 262. 65. 82. 174. 231. 209. 163. 54. 51. 277. 171. 215. 226. 172. 53. 65. 155. 94. 56. 124. 69. 43. 58. 74. 56. 48. 82. 157. 855. 132. 69. 93. 156. 53. 89. 81. 83. 61. 7.9. 58. 7.9. 120. 578. 110. 109. 80. 149. 721. 145. 436. 900. 821. 356. 216. 218. 98. 76. 90. 101. 138. 178. 165. 139. 69. 69.93.100.96.107.90.101.93.114.122.150.134.138.178.156.132.116.131.85.119.53.53.78.70.75.66.60.68.74.69.99.102.84.101.94.55.74.52.50.48.46.51.44.48.39.40.37.42.47.38.37.54.50.48.50.47.68.102.76.116.127.133.175.230.227.248.219.224.192.176.126.120.85.100.108.78.101.127.181.124.128.112.101.83.78.119.87.108.109.107.106.105.129.106.110.99.100.142.112.121.100.82.77.75.81.45.64.50.57.67.53.48.55.48.56.53.64.66.48.60.79.65.50.69.80.72.82.116.124.106.84.86.74.90.77.80.78.98.78.85.128.140.123.157.190.220.246.391. 69. 89. 105. 169. 107. 112. 167. 148. 98. 79. 79. 68. 67. 68. 94. 77. 33. 51. 75. 29. 93. 46. 54. 34. 44. 46. 215. 227. 149. 247. 154. 126. 130. 121. 120. 88. 78. 94. 115. 110. 101. 99. 104. 128. 67. 66. 79. 57. 72. 73. 66. 62. 75. 47. 86. 81. 97. 62. 68. 92. 273. 86. 104. 339. 352. 428. 348. 264. 121. 92. 66. 102. 80. 104. 56. 67. 78. 64. 78. 49. 78. 81. 74. 83. 96. 105. 157. 347. 139. 185. 192. 355. 293. 296. 116. 68. 51. 76. 81. 79. 44. 48. 99. 147. 122. 79. 71. 70. 65. 56. 79. 72. 57. 52. 58. 93. 66. 71. 44. 63. 57. 74. 106. 97. 83. 66. 46. 44. 47. 150. 156. 144. 49. 36. 61. 52. 45. 40. 52. 50. 61. 213. 136. 130. 99. 266. 160. 67. 45. 141. 283. 66. 47. 134. 134. 265. 272. 136. 174. 91. 152. $\begin{array}{r}
 170. \\
 65. \\
 49. \\
 45. \\
 41. \\
 47. \\
 40. \\
 32. \\
 40. \\
 87. \\
 45. \\
 \end{array}$ 56. 93. 61. 54. 41. 79. 36. 44. 100. 43. 40. 47. 33. 52. 55. 33. 43. 41. 34. 39. 29. 42. 32. 41. 42. 49. 31. 64. 38. 41. 44. 50. 42. 67. 47. 46. 54. 54. 51. 30. 58. 37. 51. 37. 55. 39. 37. 45. 44. 46. 27. 47. 26. 42. 43. 54. 38. 32. 25. 35. 39. 42. 34. 57. 42. 44. 57. 49. 46. 46. 47. 43. 61. 58. 68. 81. 90. 100. 62. 52. 54. 32. 35. 41. 28. 18. 70. 62. 39. 45. 45. 31. 34. 42. 32. 32. 44. 28. 29. 32. 32. 19. 41. 31.

28. 36. 30. 33. 26. 21. 38. 33. 31. 42. 33. 35. 32. 24. 33. 35. 43. 33. 37. 32. 25. 21. 34. 24. 39. 32. 35. 26. 36. 30. 21. 44. 49. 34. 27. 28. 38. 28. 36. 31. 26. 16. 31. 30. 32. 37. 30. 34. 54. 39. 38. 39. 32. 20. 23. 40. 33. 42. 38. 27. 40. 35. 49. 24. 22.46.25.44.17.34.18.31.27.39.40.30.21.32.38.21.25.35.30.34.28.39.19.29.34.45.50.24.39.36.44.36.40.59.51.44.58.67.62.58.71.73.82.88.140.200.173.184.150.135.134.112.65.65.58.70.61.41.55.42.37.34.38.39.37.49.32.43.34.48.48.42.28.48.33.48.65.56.68.64.43.40.58.54.65.54.72.91.85.72.71.98.146.180.159.241.374.370.379.353.161.168.147.154.75.84.90.57.61.66.61.74.100.83.94.111.92.84.88.81.48.57.54.50.55.71.60.65.68.71.60.65.69.140.159.150.102.89.82.120.75.</td 22. 17. 25. 44. 31. 37. 27. 46. 27. 31. 39.22.30.33.46.26.31.43.39.30.28.31.33.31.38.38.37.49.46.28.43.31.46.43.31.46.43.37.58.58.77.69.88.118.158.158.203.188.196.100.67.82.47.42.55.38.44.36.46.31.52.42.50.44.45.43.38.49.65.51.43.36.59.58.58.72.71.77.88.110.117.109.310.333.398.236.229.210.117.117.101.70.69.57.74.79.92.129.115.103.69.91.66.50.57.80.62.51.74.78.64.64.123.118.123.187.170.146.28. 25. 30. 34. 18. 43. 27. 26. 18. 26. 39. 40. 30. 39. 37. 36. 36. 35. 36. 36. 37. 22. 44. 33. 26. 38. 35. 30. 50. 44. 52. 46. 46. 62. 51. 63. 58. 102. 125. 181. 101. 201. 193. 113. 84. 81. 68. 66. 46. 68. 62. 39. 80. 54. 35. 36. 45. 43. 39. 44. 34. 38. 62. 45. 45. 61. 50. 50. 68. 73. 67. 74. 58. 100. 81. 101. 252. 120. 248. 284. 365. 128. 329. 265. 82. 55 156. 121. 64. 65. 55. 74. 109. 119. 101. 112. 81. 40. 57. 63. 40. 73. 70. 80. 74. 64. 123. 146. 247. 194. 90. 85. 63 51. 56. 75. 63. 75. 64. 100. 123.118.187.170. 177. 89. 99. 156. 130. 219. 211. 235. 198. 200. 282. 233. 185. 108. 79. 74. 198. 105. 153. 216. 83. 66. 140. 105.

 79.
 85.

 74.
 63.

 103.
 93.

 76.
 70.

 36.
 52.

 64.
 63.

 50.
 49.

 51.
 41.

 71.
 50.

 59.
 53.

 132.
 131.

 427.
 553.

 543.
 519.

 148.
 129.

 92.
 72.

 181.
 100.

 123. 84. 69. 76. 75. 79. 99. 105. 85. 83. 61. 49. 45. 39. 49. 49. 48. 46. 55. 56. 71. 50. 44. 50. 51. 49. 75. 52 11 132. 54. 79. 67. 70. 219. 94. 111. 415. 427. 280. 314. 887. 873. 608. 543. 255. 752. 224. 161. 179. 80. 111. 80. 96. 83. 120. 142. 148. 181. 197. 06. 86. 61 206.
 131.
 122.

 48.
 72.

 41.
 57.
 103. 115. 212. 211. 120. 79. 95. 71. 59. 61. 62. 52. 65. 54. 56. 57. 45. 54. 38. 26. 29. 35. 47. 29. 55. 51. 45. 44. 54. 48. 53. 39. 45. 26. 44. 56. 43. 33. 49. 35. 62. 39. 52. 45. 26. 27. 49. 32.

| 31. | 40. | 37. | 28. | 30. | 27. | 39. | 26. | 22. | 41. |
|------|------------|----------|------|------|------------|-------------|------|-------|-------|
| 35 | 41 | 20 | 24 | 26 | 20 | 4.4 | 17 | 22 | 20 |
| | 41. | 29. | 24. | 20. | 52. | 44. | 17. | 51. | |
| 34. | 36. | 23. | 42. | 44. | 57. | 39. | 34. | 41. | 31. |
| 29. | 46. | 46 | 37. | 45. | 33 | 38. | 42. | 39. | 39. |
| 57 | 25 | 45 | 47 | 63 | E C | E / | 60 | E C | 77 |
| 57. | 55. | 40. | 47. | 05. | 50. | 54. | 00. | 50. | / 1. |
| 59. | 38. | 45. | ⊃J. | 37. | 40. | 50. | 43. | 40. | 53. |
| 33. | 30. | 46. | 40. | 37 | 21 | 51 | 26 | 38 | 43 |
| 21 | 20. | 20. | 55 | 21 | 221 | 22. | 20. | 43 | |
| 51. | 59. | 52. | | 51. | 52. | 32. | 30. | 43. | 46. |
| 33. | 38. | 40. | 51. | 65. | 74. | 42. | 43. | 42. | 37. |
| 49. | 41. | 45. | 31 | 37. | 44 | 35. | 48 | 45 | 32 |
| 10 | 20 | 25. | 4.4 | 27 | 40 | 24 | 24 | 27 | 22. |
| 40. | 39. | 35. | 44. | 57. | 42. | 54. | 54. | 57. | 29. |
| 32. | 40. | 31. | 48. | 30. | 45. | 37. | 39. | 30. | 48. |
| 42. | 42. | 40. | 49. | 36. | 41. | 35. | 50. | 44 | 45 |
| 26 | 16 | 20 | 51 | 16 | 20 | 20 | 20. | 20 | 40 |
| 50. | 40. | 32. | 51. | 40. | 29. | 29. | 29. | 39. | 49. |
| 28. | 29. | 51. | 36. | 32. | 39. | 46. | 66. | 45. | 50. |
| 50. | 57. | 46. | 41. | 62. | 55. | 44 | 46. | 40. | 30 |
| 40 | 4.4 | 13 | 34 | 47 | 45 | 20 | 4.4 | 20. | |
| 49. | 44. | 43. | 54. | 47. | 45. | 29. | 44. | 32. | 42. |
| 34. | 43. | 41. | 28. | 55. | 38. | 41. | 42. | 52. | 41. |
| 41. | 39. | 44 | 47. | 38. | 49. | 51 | 46 | 50 | 50 |
| 52 | 55 | 55 | 47 | 61 | 50 | 70 | 70 | 76 | 60 |
| 52. | | | 47. | 01. | | 70. | 19. | 70. | 09. |
| 71. | 82. | 112. | 84. | 90. | 111. | 112. | 90. | 99. | 99. |
| 86. | 80. | 89. | 91. | 73. | 81. | 86. | 75. | 70. | 68. |
| 48 | 62 | 79 | 68 | 50 | 50 | 63 | 70 | 60 | 60. |
| 40. | 02. | 70. | 00. | 59. | 10. | 0 | 70. | 09. | 02. |
| 52. | /1. | 5/. | 68. | 58. | 59. | 58. | 49. | 59. | 85. |
| 70. | 62. | 68. | 46. | 58. | 57. | 72. | 64. | 43. | 45. |
| 45 | 5.8 | 53 | 52 | 55 | 40 | 46 | 53 | 6.9 | 57 |
| 40 | 50. | 50, | 12. | | 49. | 40. | | 00. | 57. |
| 42. | 57. | 50. | 56. | 4/. | 42. | 70. | 64. | 67. | 78. |
| 62. | 83. | 58. | 78. | 74. | 86. | 81. | 65. | 95. | 109. |
| 121 | 90 | 97 | 109 | 113 | 112 | 106 | 118 | 128 | 115 |
| 100 | 100. | 150 | 100. | 171 | 120 | 100. | 100. | 100. | 110. |
| 180. | 159. | 128. | 100. | 1/4. | 139. | 150. | 129. | 123. | 125. |
| 107. | 86. | 93. | 85. | 76. | 83. | 93. | 86. | 88. | 86. |
| 72. | 72 | 86 | 92 | 74 | 70 | 70 | 92 | 57 | 67 |
| 70 | , <u>,</u> | <u> </u> | | 7 1. | | , o . | 02. | 20. | 07. |
| 19. | 60. | 60. | 11. | 70. | 92. | 85. | 83. | 19. | 82. |
| 83. | 97. | 83. | 93. | 78. | 97. | 93. | 119. | 83. | 152. |
| 149. | 155. | 176. | 144 | 176 | 182 | 174 | 184 | 163 | 163 |
| 116 | 110 | 100 | 110 | 100 | 2021 | - 1 - 2 - | 01 | 105. | 105. |
| 110. | 110, | 90. | 110. | 100. | 02. | 99. | 01. | 07. | DT . |
| 82. | 72. | 85. | 74. | 69. | 75. | 68. | 53. | 63. | 61. |
| 50. | 48. | 39. | 58. | 64. | 23. | 37. | 44. | 56. | 36. |
| 50. | E 1 | 22. | 50. | | 23. | 47 | | 40 | |
| 52. | 51. | 21. | 54. | 55. | 21. | 43. | 40. | 40. | D1. |
| 47. | 31. | 32. | 36. | 45. | 67. | 33. | 40. | 50. | 48. |
| 42. | 51. | 52. | 55. | 37. | 50. | 36. | 47. | 51. | 53. |
| 67 | 46 | 52. | 4.4 | 571 | 50. | 20. | 20 | 42 | 50. |
| 07. | 40. | 55. | 44. | 54. | 52. | 33. | 54. | 43. | . JU. |
| 52. | 52. | 73. | 84. | 90. | 105. | 101. | 94. | 118. | 131. |
| 154. | 173. | 154. | 157. | 159. | 179. | 168. | 191. | 190. | 160. |
| 106 | 200 | 176 | 214 | 211 | 101 | 204 | 202 | 1 6 1 | 172 |
| 100. | 202. | 170. | 214. | 211. | 191. | 200. | 203. | 101. | 1/3. |
| 122. | 110. | 125. | 112. | 86. | 82. | 51. | 63. | 64. | 70. |
| 54. | 65. | 57. | 58. | 62. | 45. | 46. | 42. | 54. | 59. |
| 51 | 30 | 40 | 56 | 40 | 52 | 17 | 51 | 5.8 | 57 |
| 51. | 57. | 40. | 70. | | 52. | | | 50. | 107 |
| 52. | 50. | 66. | 73. | /6. | 6/. | 57. | 79. | 94. | 103. |
| 94. | 105. | 125. | 108. | 125. | 123. | 142. | 112. | 121. | 107. |
| 119. | 105 | 115 | 105 | 112 | 78 | 79 | 83 | 68 | 86 |
| 01 | 60 | E0 | - 06 | 222. | 77 | 77 | 107 | c0 | 07 |
| 04. | 09. | 56. | 90. | 02. | 11. | 12. | 107. | 69. | 64. |
| 89. | 99. | 97. | 93. | 118. | 129. | 138. | 143. | 117. | 149. |
| 110. | 121. | 114. | 100. | 82. | 68. | 75. | 54. | 63 | 61 |
| 61 | 60 | <u> </u> | 40 | 57 | 61 | 40 | G 1 | 50. | 60 |
| 01. | 00. | 01. | 00. | J7. | 01. | 47. | 51. | 50. | 00. |
| 44. | 4/. | 34. | 36. | 31. | 34. | 32. | 30. | 28. | 35. |
| 26. | 30. | 27. | 29. | 24. | 54. | 26. | 45. | 44. | 38. |
| 31 | 30 | 28 | 20 | 30 | 25 | 31 | 30 | 36 | 10 |
| 21. | 34. | 20. | 20. | 50. | . ل ک
م | 22.
JT. | 50. | 50. | 40. |
| 29. | 34. | 21. | 52. | 35. | 43. | ゴゴ ・ | 39. | 31. | 30. |
| 47. | 45. | 34. | 63. | 39. | 45. | 46. | 58. | 44. | 52. |
| 57 | 48 | 53 | 55 | 48 | 40 | 45 | 50 | 79 | ٨Q |
| | | 55. | 55. | 40. | | | 50. | 10. | 410 · |
| 44. | 50. | οU. | 58. | 46. | 5/. | 86. | 70. | 65. | 66. |
| 81. | 81. | 85. | 86. | 73. | 88. | 61. | 64. | 60. | 59. |
| 44 | 57. | 42 | 50 | 49 | 41 | 30 | 56 | 49 | 28 |
| 27 | 2 |
 | | 20 | 40 | 20. | 20. | 20. | 20. |
| 51. | 35. | 33. | 28. | 20. | 49. | 33. | 41. | 30. | 35. |
| 31. | 37. | 45. | 32. | 36. | 44. | 34. | 36. | 38. | 51. |
| 42. | 32. | 44. | 32. | 59. | 30. | 60. | 44 | 44 | 65 |
| 5.4 | 55. | 10 | A1 | 10 | 40 | E0. | 11. | E0 | ×0 |
| 54. | 57. | 40. | 41. | 40. | 40. | 52. | 40. | 50. | 48. |
| L U | 55 | 51 | 30 | 45 | 50 | 13 | ./.7 | 50 | 60 |

Section 1.

| 63 | 6 4 | 57 | 0.0 | 57 | 60 | C 2 | E 0 | 65 | 60 |
|-----|----------|-----|-------------|-----|--------|------------|------|------|-------|
| 03. | 04. | 57. | 90. | 57. | οZ. | 62. | 59. | 05. | 69. |
| 53. | 48. | 61. | 42. | 58. | 45. | 52. | 34. | 59. | 33. |
| 53 | 51 | 4.8 | 60 | 60 | 50 | 55 | 40 | 65 | 75 |
| JJ. | 21. | 40. | 0.2 - | 00. | 29. | 22. | 42. | 0.0. | |
| 62. | 71. | 58. | 48. | 13. | 78. | 99. | 71. | 72. | 107. |
| 65. | 91 | 79 | 67 | 70 | 74 | 76 | 65 | 71 | 72 |
| 02. | 70 | 02 | <u>ر</u> ج | (7) | 7.1 | | č2. | 0.2 | 50 |
| 83. | 78. | 82. | 65. | 67. | 13. | 67. | 63. | 83. | 52. |
| 52. | 64. | 62. | 52. | 35. | 67. | 50. | 57. | 49. | 47. |
| 67 | 50 | E 2 | 37 | 40 | 20 | 55 | 20 | 40 | 4 5 |
| 07. | 22. | 55. | 21. | 40. | 59. | | 50. | 42. | 47. |
| 47. | 38. | 70. | 61. | 49. | 51. | 52. | 42. | 47. | 50. |
| 52 | A A | 67 | 13 | 53 | 11 | 4.8 | 5.0 | 71 | 77 |
| 22. | 44. | 07. | 43. | | 41. | 40. | 50. | 71. | 11. |
| 60. | 45. | 50. | 68. | 45. | 51. | 43. | 52. | 72. | 42. |
| 50. | 63. | 38 | 44. | 47 | 43. | 52. | 66. | 51. | 67. |
| 50. | <u> </u> | 50. | ~ ~ ~ | (0 | 70 | 70 | 50, | 21 | 70 |
| 56. | 69. | 56. | <i>ъ</i> /. | 68. | 79. | 70. | 50. | 14. | 15. |
| 76. | 59. | 65. | 59. | 65. | 52. | 67. | 59. | 42. | 47. |
| 20 | 4.4 | 20 | 20 | ΕO | 61 | 61 | 20 | 40 | 4 5 |
| 59. | 44. | 50. | 50. | | 01. | 04. | 50. | 42. | 40. |
| 54. | 48. | 38. | 42. | 49. | 38. | 44. | 51. | 49. | 43. |
| 33 | 40 | 55 | 52 | 27 | 48 | 34 | 26 | 44 | 30 |
| 55. | | 22. | | 27. | 10. | 27. | 20. | 11. | |
| 34. | 31. | 38. | 44. | 33. | 31. | 33. | 36. | 33. | 43. |
| 33. | 33. | 35. | 30. | 39. | 34. | 38. | 32. | 28. | 35. |
| C 1 | 20. | AC | 20 | 27 | 21 | 30 | 20 | 24 | 20. |
| 51. | 32. | 40. | 29. | 21. | 21. | 50. | 50. | 54. | 54. |
| 53. | 35. | 31. | 44. | 38. | 47. | 42. | 26. | 50. | 48. |
| 30 | 50 | 4.9 | 66 | 35 | 60 | 61 | 40 | 65 | 54 |
| 39. | 32. | 40. | 00. | JJ, | 00. | 01. | 40. | 0.0 | 54. |
| 51. | 74. | 56. | 63. | 44. | 41. | 37. | 43. | 51. | - 38. |
| 43 | 55 | 46 | 46 | 36 | 36 | 34 | 37 | 42 | 31 |
| 10. | | 40. | | 50. | 50. | 51. | 57. | 12. | 51. |
| 32. | 43. | 23. | 23. | 28. | 24. | 26. | 34. | 28. | 28. |
| 21. | 26. | 30. | 28. | 26. | 30. | 24. | 38. | 14. | 35. |
| 22. | 201 | 24 | 45 | 10 | 21 | 25 | 35 | 27 | 200 |
| 23. | 28. | 24. | 45. | 13. | 21. | 35. | ZD. | 21. | 20. |
| 34. | 19. | 12. | 30. | 27. | 24. | 30. | 31. | 34. | 22. |
| 31 | 20 | 1.9 | 35 | 23 | 30 | 22 | 20 | 33 | 33 |
| JT. | 20. | 10. | JJ. | 23. | 52. | 44. | 20. | 55. | 55. |
| 39. | 33. | 31. | 31. | 33. | 28. | 31. | 30. | 35. | 41. |
| 31 | 25 | 35 | 23 | 37 | 27 | 36 | 26 | 30 | 36 |
| or. | 22. | 33. | 23. | 37 | 27. | 27. | 20. | 20. | 20. |
| 26. | 31. | 24. | 21. | 36. | 28. | 37. | 21. | 29. | 25. |
| 23. | 27. | 23. | 27. | 44. | 27. | 38. | 19. | 34. | 20. |
| 21 | 26 | 26 | 21 | 10 | 200 | 22. | 24 | 20 | 200 |
| 21. | 20. | 20. | 21. | 10. | 35. | 66. | 24. | 52. | 22. |
| 30. | 41. | 35. | 24. | 35. | 29. | 31. | 29. | 29. | 25. |
| 27 | 28 | 30 | 26 | 21 | 26 | 31 | 22 | 26 | 26 |
| 21. | 20. | 50. | 20. | 21. | 20. | J1. | 22. | 20. | 20. |
| 21. | 25. | 27. | 29. | 19. | 28. | 19. | 18. | 24. | 32. |
| 26 | 41 | 25 | 27 | 18 | 34 | 27 | 28 | 28 | 24 |
| 20. | 24 | 22. | 27. | 10. | 21. | 27. | 20, | 20. | 21. |
| 25. | 26. | 37. | 23. | Z1. | 26. | 34. | 25. | 23. | 28. |
| 26. | 34. | 29. | 37. | 32. | 36. | 38. | 39. | 26. | 39. |
| 35 | 21 | 20 | 36 | 2.4 | 27 | 42 | 20 | 25 | 10 |
| 20. | 31. | 29. | 20. | 54. | 57. | 43. | 20. | 20. | 18. |
| 31. | 37. | 27. | 46. | 29. | 36. | 26. | 26. | 28. | 31. |
| 29 | 28 | 28 | 24 | 21 | 27 | 31 | 23 | 28 | 29 |
| 22. | 20. | 20. | 24. | 21. | 27. | 21. | 25. | 20. | 27. |
| 30. | 31. | 28. | 20. | 25. | 35. | 35. | 42. | 28. | 29. |
| 29. | 27. | 29. | 30. | 22. | 35. | 25. | 27. | 41. | 53. |
| 20 | 24 | 20 | 4.2 | 40 | 20 | 25 | 20 | 50 | 26 |
| 32. | 54. | 59. | 43. | 43. | 59. | 55. | 59. | 50. | 25. |
| 31. | 43. | 46. | 30. | 25. | 39. | 55. | 42. | 31. | 43. |
| 35 | 3.8 | 47 | 58 | 41 | 57 | 46 | 56 | 63 | 54 |
| 5 | 50. | | | 5. | 57. | 10. | | 60. | 31. |
| 54. | 56. | 63. | 4/. | 56. | 50. | 59. | 49. | 62. | 75. |
| 55. | 66. | 89. | 83. | 76. | 92. | 94. | 100. | 88. | 86. |
| 0.0 | 00 | 07 | 70 | 50 | 100 | 00 | 60 | 07 | 72 |
| 90. | 09. | 97. | 13. | 59. | 102. | 90. | 09. | 01. | 15. |
| 62. | 64. | 58. | 67. | 59. | 67. | 64. | 39. | 55. | 45. |
| 62 | 49 | 48 | 45 | 43 | 40 | 31 | 20 | 27 | 33 |
| 02. | | -0. | | | | 21. | | 27. | 55. |
| 31. | 50. | 21. | 40. | 54. | 30. | 35. | 32. | 37. | 21. |
| 30. | 29. | 37. | 46. | 38. | 35. | 28. | 28. | 31. | 32. |
| 20 | 22. | 24 | 20. | 20 | 20. | 20. | 20, | 21 | 22. |
| 32. | 32. | 54. | 28. | 20. | 20. | 55. | 35. | 21. | 23. |
| 29. | 26. | 31. | 29. | 27. | 23. | 22. | 30. | 21. | 19. |
| 28 | 26 | 33 | 26 | 24 | 24 | 24 | 21 | 30 | 24 |
| 20. | 20. | | 2 | 24. | 47. | 44. | 41. | J4 . | 24. |
| 25. | 23. | 24. | 23. | 27. | 22. | 43. | 19. | 20. | 21. |
| 31. | 34. | 31. | 27. | 33. | 27 . | 22 | 24. | 17. | 30 |
| 21. | 27. | 10 | 27. | 55. | 27. | 22. | 27. | 27.0 | 50. |
| 21. | 51. | 19. | 55. | 33. | 22. | 26. | 36. | 32. | 38. |
| 36. | 23. | 23. | 30. | 30. | 40. | 34 | 19. | 29. | 35 |
| 24 | 22. | 27 | | 57 |
ΣΕ | | A.C. | 10 | ~~· |
| 54. | J∠. | 41. | 54. | 50. | 20. | 40. | 40. | 40. | 23. |
| 44. | 31. | 35. | 44. | 31. | 33. | 37. | 53. | 46. | 39. |
| 28 | 40 | 10 | 20 | 30 | 26 | 30 | 31 | 35 | 26 |
| 20. | 40. | 42. | 49. | 55. | 20. | 20. | .10 | 50. | 20. |
| 28. | 38. | 49. | 45. | 35. | 21. | 32. | 41. | 30. | 40. |
| 32. | 33. | 33 | 37 | 34 | 27 | 27 | 30 | 2.4 | 29 |
| 26 | 43 | | 21. | 15 | 57 | 27. | 24 | 27. | |
| 20. | 43. | 43. | 50. | 40. | 30. | J∠. | 24. | 34. | 32. |
| 33. | 30. | 38. | 21. | 30. | 29. | 33. | 21. | 31. | 42. |
| | | | | | | | | | |

| 24 | 20 | 24 | 10 | 2.0 | 27 | 0.0 | 20 | 25 | 24 |
|------|-------------|-------------|-----------|-----------|-------------|-----------|--------------|------------|-----|
| 24. | 30. | 34. | 19. | 38. | 36. | 22. | 29. | 25. | 24. |
| 53. | 31. | 35. | 33. | 41. | 31. | 35. | 49. | 22. | 32. |
| 38. | 41. | 34. | 40. | 43. | 42. | 40. | 53. | 51. | 77. |
| 61. | 66. | 64. | 63. | 80. | 65. | 79. | 89. | 66. | 57. |
| 62 | 53 | 72 | 59 | 74 | 65 | 65 | 68 | 55 | 42 |
| 52. | 50 | 55 | 40 | 76 | 10 | 60 | 4.4 | 51 | 37 |
| 12. | 50. | 55. | 40. | 70. | 40. | 00. | 44. | 51. | 57. |
| 53. | 53. | 54. | 4/. | 44. | 52. | 31. | 54. | 59. | 47. |
| 39. | 33. | 28. | 33. | 27. | 34. | 39. | 26. | 33. | 34. |
| 26. | 48. | 21. | 39. | 37. | 23. | 34. | 42. | 3.0. | 34. |
| 35 | 25 | 33 | 23 | 26 | 33 | 33 | 36 | 33 | 42 |
| 22. | 20. | 33. | 23. | 20. | 20. | 20. | 20. | 22. | 14. |
| 20. | 29. | 54. | 21. | 23. | 20. | 39. | 21. | 51. | 30. |
| 25. | 29. | 32. | 31. | 34. | 35. | 18. | 33. | i/. | 26. |
| 23. | 16. | 26. | 28. | 21. | 30. | 34. | 20. | 24. | 30. |
| 28. | 24. | 28. | 25. | 20. | 24. | 21. | 24. | 27. | 33. |
| 31. | 26. | 20. | 24. | 25. | 36. | 22. | 21. | 26. | 33. |
| 47 | 31 | 30 | 24 | 31 | 28 | 37 | 29 | 16 | 26 |
| 47. | 21. | 30. | 24. | 21. | 20. | J7. | 22. | 20. | 20. |
| 32. | 20. | 34. | 39. | 28. | 21. | 45. | 33. | 38. | 21. |
| 39. | 47. | 29. | 39. | 48. | 45. | 32. | 38. | 43. | 47. |
| 42. | 35. | 47. | 61. | 42. | 43. | 50. | 33. | 36. | 38. |
| 48. | 61. | 49. | 58. | 53. | 51. | 43. | 58. | 47. | 54. |
| 39 | 42 | 32 | 48 | 47 | 25 | 32 | 37 | 34 | 35 |
| 36 | 20 | 22. | 36 | 36 | 42 | 22. | 36 | 24. | 22. |
| 50. | 30. | 27. | 50. | 30. | 43. | 20. | 20. | 20. | J7. |
| 35. | 36. | 44. | 26. | 39. | 29. | 34. | 36. | 26. | 43. |
| 38. | 48. | 38. | 43. | 33. | 41. | 28. | 41. | 34. | 34. |
| 40. | 52. | 38. | 66. | 57. | 59. | 71. | 86. | 57. | 72. |
| 64. | 78. | 68. | 65. | 69. | 87. | 79. | 78. | 88. | 77. |
| 99 | 81 | 72 | 77 | 68 | 67 | 75 | 64 | 66 | 72 |
| 57 | 40 | 72. | 75 | 40 | 50 | F0 | 65 | 27 | 22. |
| 57. | 49. | 12. | /5. | 40. | 50. | 50. | 00. | 57. | 57. |
| 53. | 51. | 47. | 67. | 51. | 40. | 29 | 42. | 36. | 56. |
| 43. | 45. | 47. | 35. | 47. | 47. | 39. | 30. | 32. | 31. |
| 50. | 37. | 41. | 34. | 34. | 35. | 26. | 36. | 40. | 25. |
| 33 | 37 | 32 | 59 | 40 | 34 | 36 | 36 | 28 | 50 |
| 31 | 30 | 47 | 37 | 20. | 20 | 45 | 40 | 30 | 44 |
| 51. | 30. | 47. | 27. | 23. | 20. | 4 | 40. | 50. | 44. |
| 55. | 39. | 42. | 33. | 46. | 30. | 31. | 30. | 30. | 37. |
| 40. | 31. | 44. | 49. | 26. | 19. | 37. | 20. | 48. | 30. |
| 30. | 31. | 21. | 36. | 40. | 23. | 29. | 30. | 27. | 29. |
| 22. | 31. | 33. | 32. | 22. | 33. | 33. | 29. | 26. | 22. |
| 34 | 37 | 32 | 22 | 46 | 21 | 30 | 35 | 31 | 4.4 |
| 27 | 20 | 12. | 11 | 40.
D1 | 40 | 20. | 10 | 15 | 20 |
| 57. | 30. | 42. | 41. | 51. | 42. | 35. | 40. | 45. | 50. |
| 30. | 25. | 49. | 31. | 33. | 39. | 39. | 37. | 41. | 40. |
| 44. | 24. | 28. | 38. | 36. | 36. | 39. | 29. | 27. | 43. |
| 18. | 34. | 46. | 41. | 32. | 36. | 33. | 41. | 36. | 31. |
| 44 | 45. | 48 | 56. | 40 | 34. | 49 | 45. | 47. | 50. |
| 42 | 56 | 51 | 36 | 62 | 41 | 43 | 47 | 40 | 55 |
| 32. | 24 | 21. | 50. | 41 | 41. | 4J.
51 | 70 | 42. | 41 |
| 54. | 54. | 42. | 52. | 41. | 52. | 51. | 12. | 43. | 41. |
| 42. | 36. | 38. | 44. | 49. | 39. | 36. | 29. | 27. | 19. |
| 39. | 38. | 44. | 23. | 37. | 22. | 32. | 35. | 33. | 48. |
| 18. | 32. | 22. | 33. | 40. | 41. | 25, | 22. | 43. | 33. |
| 21 | 42 | 3.0 | 32 | 39 | 32 | 29 | 34 | 24 | 33 |
| 30 | 40 | 26 | 34 | 21 | 33 | 24 | 43 | 25 | 40 |
| 20. | 40. | 20. | 24. | 477 | 55. | 24. | 43. | 23. | 40. |
| 33. | 36. | 53. | 36. | 47. | 38. | 38. | 32. | 47. | 46. |
| 62. | 44. | 67. | 49. | 77. | 59. | 61. | 63. | 72. | 66. |
| 81. | 87. | 67. | 73. | 82. | 69. | 79. | 78. | 89. | 70. |
| 76. | 91. | 68. | 89. | 82. | 64. | 71. | 72. | 79. | 71. |
| 67 | 61 | 55 | 69 | 61 | 54 | 72 | 55 | 57 | 54 |
| 65 | 52. | 50. | 50 | 601. | 50 | £1 | 56 | 60 | 50 |
| UJ. | | JU. | JU.
46 | 02.
r7 | 59. | VT. | . JU. | 09.
45 | |
| 52. | 58. | 51. | 46. | 5/. | 63. | 49. | 56. | 45. | 45. |
| 51. | 46. | 48. | 33. | 51. | 48. | 50. | 53. | 50. | 43. |
| 49. | 42. | 52. | 44. | 52. | 59. | 51. | 68. | 49. | 63. |
| 62. | 62. | 74. | 73. | 73. | 47. | 78. | 96. | 76. | 93. |
| 86 | 83 | 82 | 85 | 94 | 96 | 108 | 96 | 105 | 123 |
| 104 | 100 | 101 | 103 | 01 | 07 | 00. | 01 | 100.
01 | 200 |
| 104. | 100. | 121. | T03' | 24. | <i>51</i> . | 00.
74 | 04. | | 00. |
| 62. | 59. | 46. | 59. | 56. | 53. | /1. | ٥ <u>८</u> . | 11. | 46. |
| 49. | 25. | 36. | 51. | 37. | 29. | 46. | 41. | 30. | 38. |
| 49. | 31. | 35. | 47. | 33. | 35. | 34. | 37. | 29. | 30. |
| 24. | 36. | 30 | 28. | 28 | 46. | 59. | 38. | 42. | 49 |
| 36 | 51 | 21 | 20. | 52 | 24 | 25 | 10 | 27 | 27 |
| 20. | - FC
01 | 51.
J.T. | | 12. | 22. |
 | 939.
EE | 21. | 27. |
| 5/. | <u>41</u> . | 22. | 5/. | 41. | 39. | 3/. | 55. | 34. | 41. |
| 20 | 43 | 37 | 3.4 | 25. | 34 | 43 | 40 | 42 | 35 |

| 26. | 44. | 40. | 57. | 43. | 34. | 33. | 31. | 28. | 46. |
|---------|----------|------|-------------|------------|--------------|------|----------|-------|------------|
| 40 | 20 | 25 | | 17 | 2 | | 24 | 20 | |
| 40. | 32. | 35. | 5/. | 43. | .دد | 42. | 54. | 39. | 49. |
| 37. | 40. | 44 | 31. | 41. | 49. | 50. | 33. | 32. | 39. |
| 10 | 20. | 27 | 20 | 21 | 2.2. | 10 | 20. | 20 | 55. |
| 42. | 33. | 31. | 38. | 31. | 31. | 19. | 32. | 39. | 35. |
| 37 | 35 | 30 | 3.0 | 40 | 28 | 28 | 40 | 30 | 38 |
| 57. | 55. | 52. | 50. | | 20. | 50. | 40. | | 50. |
| 25. | 30. | 39. | 47. | 33. | 41. | 32. | 51. | 48. | 32. |
| 20 | 16 | CC | 40 | <i>t</i> A | 1 5 | 50 | 5.2 | 66 | ۲ 0 |
| 38. | 40. | . ככ | 40. | 44. | 40. | . UC | 22. | 00. | ъv. |
| 45. | 53. | 34 | 36. | 59. | 62. | 53. | 51. | 50. | 60. |
| | 501 | | | 22. | 50. | 50. | 22. | 50, | |
| 57. | 57. | 66. | 66. | /5. | 50. | 50. | 35. | 59. | 65. |
| 4.0 | 47 | 15 | 61 | 40 | 43 | 25 | 36 | 51 | 4.6 |
| 40. | 47. | чJ. | 01. | 40. | 40. | 45. | 50. | 51. | 40. |
| 41. | 52. | 53. | 39. | 33. | 36. | 38. | 38. | 43. | 46. |
| 10 | 27 | 20 | 40 | 20 | 25 | 36 | 20 | 10 | 20 |
| 13. | 57. | 39. | 42. | 52. | 55. | ∠0. | 50. | 40. | 29. |
| 28. | 22. | 34. | 30. | 27. | 25. | 35. | 45. | 17. | 38. |
| 201 | 22, | 0.0 | 27 | | | | 20 | 2.1.5 | 20. |
| 22. | 35. | 26. | 21. | 41. | 28. | 40. | 38. | 23. | 28. |
| 30 | 16 | 30 | 22 | 30 | 20 | 20 | 31 | 27 | 27 |
| 52. | 40. | 52. | 22. | 50. | 20. | 49. | 21. | 27. | 21. |
| 32. | 17. | 21. | 24. | 48. | 34. | 33. | 24. | 30. | 27. |
| 22 | 20 | 20 | 24 | 2.2 | | 17 | 30 | 2.1 | 24 |
| 32. | 34. | 30. | 24. | 22. | <i>.</i> . | 21. | 29. | 21. | 54. |
| 24 | 30. | 13. | 39. | 25 | 23 | 21. | 26. | 30. | 28. |
| 0.1 | 05 | 20. | | 201 | 57. | 00 | 40 | 0.0. | 20. |
| 24. | 25. | 28. | 16. | 28. | 21. | 29. | 15. | 24. | 33. |
| 35 | 31 | 24 | 3.8 | 22 | 16 | 25 | 32 | 26 | 23 |
| 55. | 51. | 27. | 50. | 22. | 10. | 22. | 52. | 20. | 25. |
| 30. | 38. | 27. | 30. | 40. | 54. | 41. | 34. | 37. | 39. |
| 6.2 | ΕA | 40 | 20 | 20 | 63 | 27 | 40 | 20 | 20 |
| 52. | 50. | 40. | 20. | 50. | чJ. | ٦/٠ | 40. | 20. | 50. |
| 40. | 55. | 36. | 37. | 38. | 42. | 32. | 32. | 46. | 32. |
| 24 | | | 2011 | 45 | | 22. | 01 | | 22. |
| 31. | 41. | 33. | 32. | 15. | 34. | 39. | 21. | 33. | 38. |
| 11 | 22 | 37 | 27 | 20 | 40 | 30 | 28 | 25 | 30 |
| 44. | 44. | 57. | 21. | 20. | 40. | J2. | 20. | 2 | 52. |
| 26. | 13. | 28. | 25. | 22. | 37. | 25. | 30. | 46. | 29. |
| 22 | 77 | 20 | 24 | 21 | 25 | 15 | 10 | 23 | 20 |
| 22. | 41. | 20. | 24. | 21. | 25. | 25. | 20. | 32. | 32. |
| 29. | 33. | 34. | 30. | 27. | 24. | 29. | 17. | 34. | 25. |
| 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 0.0 | 01 |
| 30. | 28. | 26. | <u>۷</u> ۵. | 20. | 28. | 38. | 29. | Z3. | 21. |
| 17 | 31 | 28 | 41 | 26 | 26 | 45 | 28 | 25 | 23 |
| | 51. | 20. | | 20. | 20. | 12. | 20. | 22. | 25. |
| 22 | 32. | 1/. | 38. | 34. | 32. | 31. | 25. | 21. | 35. |
| 34 | 31 | 17 | 34 | 33 | 28 | 30 | 23 | 21 | 26 |
| 74. | 11. | 11. | 54. | 55. | 20. | 50. | 45. | 51. | 20. |
| 17. | 33. | 29. | 31. | 24. | 30. | 29. | 21. | 22. | 42. |
| 17 | 30 | 27 | 26 | 22 | 23 | 36 | 27 | 25 | 26 |
| 17. | 59. | 57. | 20. | 22. | 23. | 50. | 27. | 20. | 20. |
| 21. | 37. | 30. | 34. | 42. | 39. | 32. | 18. | 43. | 19. |
| 20 | 20 | 20 | 10 | 45 | 20 | 20 | 25 | 20 | 20 |
| 30. | JZ. | ZD. | 10. | 40. | 30. | 30. | ZD. | 26. | 30. |
| 48 | 25 | 45 | 34 | 28 | 40 | 36 | 35 | 33 | 31 |
| 40. | 25. | | 22. | 20. | 10. | 50. | 55. | | 51. |
| 45. | 26. | 27. | 32. | 32. | 36. | 20. | 36. | 40. | 33. |
| 27 | 35 | 22 | 20 | 16 | 20 | 21 | 26 | 20 | 31 |
| 57. | 55. | 22. | JC. | 40. | 29. | 51. | 20. | 20. | 51. |
| 34. | 32. | 43. | 43. | 31. | 25. | 26. | 42. | 35. | 40. |
| 17 | 36 | 22 | 20 | 11 | 40 | 20 | 41 | 24 | 26 |
| 47. | 20. | 55. | 20. | 41. | 42. | 50. | 41. | 54. | 20. |
| 44. | 48. | 28. | 31. | 26. | 43. | 36. | 31. | 35. | 27. |
| 20 | 20 | 25 | 5. | 20 | 4 1 | 27 | 22 | 25 | 20 |
| 38. | 30. | 35. | 20. | 32. | 41. | 37. | 23. | 35. | 38. |
| 40. | 28. | 32. | 26. | 32. | 35. | 28. | 27. | 25. | 30. |
| 201 | 20. | 07 | 0.5 | 22. | 40 | 10 | 2. | 00 | 07 |
| 31. | 39. | 21. | 25. | 33. | 42. | 18. | 25. | 28. | 27. |
| 30 | 37 | 29 | 30 | 30 | 29 | 31 | 22 | 26 | 40 |
| 50. | 57. | 22. | 50. | 50. | 25. | 51. | 22. | 20. | -10. |
| 25. | 25. | 21. | 36. | 36. | 40. | 31. | 28. | 29. | 34. |
| 39 | 37 | 33 | 22 | 23 | 29 | 26 | 36 | 24 | 37 |
| | | | 22. | 20. | | 20. | | 40 | 5. |
| 28. | 19. | 35. | 33. | 33. | 19. | 30. | 33. | 18. | 35. |
| 26 | 25 | 27 | 21 | 10 | 29 | 37 | 20 | ٦1 | 22 |
| 20. | 2.2. | 51. | 21. | ± | 25. | 54. | | 54. | 44. |
| 25. | 41. | 28. | 17. | 45. | 19. | 41. | 43. | 45. | 32. |
| 21 | 40 | 36 | 28 | 23 | 20 | 22 | 37 | 40 | 31 |
| 51. | 44. | 50. | 20. | 23. | 20. | 44. | 57. | 40. | 51. |
| 53. | 32. | 30. | 30. | 46. | 40. | 41. | 48. | 26. | 28. |
| 10 | 45 | 20 | 20 | 25 | E 1 | 16 | 37 | 20 | 20 |
| 10. | 40. | 20. | 59. | 55. | 51. | 40. | 57. | 32. | 20. |
| 37. | 33. | 25. | 25. | 35. | 34. | 38. | 41. | 44. | 32 - |
| 41 | 40 | 10 | 40 | 40 | 20 | 24 | 40 | 24 | 22. |
| 41. | 42. | 40. | 45. | 40. | 38. | 54. | 48. | 34. | 31. |
| 47 | 43 | 45 | 52 | 52 | 48 | 40 | 54 | 50 | 49 |
| <u></u> | | 10 | | 52. | | 10. | 51. | | |
| 31. | 34. | 48. | 61. | 59. | ьО. | 45. | /4. | 47. | 46. |
| 65 | 66 | 56 | 57 | 70 | 70 | 63 | 72 | 60 | ຊາ |
| | 00. | . o. | J/. | 17. | <i>i</i> U . | 0.0. | 13. | 09. | 02. |
| 66. | 92. | 83. | 74. | 63. | 97. | 108. | 89. | 75. | 105. |
| 04 | 101 | 115 | 117 | 00 | 100 | 120 | 110 | 110 | 120 |
| 20. | 101. | TT2. | 11/ . | 00. | 120. | 122. | 140. | 142. | 132. |
| 124. | 131. | 168. | 141. | 141 | 117. | 142 | 142. | 121. | 122 |
| 120 | 140 | 100 | 114 | 100 | 105 | 100 | 105 | ~~~. | |
| ı∠ơ. | 110. | 102. | 114. | 123. | TAP. | 126. | 102. | 99. | 84. |
| 71. | 84 | 104 | 88. | 79. | 97 | 69 | 89 | 81 | 77 |
| | <u> </u> | ~~~ | 47 | | ~··· | ~~· | <u> </u> | | |
| 12. | 63. | 86. | 4/. | 69. | 81. | 53. | 67. | 47. | 69. |
| 72 | 53 | 53 | 37 | 61 | 67 | 46 | 55 | 50 | 53 |
| | | | | | | | | | |
| 42. | 45. | 46. | 43. | 44. | 48. | 40. | 63. | 41. | 40. |
| 56 | 38 | 46 | 54 | 49 | 25 | 45 | 37 | 47 | 37 |
| 50. | 50. | | 57. | | ، د ب | | 57. | 11. | |
| N.1 | 58 | 45 | 52 | 43 | 44 | 47 | 48 | 39 | 48 |

| 36. | 43. | 43. | 37. | 47. | 53. | 50. | 35. | 49. | 47. |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|------|-----------|
| 48. | 57. | 56. | 48. | 57. | 46. | 46. | 42. | 42. | 48. |
| 45. | 55. | 28. | 38. | 55. | 46. | 55. | 50. | 40. | 34. |
| 48. | 42. | 46. | 40. | 62. | 45. | 34. | 39. | 41. | 47. |
| 36. | 41. | 31. | 38. | 45. | 39. | 49. | 33. | 37. | 40. |
| 51. | 34. | 32. | 39. | 33. | 36. | 33. | 42. | 43. | 37. |
| 27. | 34. | 40. | 41. | 42. | 44. | 28. | 38. | 30. | 34. |
| 30. | 38. | 47. | 40. | 40. | 30. | 34. | 29. | 62. | 41. |
| 41. | 28. | 36. | 29. | 30. | 54. | 34. | 40. | 36. | 36. |
| 30. | 30. | 40. | 35. | 38. | 42. | 39. | 30. | 36. | 34. |
| 27. | 27. | 29. | 29. | 32. | 39. | 34. | 42. | 35. | 36. |
| 43. | 40. | 39. | 39. | 38. | 28. | 26. | 35. | 34. | 20. |
| 37. | 34. | 26. | 32. | 25. | 40. | 37. | 28. | 37. | 29. |
| 41. | 29. | 42. | 44. | 36. | 38. | 32. | 43. | 46. | 46. |
| 28. | 60. | 42. | 60. | 50. | 32. | 49. | 48. | 43. | 45. |
| 55. | 61. | 65. | 54. | 68. | 65. | 62. | 63. | 74. | 74. |
| 76. | 87. | 62. | 82. | 86. | 84. | 103. | 94. | 98. | 107. |
| 99. | 59. | 102. | 93. | 107. | 109. | 102. | 116. | 117. | 76. |
| 100. | 98. | 79. | 78. | 81. | 104. | 93. | 88. | 61. | 53. |
| 70. | 64. | 56. | 67. | 68. | 78. | 55. | 53. | 67. | 58. |
| 57. | 65. | 79. | 78. | 53. | 55. | 48. | 63. | 54. | 67. |
| 68. | 65. | 79. | 57. | 50. | /5. | 61. | 52. | 54. | 53. |
| 49. | 70. | 39. | 59. | 54. | 51. | 56. | 56. | 67. | 48. |
| 54. | 46. | 48. | 46. | 35. | 38. | 45. | 43. | 43. | 46. |
| 43. | 43. | 35. | 31. | 38. | 51. | 36. | 49. | 46. | 39. |
| 38. | 53.
DE | 42. | 38. | 4/. | 35. | 31. | 51. | 43. | 39. |
| 24. | 35. | 42. | 41. | 37. | 42. | 48. | 37. | 46. | 42. |
| 21. | 41. | 40. | 50. | 44. | 47.
E1 | 21. | 54. | 42. | 42. |
| 10. | 33. | J∠.
10 | 30.
2E | 47. | 51.
41 | 42 | 40. | 30. | JO.
40 |
| 49. | 49. | 10. | 55. | 40. | 41. | 4.5. | 30. | 40. | 40. |
| 30. | 37. | 29. | 50. | 27. | 30. | 30. | 42 | 47. | 30 |
| 50.
17 | J4.
40 | 53 | 44. | 2J.
16 | 32. | JI.
42 | 42. | 40. | 36 |
| 47. | 40.
57 | 45 | 45. | 37 | 34 | 42.
50 | 41. | 40. | 30. |
| 55.
60 | 41 | 27 | 42. | 37 | 40 | 58 | 40. | 29 | 30. |
| 51 | 47 | 33 | 40 | 32 | 40. | 31 | 40. | 41 | 46 |
| 57 | 28 | 46 | 40. | 47 | 33 | 46 | 46 | 41 | 35 |
| 48 | 37 | 35 | 33 | 43 | 30 | 42 | 41 | 40. | 47. |
| 31 | 39 | 47 | 39. | 35 | 48. | 40. | 31 | 48 | 49. |
| 31. | 47. | 41. | 30. | 58. | 36. | 38. | 36. | 49. | 41. |
| 34 | 42. | 39. | 40. | 29. | 36. | 35. | 44. | 55. | 29. |
| 20. | 26. | 31. | 37. | 31. | 39. | 45. | 40. | 35. | 35. |
| 39. | 29. | 44. | 34. | 32. | 50. | 28. | 35. | 41. | 43. |
| 37. | 34. | 38. | 34. | 35. | 44. | 49. | 41. | 54. | 40. |
| 39. | 38. | 34. | 26. | 42 | 52. | 51. | 53. | 55. | 49. |
| 29. | 35. | 43. | 46. | 54. | 35. | 44. | 39. | 44. | 40. |
| 36. | 51. | 44. | 48. | 34. | 26. | 40. | 31. | 33. | 47. |
| 37. | 32. | 36. | 36. | 51. | 51. | 68. | 42. | 43. | 35. |
| 63. | 52. | 62. | 46. | 56. | 43. | 47. | 59. | 43. | 50. |
| 42. | 46. | 57. | 55. | 50. | 65. | 58. | 59. | 39. | 58. |
| 50. | 45. | 62. | 71. | 44. | 51. | 67. | 52. | 48. | 70. |
| 51. | 47. | 37. | 70. | 46. | 50. | 46. | 47. | 36. | 44. |
| 51. | | | | | | | | | |

 \mathbf{Y}_{i}

Appendix P-25: step-intensity data of chabazite

| 10.0000 | .020 12 | 20.0000 | C | habazite | with Al2 | 203 impui | rity | | |
|---------|---------|------------|-------|----------|--------------|-----------|----------|------|------|
| 165. | 182. | 183. | 190. | 164. | 184. | 177. | 141. | 166. | 153. |
| 152. | 161. | 168. | 178. | 182. | 175. | 160. | 159. | 144. | 157. |
| 170. | 156. | 168. | 167. | 187. | 153. | 172. | 138. | 158. | 152. |
| 154. | 159. | 166. | 154. | 171. | 135. | 175. | 169. | 161. | 169. |
| 114. | 130. | 141. | 166. | 151. | 162. | 144. | 187. | 130. | 177. |
| 195. | 191. | 193. | 228. | 214. | 285. | 266. | 211. | 208. | 177. |
| 151. | 144. | 174. | 145. | 152. | 143. | 144. | 147. | 152. | 162. |
| 171. | 140. | 167. | 143. | 163. | 146. | 144. | 157. | 165. | 126. |
| 135. | 138. | 159. | 120. | 140. | 163. | 147. | 131. | 152. | 161. |
| 132. | 152. | 143. | 147. | 155. | 160. | 160. | 134. | 134. | 149. |
| 132. | 141. | 120. | 131. | 106. | 139. | 123. | 143. | 155. | 154. |
| 143. | 146. | 124. | 138. | 119. | 119. | 156. | 131. | 153. | 136. |
| 134. | 169. | 144. | 157. | 140. | 150. | 159. | 163. | 146. | 148. |
| 168. | 184. | 179. | 174. | 204. | 205. | 271. | 305. | 365. | 455. |
| 539 | 492 | 373 | 273 | 218 | 183. | 203. | 160. | 178. | 164. |
| 153 | 172 | 127 | 138. | 134. | 156. | 162. | 146. | 108. | 135. |
| 156 | 151 | 177 | 169 | 175 | 130. | 139 | 133 | 180 | 143 |
| 128 | 157 | 178 | 125 | 152 | 142 | 147 | 182 | 137 | 159 |
| 120. | 166 | 145 | 145 | 160 | 166 | 160 | 102. | 197. | 188 |
| 147. | 100. | 747. | 747. | 202. | 204 | 243 | 257 | 224 | 170 |
| 210. | 104 | 233. | 203. | 200. | 167 | 100 | 160 | 162 | 105 |
| 193. | 104. | 107 | 140. | 169. | 107. | 160. | 109. | 103. | 100. |
| 147. | 153. | 18/. | 146. | 101. | 130. | 103. | 137. | 137. | 111. |
| 1/5. | 124. | 131. | 126. | 124. | 114. | 122. | 138. | 123. | 140. |
| 150. | 137. | 146. | 119. | 127. | 127. | 139. | 114. | 124. | 129. |
| 146. | 168. | 143. | 144. | 132. | 124. | 118. | 139. | 105. | 126. |
| 110. | 133. | 127. | 129. | 113. | 117. | 104. | 132 | 105. | 128. |
| 123. | 112. | 122. | 124. | 110. | 112. | 137. | 113. | 128. | 147. |
| 139. | 126. | 120. | 102. | 120. | 141. | 101. | 149. | 121. | 140. |
| 127. | 132. | 147. | 132. | 126. | 116. | 148. | 178. | 158. | 173. |
| 219. | 281. | 262. | 388. | 536. | 631. | 795. | 868. | 747. | 549. |
| 325. | 226. | 178. | 146. | 144. | 117. | 125. | 124. | 123. | 122. |
| 130. | 135. | 136. | 132. | 125. | 120. | 118. | 122. | 139. | 116. |
| 122. | 133. | 120. | 114. | 114. | 115. | 115. | 127. | 137. | 124. |
| 146. | 122. | 122. | 115. | 114. | 148. | 130. | 143. | 152. | 146. |
| 168. | 148. | 156. | 125. | 146. | 136. | 118. | 120. | 120. | 128. |
| 151. | 130. | 137. | 140. | 120. | 111. | 180. | 121. | 159. | 148. |
| 156. | 143. | 163. | 163. | 215. | 264. | 204. | 190. | 155. | 144. |
| 182. | 163. | 175. | 167. | 158. | 147. | 161. | 177. | 184. | 198. |
| 281. | 308. | 406. | 596. | 826. | 952. | 842. | 489. | 257. | 173. |
| 135. | 113. | 113. | 108. | 142. | 95. | 119. | 131. | 108. | 116. |
| 96. | 111. | 97. | 117. | 119. | 127. | 90. | 120. | 88. | 136. |
| 93. | 139. | 102. | 91. | 119. | 141. | 129. | 89. | 114. | 137. |
| 118. | 119. | 111. | 131. | 112. | 101. | 131. | 112. | 114. | 110. |
| 112 | 116 | 112 | 111. | 122. | 124. | 103. | 106. | 115. | 112. |
| 117 | 117 | 146 | 130 | 124 | 168 | 180 | 215 | 216 | 245 |
| 230 | 212 | 174 | 149 | 192 | 145 | 127 | 128 | 118 | 115 |
| 101 | 111 | 105 | 110 | 85 | 98 | 119 | 85 | 100 | 104 |
| 113 | 101 | 88 | 110. | 114 | 90. | 88 | 91
91 | 115 | 104. |
| 110 | 001. | 00. | 07 | 96 | 9 0 . | 86 | 110 | 84 | Q1 |
| 110. | 100 | 93. | 106 | 107 | 100. | 00. | 101 | 104 | 107 |
| 100. | 100. | 99.
100 | 106. | 107. | 100. | 94. | 101. | 104. | 107. |
| 69. | 87. | 100. | 96. | 84. | 122. | 100. | 109. | 100. | 94. |
| 151. | 189. | 153. | 129. | 188. | 155. | 196. | 213. | 271. | 290. |
| 399. | 564. | 171. | 1054. | 1644. | 2276. | 2564. | 21/5. | 1400 | 204. |
| 278. | 219. | 178. | 142. | 113. | 107. | 123. | 138. | 101. | 185. |
| 109. | 111. | 133. | 130 | 117. | 114. | 119. | 109. | 114. | 132. |
| 109. | 96. | 116. | 110. | 123. | 123. | 111. | 135. | 112. | 117. |
| 107. | 129. | 113. | 110. | 85. | 97. | 103. | 87. | 104. | 100. |
| 105. | 91. | 101. | 95. | 119. | 95. | 102. | 80. | 91. | 84. |
| 87. | 91. | 94. | 83. | 99. | 104. | 97. | 63. | 119. | 119. |
| 80. | 103. | 107. | 90. | 134. | 131. | 126. | 137. | 136. | 105. |
| 86. | 104. | 102. | 122. | 96. | 98. | 114. | 87. | 135. | 120. |
| 157. | 167. | 193. | 245. | 308. | 332. | 327. | 389. | 293. | 200. |
| 168. | 194. | 165. | 131. | 130. | 117. | 110. | 105. | 129. | 110. |
| 130. | 124. | 120. | 121. | 116. | 112. | 135. | 135. | 142. | 131. |
| 124. | 177. | 201. | 169. | 237. | 317. | 369. | 484. | 594. | 500. |

| 430. | 306. | 172. | 132. | 119. | 112. | 100. | 100. | 99. | 90. |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|------------|--------------|
| 89. | 103. | 118. | 72. | 104. | 90. | 65. | 84. | 81. | 89. |
| 85.
98 | 79.
72 | 77. | 77.
65 | 75. | 102. | 105. | /1.
99 | 74.
91 | 87.
69 |
| 83. | 89. | 98. | 95. | 72. | 103. | 86. | 101. | 128. | 94. |
| 88. | 79. | 84. | 91. | 85. | 69. | 84. | 72. | 69. | 65. |
| 72. | 93. | 92. | 80. | 84. | 63. | 79. | 96. | 98. | 74. |
| 95.
82 | 96.
117 | 95.
87 | 89.
118 | 85. | 85.
179 | /3.
183 | 81.
233 | 92. | 438 |
| 549. | 790. | 931. | 926. | 705. | 497. | 326. | 233.
221. | 156. | 430.
140. |
| 112. | 86. | 116. | 116. | 106. | 87. | 106. | 146. | 105. | 135. |
| 136. | 136. | 152. | 141. | 168. | 155. | 170. | 167. | 240. | 233. |
| 276. | 292. | 348.
327 | 396.
272 | 430.
310 | 454.
2/3 | 44U.
267 | 498. | 470. | 496. |
| 521. | 541. | 496. | 340. | 265. | 243. | 207. | 176. | 195. | 165. |
| 119. | 115. | 112. | 110. | 130. | 75. | 113. | 141. | 168. | 135. |
| 121. | 97. | 116. | 98. | 77. | 83. | 75. | 81. | 85. | 86. |
| /5.
101 | 80.
108 | 105 | /3.
80 | 1U1.
89 | 96.
99 | 106. | 104. | 82. | 96.
122 |
| 101. | 91. | 99. | 97. | 84. | 80. | 100. | 98. | 89. | 83. |
| 76. | 80. | 74. | 77. | 82. | 76. | 77. | 96. | 99. | 90. |
| 79. | 81. | 65. | 79. | 69. | 79. | 78. | 115. | 67. | 83. |
| 84.
138 | /8.
90 | 91.
101 | 127. | 127. | 156. | 188. | 176. | 174. | 171. |
| 76. | 92. | 92. | 90. | 86. | 91. | 101. | 119. | 133. | 151. |
| 229. | 248. | 349. | 348. | 300. | 249. | 167. | 153. | 135. | 85. |
| 91. | 64. | 80. | 103. | 126. | 115. | 118.` | 85. | 62. | 85. |
| 82. | 96.
106 | 88.
70 | 86.
71 | 87. | 117. | 100. | 107. | 123.
97 | 121. |
| 57. | 62. | 70. | 68. | 71. | 88. | 62. | 97. | 111. | 119. |
| 98. | 98. | 91. | 75. | 74. | 76. | 63. | 69. | 84. | 73. |
| 70. | 73. | 77. | 63. | 93. | 100. | 81. | 78. | 69. | 92. |
| 83. | 80.
91 | 78.
91 | 70.
79 | 76. | 68.
71 | 77. | 93. | 75. | 64. |
| 104. | 101. | 80. | 70. | 99. | 100. | 105. | 125. | 163. | 124. |
| 156. | 164. | 201. | 137. | 194. | 155. | 134. | 162. | 152. | 219. |
| 228. | 151. | 133. | 109. | 117. | 133. | 119. | 164. | 207. | 256. |
| 349. | 535. | 917. | 1269. | 1945. | 2191. | 1922. | 1165. | 676. | 348. |
| 140. | 147. | 166. | 202. | 259. | 369. | 596. | 278. | 1016. | 841. |
| 697. | 494. | 321. | 169. | 123. | 87. | 95. | 75. | 84. | 60. |
| 67. | 72. | 75. | 92. | 74. | 74. | 71. | 82. | 80. | 79. |
| 83. | 104. | 140. | 140. | 173. | 129. | 142. | 117. | 88. | 86.
156 |
| 104. | 146. | 164. | 139. | 130. | 155. | 104. | 125. | 94.
83. | 96. |
| 105. | 81. | 84. | 77. | 60. | 68. | 72. | 94. | 93. | 89. |
| 126. | 163. | 129. | 144. | 119. | 87. | 73. | 86. | 47. | 76. |
| 45.
83 | 68.
75 | /6.
65 | /6.
96 | 81. | 67. | 77. | 64.
50 | 79. | 85. |
| 99. | 111. | 99. | 74. | 72. | 64. | 56. | 74. | 74. | 69. |
| 77. | 81. | 77. | 67. | 73. | 67. | 66. | 86. | 94. | 100. |
| 128. | 144. | 104. | 100. | 104. | 95. | 128. | 136. | 154. | 214. |
| 226. | 193. | 160.
50 | 99.
62 | 92.
77 | 91.
66 | 70. | 74. | 90. | 66.
70 |
| 58. | 67. | 71. | 65. | 78. | 64. | 76. | 68. | 63. | 61. |
| 72. | 85. | 59. | 78. | 72. | 75. | 68. | 73. | 74. | 76. |
| 64. | 89. | 108. | 111. | 172. | 199. | 256. | 399. | 485. | 613. |
| 564.
121 | 384.
101 | 239. | 163. | 138. | 110. | 101. | 105. | 95.
175 | 102. |
| 213. | 246. | 275. | 256. | 274. | 258. | 309. | 319. | 320. | 378. |
| 425. | 449. | 471. | 552. | 682. | 655. | 616. | 612. | 553. | 445. |
| 397. | 360. | 284. | 253. | 277. | 236. | 208. | 194. | 175. | 145. |
| 150.
88 | 110.
89 | 134.
an | 132. | 117. | 140. | 125. | 134. | 116. | 89.
120 |
| 159. | 174. | 277. | 341. | 774. | ,
753. | 485. | 348. | 313. | 188. |
| 140. | 118. | 114. | 106. | 82. | 67. | 67. | 64. | 59. | 84. |
| 51. | 43. | 55. | 67. | 61. | 62. | 90. | 83. | 89. | 67. |
| 70.
67 | 88.
73 | 61.
79 | /6.
65 | 12.
62 | 62.
85 | 85.
63 | 61.
58 | 76. | 82. |
| U / . | | 12. | U.J. | 07 | 0 | (J.) . | 10. | 14. | ().). |

| 101. | 70. | 78. | 78. | 91. | 84. | 77. | 76. | 85. | 92. |
|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|
| 72. | 86. | 71. | 94. | 82. | 67. | 84. | 74. | 77. | 97. |
| 100. | 83.
90 | 63.
115 | 52.
101 | 80.
118 | 13. | 66.
1/1 | 85.
155 | 99.
177 | 150 |
| 178. | 215. | 242. | 266. | 218. | 285. | 329. | 330. | 310. | 264. |
| 240. | 235. | 178. | 180. | 175. | 167. | 148. | 127. | 115. | 141. |
| 121. | 129. | 108. | 103. | 123. | 92. | 114. | 105. | 97. | 122. |
| 108. | 106. | 126. | 143. | 119. | 115.
61 | 106. | 82. | 84.
50 | 66.
50 |
| 57. | 50. | 61. | 69. | 67. | 55. | 66. | 70. | 66. | 64. |
| 68. | 77. | 48. | 58. | 90. | 90. | 104. | 110. | 91. | 91. |
| 100. | 93. | 74. | 97. | 73. | 126. | 148. | 147. | 174. | 203. |
| 166. | 92.
67 | 103. | 78. | 55.
65 | 62.
54 | 49.
70 | 61.
03 | 51. | 71. |
| 93. | 107. | 72. | 114. | 71. | 67. | 55. | 52. | 48. | 79. |
| 55. | 66. | 50. | 53. | 50. | 64. | 48. | 68. | 63. | 48. |
| 59. | 56. | 56. | 45. | 53. | 49. | 59. | 51. | 49. | 70. |
| 63.
82 | 64.
70 | 67.
76 | 53.
61 | 59.
54 | 56.
52 | 52.
52 | 73. | 92.
72 | 67. |
| 60. | 54. | 57. | 52. | 65. | 61. | 39. | 93. | 63. | 64. |
| 66. | 67. | 58. | 59. | 60. | 56. | 76. | 56. | 67. | 55. |
| 51. | 43. | 64. | 46. | 52. | 49. | 48. | 46. | 44. | 41. |
| 52. | 47. | 45. | 48. | 62. | 50. | 62. | 45. | 66. | 64. |
| 51.
60 | 67.
66 | 60.
67 | 61.
68 | 58.
70 | 56.
73 | 61.
64 | 53. | 66.
Q1 | 41.
93 |
| 79. | 81. | 61. | 74. | 61. | 67. | 50. | 67. | 68. | 73. |
| 79. | 74. | 54. | 60. | 62. | 64. | 84. | 56. | 76. | 64. |
| 57. | 78. | 75. | 83. | 70. | 71. | 82. | 60. | 75. | 68. |
| 119 | 83. | 68.
100 | 94.
07 | 108. | 124. | 122. | 124. | 133. | 113. |
| 118. | 147. | 124. | 144. | 144. | 140. | 172. | 171. | 175. | 183. |
| 181. | 231. | 218. | 272. | 272. | 320. | 275. | 372. | 411. | 451. |
| 466. | 560. | 663. | 731. | 786. | 780. | 765. | 688. | 639. | 556. |
| 484. | 401. | 379. | 300. | 284. | 236. | 246. | 214. | 197. | 178. |
| 130. | 97. | 129. | 114. | 125. | 115. | 147. | 129. | 97. | 125. |
| 89. | 58. | 75. | 62. | 70. | 63. | 52. | 60. | 52. | 61. |
| 59. | 56. | 69. | 66. | 52. | 53. | 71. | 72. | 77. | 59. |
| 62.
50 | 70. | 55.
42 | 60.
57 | 69.
77 | 60.
70 | 61. | 90. | 64. | 54. |
| 82. | 89. | 43. | 80. | 68. | 73. | 69.
56. | 75. | 91. | 69. |
| 65. | 74. | 88. | 70. | 69. | 57. | 60. | 47. | 49. | 53. |
| 61. | 60. | 50. | 40. | 47. | 45. | 44. | 46. | 34. | 53. |
| 54.
60 | 50. | 22. | 55.
40 | 44.
56 | 54. | 51. | 52. | 50. | 49. |
| 64. | 64. | 57. | 49.
60. | 56. | 64. | 53. | 63. | 40. | 52. |
| 55. | 59. | 61. | 52. | 64. | 51. | 49. | 64. | 74. | 73. |
| 51. | 47. | 62. | 78. | 66. | 64. | 58. | 57. | 63. | 55. |
| 45.
67 | 39.
50 | 50.
66 | 49.
61 | 47. | 43. | 55.
55 | 54.
47 | 40. | 54. |
| 59. | 81. | 77. | 67. | 64. | 92. | 55.
65. | 47.72. | 49. | 52.
60. |
| 50. | 36. | 32. | 41. | 75. | 56. | 59. | 53. | 42. | 47. |
| 64. | 44. | 62. | 36. | 47. | 43. | 52. | 49. | 38. | 40. |
| 42. | 64.
10 | 66.
50 | 108. | 90.
52 | 99. | 114. | 92. | 77. | 56. |
| 38. | 40. | 52.
53. | 56. | 53.
47. | 48. | 31. | 46. | 41.53 | 41.
43 |
| 35. | 49. | 49. | 43. | 45. | 43. | 39. | 44. | 45. | 57. |
| 45. | 35. | 26. | 52. | 51. | 42. | 35. | 47. | 41. | 41. |
| 38. | 51. | 44. | 37. | 36. | 59. | 43. | 52. | 51. | 80. |
| 87.
60 | 90.
47 | 109.
53 | 162.
39 | 189. | 207. | 167.
58 | 119. | 110.
52 | 87. |
| 50. | 67. | 64. | 88. | 4J.
81. | 107. | 112. | 131. | 99. | 80. |
| 71. | 41. | 49. | 53. | 46. | 50. | 42. | 41. | 46. | 38. |
| 45. | 37. | 29. | 45. | 44. | 66. | 58. | 40. | 37. | 35. |
| 62.
12 | 57.
50 | 43.
50 | 37. | 34.
15 | 40. | 39. | 52. | 37. | 41. |
| 42. | 53. | 80. | 47.
54. | 43. | ∠∪.
48. | 48. | 40.
41. | 39.
50. | 41. |
| 46. | 51. | 50. | 45. | 56. | 56. | 46. | 76. | 96. | 122. |
| 129. | 157. | 183. | 240. | 242. | 284. | 276. | 303. | 332. | 273. |

| 231. | 196. | 152. | 119. | 94. | 79. | 75. | 64. | 56. | 49. |
|----------|------|------|-------|-------|------|-----------|------------|-----------|-------|
| 34 | 36 | 48 | 41 | 67 | 69 | 13 | 51 | 43 | 65 |
| <u> </u> | 21 | 10. | | 70 | 02. | | <u> </u> | | |
| 68. | /1. | 51. | 64. | 18. | 93. | 55. | 69. | 69. | 67. |
| 48. | 44. | 66. | 45. | 58. | 63. | 49. | 55. | 51. | 37. |
| 35 | 17 | 63 | 71 | 57 | 0.2 | 0.4 | 69 | ດ້າ | 0 / |
| JJ. | 47. | 05. | 11. | 57. | 92. | 94. | 00. | 52. | 04. |
| 12/. | 11/. | 83. | 100. | 65. | 82. | 72. | 68. | 67. | 72. |
| 71. | 61. | 52. | 66. | 66. | 60. | 68. | 67. | 98. | 82. |
| 0 / | 7 4 | 70 | 66 | 00 | 0.5 | 105 | 00 | 00 | 100 |
| 04. | /4. | 12. | 00. | 50. | | 101. | | | 100. |
| 108. | 97. | 114. | 151. | 115. | 148. | 146. | 151. | 191. | 194. |
| 221. | 211. | 222. | 236. | 234. | 248. | 258. | 241. | 235. | 209. |
| 100 | 102 | 15/ | 1 5 2 | 1 / 0 | 110 | 100 | 160 | 156 | 140 |
| 190. | 105. | 174. | 100. | 140. | 113. | 120. | 100. | 150. | 142. |
| 1//. | 162. | 148. | 123. | 123. | 141. | 104. | 127. | 116. | 134. |
| 152. | 186. | 214. | 212. | 259. | 282. | 246. | 196. | 144 | 124. |
| 100 | 70 | 45 | 6 4 | 27 | 40 | 5.6 | | 63 | 201. |
| 102. | 19. | 0.0. | 04. | 57. | 49. | 50. | | 05. | 50. |
| 43. | 56. | 64. | 40. | 59. | 40. | 54. | 41. | 51. | 58. |
| 51. | 57. | 32. | 56. | 46. | 50. | 46. | 39. | 35. | 44. |
| 17 | 10 | A A | 16 | 12 | 54 | 46 | 62 | 57 | 50 |
| 47. | | 99. | 40. | 42. | 24. | 40. | 102. | 57. | 100 |
| 60. | 70. | 91. | /1. | 102. | 95. | 94. | 105. | 99. | 109. |
| 104. | 104. | 70. | 63. | 38. | 34. | 51. | 58. | 48. | 33. |
| 45 | 30. | 50 | 46 | 45 | 34 | 29 | 39 | 44 | 55 |
| 22. | 20. | 20. | 40 | 40 | 21. | 22. | 40 | 50 | 55. |
| 55. | 50. | 34. | 40. | 40. | 20. | 33. | 42. | 50. | 50. |
| 40. | 40. | 49. | 48. | 67. | 45. | 84. | 54. | 66. | 78. |
| 102. | 108. | 127. | 154. | 152. | 120. | 85. | 53. | 57. | 41. |
| 33 | 20 | 32 | 41 | 36 | 36 | 56 | 40 | 4.4 | 27 |
| 55. | 27. | JZ . | 41. | 50. | 50. | .00 | 40. | 44. | 21. |
| 38. | 55. | 45. | 65. | 39. | 39. | 41. | 45. | 49. | - 58 |
| 48. | 49. | 37. | 52. | 78. | 81. | 77. | 125. | 143. | 136. |
| 161 | 156 | 169 | 124 | 106 | 59 | 84 | 93 | 83 | 64 |
| 101. | 100. | 102. | 121. | 100. | 100 | 104. | 23. | 0.0. | 04. |
| 84. | 106. | /1. | 13. | 98. | 106. | 106. | 85. | 94. | 74. |
| 74. | 78. | 59. | 58. | 40. | 56. | 66. | 59. | 63. | 42. |
| 56. | 56. | 61. | 56. | 49. | 51. | 66. | 63. | 66. | 46 |
| 74 | 62 | 01 | 60 | 6 4 | 02 | 00 | 04 | 06 | 00 |
| /4. | 05. | 01. | 00. | 04. | 92. | 09. | 04. | 00. | 99. |
| 106. | 112. | 92. | 92. | 101. | 94. | 113. | 117. | 118. | 117. |
| 157. | 134. | 143. | 163. | 182. | 162. | 191. | 187. | 185. | 215. |
| 246 | 238 | 284 | 255 | 3.01 | 335 | 346 | 361 | 401 | 137 |
| 240. | 250. | 204. | 200. | 501. | 777. | J40. | 201. | 401. | 41/. |
| 431. | 454. | 493. | 493. | 454. | 448. | 382. | 376. | 326. | 304. |
| 272. | 242. | 222. | 213. | 187. | 188. | 164. | 168. | 162. | 177. |
| 135 | 158 | 130 | 124 | 121 | 108 | 95 | 110 | 112 | 107 |
| 120 | 101 | 100 | 124. | -21. | 100. | 7. | 10. | 112. | 107. |
| 130. | 101. | 120. | 97. | /4. | /0. | /4. | 97. | /4. | 19. |
| 64. | 69. | 62. | 61. | 57. | 70. | 57. | 61. | 56. | 47. |
| 52. | 39. | 50. | 55. | 42. | 34. | 64. | 45. | 51. | 58. |
| 11 | 41 | 40 | 41 | 4.4 | 25 | 40 | 55 | 44 | C 1 |
| 41. | 41. | 49. | 41. | 44. | 55. | 40. | 55. | 44. | 51. |
| 45. | 46. | 50. | 33. | 32. | 53. | 44. | 41. | 44. | 47. |
| 41. | 39. | 41. | 36. | 55. | 51. | 49. | 51. | 57. | 85. |
| 73 | 80 | 128 | 164 | 173 | 188 | 190 | 153 | 158 | 131 |
| 00 | 07 | 20. | 704. | 173. | 100. | 120. | 133. | 150. | 131, |
| 90. | 07. | 79. | 76. | 62. | 28. | 67. | 50. | 20. | 44. |
| 49. | 45. | 50. | 51. | 36. | 65. | 65. | 49. | 43. | 51. |
| 49. | 40. | 59. | 54. | 41. | 50. | 35. | 50. | 52. | 34. |
| 31 | 53 | 40 | 53 | 50 | 30 | 66 | 57 | 40 | 50 |
| 51. | | 40. | 55. | 50. | 32. | 20. | | 42. | |
| 14. | 47. | 49. | 52. | 49. | 43. | 37. | 43. | 38. | 49. |
| 49. | 39. | 48. | 36. | 50. | 39. | 37. | 54. | 44. | 43. |
| 31. | 52 | 40 | 45 | 54 | 50 | 58 | 75 | 82 | 95 |
| 02. | 120 | 110. | 01 | 100 | 00. | 05 | , J.
77 | 02. | 70 |
| 92. | 120. | 129. | 91. | 123. | 92. | 95. | //. | 97. | 76. |
| 55. | 99. | 95. | 108. | 103. | 134. | 125. | 119. | 133. | 114. |
| 96. | 78. | 100. | 89. | 87. | 71. | 58. | 80. | 70. | 67. |
| 66 | 71 | 78 | 40 | 62 | 10 | 62 | 51 | 50 | 57 |
| 60. | 74. | 70. | 49. | 02. | 49. | 02. | 71. | 12. | J/. |
| 60. | 55. | 21. | 61. | 49. | 43. | 5/. | 45. | 48. | 55. |
| 42. | 58. | 47. | 53. | 44. | 51. | 32. | 43. | 46. | 40. |
| 55. | 43. | 36. | 36. | 43. | 42. | 43. | 38. | 30. | 51. |
| 20 | 16 | 40 | 50 | 40 | 55 | 70 | E0. | <i>cc</i> | 6 |
| 20. | 40. | 49. | 59. | 40. | 52. | 12. | 50. | 00. | • C 0 |
| 90. | 93. | 93. | 87. | 11. | 56. | 98. | 95. | 97. | 64. |
| 68. | 56. | 50. | 55. | 56. | 45. | 44. | 51. | 33. | 53. |
| 46 | 33 | 46 | 40 | 40 | 44 | 20 | 44 | 48 | 47 |
| 40. | | | | | | JJ.
NA | 77. | | |
| 42. | 44. | 53. | 31. | 21. | 44. | 34. | 34. | 43. | 34. |
| 32. | 38. | 36. | 38. | 36. | 30. | 45. | 39. | 32. | 47. |
| 51. | 55. | 40. | 32. | 77. | 49. | 53. | 54. | 41. | 54. |
| 34 | 25 | 4.8 | 31 | 36 | 4.4 | 20. | ۸Q. | 10 | 10 |
| <u> </u> | 55. | 20. | 17 | 50. | | 52. | 72. | | 42. |
| 40. | 22. | 32. | 41. | 55. | 41. | 5/. | 52. | 45. | 67. |
| 48. | 58. | 49. | 74. | 71. | 72. | 48. | 74. | 60. | 82. |
| 72. | 67. | 58. | 55. | 73. | 64. | 59. | 58. | 50. | 37 |

| 48. | 51. | 44. | 47. | 32. | 35. | 47. | 36. | 37. | 67. |
|------|-------------|-------|-----------|------------|-----------|------------|------|-------------|-------|
| 67 | 56 | 65 | 52 | 41 | 69 | 48 | 34 | 53 | 48 |
| | 50. | | 52. | | 50 | 40. | 51. | 55. | |
| 56. | 44. | 52. | 52. | 53. | 52. | 4/. | 51. | 51. | 5±. |
| 61. | 62. | 47. | 55. | 44. | 56. | 49. | 41. | 45. | 41. |
| 40 | 40 | 60 | 55 | 20 | 20 | E 1 | 40 | БÓ | 61 |
| 42. | 40. | 60. | 55. | 23. | 50. | 51. | 42. | 50. | 01. |
| 12. | 66. | 73. | 53. | 62. | 57. | 73. | 91. | 6/. | 65. |
| 55 | 57 | 61 | 96 | 96 | 90 | 72 | 84 | 72 | 96 |
| | 1 1 1 | 120 | 110 | 117 | 1.1 | 120 | 115 | 105 | 10. |
| 99. | 11/. | 130. | 110. | 11/. | 141. | 130. | 110. | 125. | 124. |
| 104. | 110. | 102. | 82. | 109. | 104. | 80. | 100. | 9,3. | 89. |
| 107 | 104 | 110 | 1 / / | 135 | 100 | 145 | 191 | 200 | 200 |
| 107. | 104. | 110. | 144. | 100. | 144. | 142. | 101. | 200. | 209. |
| 213. | 186. | 254. | 253. | 289. | 243. | 247. | 263. | 267. | 237. |
| 224. | 182. | 153. | 143. | 129. | 119. | 114. | 99. | 88. | 95. |
| 100 | 04 | | 06 | 71 | 22. | 02 | 60 | 66 | 63 |
| 102. | 84. | 12. | 96. | /1. | 12. | 83. | 00. | 00. | 63. |
| 61. | 64. | 59. | 73. | 76. | 63. | 67. | 67. | 94. | 83. |
| 83 | 81 | 78 | 89 | 76 | 82 | 88 | 75 | 77 | 68 |
| | 01. | 10. | 00, | | 02. | 00. | 100 | | 00. |
| /1. | 87. | 64. | 82. | 84. | 93. | 87. | 100. | 94. | 98. |
| 97. | 120. | 111. | 97. | 106. | 88. | 93. | 100. | 105. | 131. |
| 96 | 113 | 125 | 140 | 165 | 160 | 177 | 176 | 103 | 101 |
| 20. | 110. | 120. | 147. | 105. | 102. | 111. | 170. | 195. | 101. |
| 211. | 194. | 260. | 243. | 247. | 280. | 260. | 263. | 281. | 285. |
| 291. | 227. | 226. | 203. | 191. | 172. | 202. | 161. | 146. | 137. |
| 100 | 100 | 110 | 110 | 100 | 0.4 | 1 2 2 2 . | 100 | | |
| 120. | 129. | 110. | 112. | 100. | 94. | 152. | 100. | 90. | 94. |
| 73. | 80. | 89. | 90. | 84. | 83. | 91. | 92. | 92. | 81. |
| 106 | 130 | 115 | 109 | 104 | 104 | 98 | 114 | 112 | 102 |
| 100. | 130. | 112. | 102. | 104. | 104. | 50. | 1111 | | 102. |
| 101. | 13. | 15. | 70. | 78. | 46. | 64. | 37. | 58. | 57. |
| 62. | 56. | 40. | 53. | 54. | 55. | 60. | 51. | 42. | 40. |
| 60 | 52 | 20 | 50 | 57 | 60 | 50 | 50 | 0.4 | 60 |
| 69. | 55. | 50. | 52. | 57. | 60. | 50. | 52. | 04. | 00. |
| 63. | 63. | 88. | 67. | 58. | 48. | 59. | 49. | 56. | 64. |
| 37. | 40. | 47. | 41. | 41. | 39. | 59. | 55. | 68. | 62. |
| 101. | 70 | 0.2 | 00 | 00 | 04 | 111 | 117 | 117 | 100 |
| 45. | 78. | 93. | 88. | 82. | 94. | 111. | 11/. | 11/. | 129. |
| 98. | 112. | 110. | 97. | 73. | 77. | 91. | 108. | 78. | 78. |
| 82 | 81 | 81 | 79 | 4.4 | 63 | 45 | 12 | 46 | 51 |
| 02. | 01.
C2 | 201. | 15. | 47. | 20. | 40. | 72. | 40. | 51. |
| 48. | 53. | 39. | 26. | 4/. | 38. | 61. | 32. | 63. | 49. |
| 57. | 70. | 84. | 94. | 92. | 114. | 137. | 121. | 143. | 131. |
| 170 | 111 | 1 / 2 | 105 | 00 | | 71 | 60 | 65 | 65 |
| 170. | 111. | 145. | 105. | 09. | //. | /1. | 02. | 65. | 65. |
| 50. | 54. | 45. | 66. | 55. | 54. | 57. | 41. | 49. | 42. |
| 50. | 19. | 27. | 35. | 45. | 44. | 47. | 38. | 46. | 41. |
| 47 | 52 | 50 | 20 | 05 | | 20 | 20. | 50. | 40 |
| 47. | 53. | 28. | 30. | 85. | 44. | 39. | 38. | 50. | 48. |
| 37. | 31. | 65. | 56. | 37. | 50. | 55. | 58. | 54. | 71. |
| 66 | 84 | 68 | 67 | 66 | 122 | 62 | 60 | 61 | 56 |
| 00. | | 00. | | 00. | 122. | 02. | 00. | 01. | 50. |
| 48. | 57. | 62. | 6/. | 46. | bl. | 41. | 54. | 52. | 56. |
| 37. | 55. | 49. | 53. | 29. | 63. | 59. | 50. | 38. | 41. |
| 41 | 10 | 10 | 50 | 27 | 50 | 40 | 41 | 41 | 51 |
| 41. | 40. | 40. | 50. | 57. | J0. | 40. | 41. | 41. | |
| 36. | 42. | 42. | 52. | 40. | 20. | 37. | 26. | 27. | 43. |
| 37. | 37. | 32. | 38. | 21. | 39. | 35. | 37. | 35. | 38. |
| 40 | 20 | 3.4 | 20 | 20 | 21 | 20 | 40 | 26 | 24 |
| 49. | 20. | 24. | 50. | 50. | 51. | 50. | 40. | 50. | 54. |
| 42. | 38. | 42. | 36. | 42. | 49. | 32. | 38. | 33. | 46. |
| 46. | 33. | 43. | 45. | 42. | 41. | 79. | 87. | 77. | 99. |
| 112 | 00 | 07 | 04 | 100 | 01 | 65 | EC | 60 | 60 |
| 112. | 99. | 07. | 04. | 102. | 01. | 05. | 50. | 00. | 60. |
| 44. | 45. | 73. | 53. | 67. | 50. | 50. | 40. | 60. | 49. |
| 63. | 47. | 61. | 56. | 44 | 38. | 46. | 31. | 37. | 49. |
| 20 | 50 | 24 | 40 | 40 | 50.
50 | 22 | E 1 | E A | E 4 |
| 20. | 59. | 34. | 49. | 40. | 55. | 33. | 51. | 54. | 54. |
| 58. | 41. | 66. | 71. | 67. | 43. | 57. | 59. | 50. | 70. |
| 63 | 63 | 72 | 66 | 58. | 85 | 53 | 115 | 58 | 70 |
| 01 | 70 | 71 | | 74 | C / | 71 | E1 | 40 | , v . |
| 81. | 70. | 11. | 11. | 74. | 54. | 14. | 21. | 49. | 57. |
| 47. | 42. | 43. | 59. | 47. | 38. | 55. | 56. | 53. | 51. |
| 49 | 51 | 30 | 43 | 56 | 37 | 47 | 51 | 50 | 38 |
| | 51. | 50. | 43. | 50. | 57. | 47. | 51. | 50. | 50. |
| 50. | 51. | 53. | 55. | 31. | 60. | 53. | 50. | 46. | 54. |
| 46. | 54. | 46. | 51. | 39. | 46. | 36. | 69. | 55. | 46. |
| 51 | 35 | 16 | 50 | 55 | 50 | 65 | 67 | R A | 05 |
| 71. | . L L | 40. | J4.
05 | . ر ر
ب | J4. | · · · | 07. | 04. | 20. |
| 148. | 160. | 109. | 85. | 66. | 59. | 61. | 54. | 62. | 58. |
| 53 | 76. | 65. | 82 | 94 | 67 | 73. | 70. | 72. | 101 |
| 00 | 01 | 110 | 00 | 115 | 111 | 120 | 100 | 350 | 105 |
| 92. | β Τ. | 110. | 88. | 112. | 114. | 122. | 136. | 120. | 125. |
| 148. | 147. | 132. | 127. | 96. | 127. | 133. | 93. | 96. | 93. |
| 103 | 85 | 97 | 88 | 77 | 75 | 62 | 95 | 90 | 93 |
| 102. | | 71. | | | ~ . | 52. | 77. | | |
| 97. | /1. | /1. | 78. | 69. | b4. | 59. | /1. | 6 ј. | 66. |
| 56. | 54. | 58. | 64. | 58. | 57. | 50. | 45. | 50. | 51. |
| 68 | 72 | 56 | 56 | 70 | 63 | 50 | 57 | 86 | 80 |
| 00. | 10. | 20. | JU. | 14. | 0.0. | . 26 | J/. | 00. | 60. |
| 95. | 106. | 17. | 85. | 65. | /3. | 62. | 78. | 63. | 63. |
| 46. | 48. | 54. | 39. | 51. | 51. | 54. | 49. | 44. | 53. |
| | | | | | | | | | |

| 20 | C 1 | (0 | 60 | 51 | 13 | 17 | 52 | 38. | 53. |
|------------|------|---|-------------|-----|------|-----------|------------|------------|-------------|
| 39. | 51. | 60. | 00. | 12. | 43. | 47. | 10 | 20 | 20 |
| 47. | 27. | 44. | 21. | 43. | 53. | 30. | 45. | 50. | 50. |
| 48. | 37. | 71. | 40. | 36. | 26. | 39. | 42. | 37. | 31. |
| 27 | 50 | 47 | 29. | 35. | 42. | 38. | 29. | 34. | 60. |
| 27. | 20. | 20 | 27 | 10 | 45 | 63 | 67 | 56 | 45. |
| 38. | 34. | 30. | 57. | 40, | 40. | 0 | () | 40. | 47 |
| 49. | 54. | 51. | 40. | 50. | 37. | 55. | 62. | 43. | 47. |
| 35. | 41. | 47. | 23. | 38. | 41. | 35. | 33. | 41. | 44. |
| 31 | 43 | 34 | 33 | 34. | 39. | 50. | 57. | 52. | 44. |
| 51. | 4J. | 54. | 04 | C 1 | 57 | 75 | 89 | 86 | 90 |
| 42. | 5/. | 55. | 84. | 21. | 57. | 75. | 59. | C2 | 63 |
| 73. | 90. | 87. | 76. | 87, | 99. | 80. | 54. | 63. | 63. |
| 63. | 75. | 46. | 58. | 43. | 50. | 64. | 45. | 43. | 51. |
| 50 | 10 | 51 | 51 | 76 | 59. | 72. | 57. | 61. | 80. |
| 50. | 42. | 10 | 40 | 05 | 51 | 10 | 55 | 55 | 52 |
| 63. | 83. | 49. | 48. | 95. | 51. | 40, | 10 | 55. | 56 |
| 55. | 44. | 59. | 58. | /4. | 62. | 88. | 48. | 04. | 50. |
| 46. | 61. | 54. | 53. | 54. | 50. | 53. | 64. | 48. | 38. |
| 35 | 34 | 50 | 33. | 49. | 39. | 36. | 34. | 27. | 46. |
| 55. | 24. | 20. | 20 | 20 | 35 | 35 | 12 | 36 | 21. |
| 34. | 29. | 57. | 30. | 32. | | 55. | 72. | 20. | 27 |
| 28. | 28. | 53. | 27. | 23. | 46. | 35. | 54. | 20. | 57. |
| 37. | 45. | 35. | 32. | 34. | 31. | 37. | 31. | 45. | 31. |
| 35 | 42 | 49. | 39. | 52. | 45. | 37. | 39. | 42. | 44. |
| 47 | 12. | 44 | 40 | 17 | 32 | 31 | 44 | 41 | 32. |
| 47. | 47. | 44. | 42. | 40 | 22. | 20 | 50 | 37 | 35 |
| 33. | 38. | 41. | 29. | 40. | 33. | 39. | 52. | 57. | |
| 33. | 49. | 38. | 44. | 31. | 30. | 30. | 22. | 26. | 38. |
| 21 | 41. | 36. | 36. | 32. | 32. | 34. | 33. | 49. | 32. |
| 21. | 25 | 30. | 22 | 33 | 39 | 46 | 37. | 42. | 28. |
| 30. | 35. | 32. | 77. | 55. | 22. | 201 | 20 | 27 | 3.0 |
| 36. | 29. | 28. | 29. | 39. | 29. | 21. | 39. | 21. | , JU , |
| 47. | 50. | 47. | 21. | 45. | 37. | 36. | 43. | 56. | 47. |
| 53. | 47. | 53. | 55. | 76. | 54. | 54. | 58. | 50. | 46. |
| 4.4 | 50 | 45 | 43 | 45 | 130. | 62. | 52. | 48. | 44. |
| 44. | 30. | 40. | 45. | | 10 | 36 | 37 | 45 | 44 |
| 52. | 46. | 43. | 45. | 57. | 40. | | | 20 | 12. |
| 38. | 31. | 50. | 55. | 45. | 36. | 48. | 42. | 30. | 45. |
| 54. | 39. | 36. | 40. | 46. | 29. | 43. | 43. | 30. | 25. |
| 30 | 34 | 44 | 38 | 35. | 34. | 31. | 30. | 28. | 34. |
| 20. | 21. | 20 | 34 | 3.0 | 36 | 36 | 31 | 40. | 35. |
| 20. | 57. | 20. | 54. | 70. | 30. | 17 | 20 | 24 | 50 |
| 27. | 30. | 37. | 21. | 38. | 26. | 47. | 29. | 24. | 22. |
| 29. | 19. | 40. | 49. | 35. | 26. | 32. | 36. | 37. | 36. |
| 50. | 27. | 34. | 24. | 37. | 37. | 22. | 43. | 28. | 34. |
| 24 | 25 | 35 | 28 | 36 | 46 | 33 | 36. | 36. | 41. |
| 54. | 35. | 55. | 20. | 50. | | 20 | 45 | 30 | 60 |
| 45. | 36. | 54. | 31. | 30. | 54. | 39. | 4.7. | 50. | |
| 49. | 43. | 44. | 42. | 39. | 40. | 45. | 43. | 34. | 54. |
| 43. | 56. | 52. | 51. | 64. | 54. | 59. | 66. | 61. | 83. |
| 55 | 10 | 66 | 74 | 44 | 60. | 60. | 69. | 69. | 58. |
| 12. | 47 | ro. | 40 | 24 | 36 | 51 | 30 | 45 | 47 |
| 43. | 4/. | 58. | 40. | 24. | 50. | 51. | 20. | -1J.
E1 | 40 |
| 41. | 23. | 47. | 36. | 43. | 44. | 54. | 38. | 51. | 40. |
| 48. | 53. | 35. | 43. | 33. | 37. | 31. | 25. | 36. | 37. |
| 29 | 39 | 34 | 38. | 41. | 37. | 29. | 42. | 34. | 25. |
| 22. | 32. | 22 | 30 | 35 | 34 | 44 | 36 | 35. | 38. |
| 33. | 20. | 55. | 30. | JJ. | 24. | | 41 | 27 | 36 |
| 35. | 49. | 1/. | 54. | 35. | 54. | 44. | 41. | 57. | . U C
~~ |
| 41. | 34. | 42. | 35. | 38. | 32. | 30. | 44. | 69. | 31. |
| 33. | 47. | 46. | 40. | 36. | 27. | 24. | 36. | 46. | 28. |
| 40 | 22 | 3.2 | 13 | 13 | 36 | 34 | 29. | 36. | 29. |
| 42. | 33. | 54. | 43. | 44 | 41 | 47 | 46 | 53 | 46 |
| 41. | 43. | 36. | 4/. | 44. | 41. | 4/. | ±0. | | |
| 33. | 44. | 31. | 42. | 36. | 52. | 37. | 33. | 47. | 50. |
| 50. | 46. | 43. | 47. | 57. | 65. | 49. | 79. | 63. | 50. |
| 4.4 | 55 | 51 | 45 | 41 | 34. | 34. | 42. | 43. | 39. |
| 44. | | JI. | -1J. | 10 | 11 | 40 | 18 | 4.4 | 45 |
| 33. | 41. | 01. | 50. | 40. | 41. | 40. | 40. | 47 | 50 |
| 41. | 45. | 40. | 51. | 35. | 33. | 49. | 41. | 4/. | 50. |
| 35. | 37. | 40. | 45. | 44. | 22. | 36. | 31. | 48. | 50. |
| 38 | 52 | 40. | 45. | 34. | 50. | 36. | 51. | 28. | 28 |
| 41 | 20 | 34 | 27 | 36 | 22 | 34 | 30 | 30. | 34 |
| 41. | 59. | 54. | 41. | 30. | 40 | 27. | 20. | 30. | 22 |
| 29. | 35. | 29. | 41. | 36. | 4j. | 36. | 27. | 32. | 22 |
| 24. | 47. | 48. | 64. | 34. | 34. | 45. | 50. | 29. | 40 |
| 38 | 49 | 52. | 52. | 54. | 46. | 51. | 30. | 53. | 51 |
| 50. | 5 | 50 | 44 | 51 | 61 | 39 | 59. | 43. | 57 |
| 59. | 55. | 50. | 44. | 77. | E0. | 57.
EF | 10 | 66 | 5.6 |
| 55. | 61. | 56. | 6 U. | 13. | 50. | 22. | 49. | 20. | 20 |
| 40. | 55. | 47. | 51. | 63. | 37. | 34. | 45. | 39. | 31 |
| 45 | 40. | 52. | 31. | 42. | 51. | 40. | 45. | 38. | 43 |
| 40 | 10. | 32. | 34 | 25 | 42 | 34 | 32. | 30. | 44 |
| 40. | 40. | | 34. | 22. | 53 | 42 | <u>x</u> 0 | 17 | 51 |
| ≺ × | /1 1 | <u>, , , , , , , , , , , , , , , , , , , </u> | .19. | | . cc | 43. | 40. | | |

| 50 | 15 | 55 | 4.0 | 65 | 63 | 51 | 50 | 20 | 4.5 |
|------|------|------|--------------|-------------|---------|-----------|------|------|-------------|
| 50. | 45. | 55. | 40. | 65. | . נט | D1. | 50. | 50. | 42. |
| 48. | 26. | 31. | 33. | 43. | 39. | 28. | 44. | 27. | 54. |
| 30 | 29 | 25 | 36 | 28 | 35 | 30 | 15 | 34 | 35 |
| 30. | 10 | 23. | 10. | 20. | 55. | 54. | 1 | 54. | 35. |
| 36. | 18. | 26. | 18. | 36. | 24. | 21. | 35. | 36. | 34. |
| 34. | 36. | 36. | 32. | 27. | 32. | 36. | 39. | 40. | 29. |
| 30 | 41 | 22. | 16 | 20 | 21 | 47 | 22 | 20 | 24 |
| 50. | 41. | 23. | 40. | 30. | 51. | 47. | 32. | 30. | 54. |
| 35. | 29. | 37. | 44. | 31. | 30. | 53. | 49. | 53. | 46. |
| 54 | 25 | 74 | 63 | 48 | 50 | 17 | 66 | 69 | 30 |
| 54. | 25. | | 05. | 40. | 52. | 47. | 00. | 05. | 59. |
| 60. | 32. | 44. | 48. | 35. | 26. | 30. | 54. | 44. | 28. |
| 33. | 42. | 43. | 41. | 30. | 35. | 41. | 44. | 39. | 39. |
| 20. | 4 5 | 25 | 50 | 40 | 40 | F 4 | C 1 | ro. | го.
го |
| 20. | 45. | 35. | 53. | 40. | 43. | 54. | 51. | 58. | 59. |
| 54. | 49. | 47. | 34. | 71. | 53. | 44. | 35. | 45. | 50. |
| 48 | 36 | 36 | 30 | 34 | 45 | 65 | 11 | 56 | 55 |
| -10. | 50. | 50. | 57. | 54. | -10. | 45 | 27. | 10. | 55. |
| 54. | 60. | 50. | 52. | 51. | 51. | 45. | 37. | 42. | 59. |
| 53. | 56. | 57. | 72. | 70. | 61. | 63. | 73. | 67. | 73. |
| 68 | 90 | 9.9 | 115 | 95 | 112 | 85 | 97 | 86 | 01 |
| 00. | | 20. | 11 | 25. | 112. | 05. | 57. | 00. | <u>91</u> . |
| 91. | 73. | /6. | 112. | 91. | 64. | 88. | 67. | 60. | 80. |
| 78. | 72. | 62. | 64. | 63. | 59. | 59. | 55. | 57 | 61 |
| | (2) | 40 | - , · | C1 | 57 | <u> </u> | 70 | 57. | 70 |
| 40. | 63. | 49. | 54. | 51. | 20. | 68. | 13. | 54. | 70. |
| 56. | 51. | 68. | 65. | 78. | 68. | 44. | 50. | 51. | 46. |
| 45 | 40 | 41 | 51 | 13 | 45 | 35 | 36 | 13 | 40 |
| | 40. | 11. | 51. | -1.7. | -10. | 55. | 50. | 43. | 40. |
| 38. | 42. | 45. | 28. | 33. | 63. | 34. | 48. | 53. | 48. |
| 51. | 46. | 49. | 61. | 64. | 57. | 48. | 58. | 54. | 25. |
| 16 | 26 | 40 | 41 | 22 | 22. | 20 | 40 | 20 | 10 |
| 40. | 50. | 49. | 41. | 55. | 22. | 20. | 40. | 30. | 49. |
| 36. | 38. | 32. | 30. | 48. | 29. | 45. | 31. | 35. | 34. |
| 41 | 45 | 29 | 29 | 29 | 25 | 23 | 42 | 31 | 38 |
| 20 | 22. | 42. | 22. | 22. | 23. | 23. | 74 . | 51. | 50. |
| 38. | 31. | 43. | 33. | 25. | 30. | 37. | 21. | 32. | 30. |
| 15. | 33. | 26. | 30. | 37. | 40. | 31. | 39. | 36. | 33. |
| 31 | 30 | 22 | 21 | 21 | 40 | 47 | 27 | 20 | 20. |
| 51. | 52. | 55. | 51. | Z1. | 40. | 47. | 57. | 50. | 20. |
| 27. | 39. | 30. | 27. | 52. | 40. | 39. | 33. | 32. | 22. |
| 39 | 44 | 40 | 36 | 42 | 39 | 37 | 45 | 25 | 45 |
| 24 | 477 | | 40 | 40 | 22. | 57.
CD | 45 | 22. | 40 |
| 34. | 47. | 44. | 40. | 40. | 21. | 53. | 45. | 32. | 43. |
| 45. | 40. | 46. | 39. | 39. | 45. | 49. | 34. | 44. | 30. |
| 34 | 33 | 49 | 36 | 27 | 36 | 32 | 35 | 11 | 23 |
| 20 | 20. | 22. | | 27. | 50. | .1 | | 11. | 25. |
| 32. | 32. | 33. | 42. | 29. | 35. | 41. | 29. | 35. | 35. |
| 43. | 31. | 28. | 43. | 31. | 26. | 36. | 23. | 27. | 37. |
| 20 | 43 | 25 | 17 | 24 | 40 | 27 | 21 | AC | 40 |
| 20. | 43. | 22. | 4/. | 34. | 42. | 27. | 51. | 40. | 42. |
| 45. | 45. | 52. | 38. | 48. | 47. | 51. | 55. | 47. | 59. |
| 40. | 41 | 40. | 48 | 29 | 43 | 29 | 37 | 44 | 34 |
| 20 | 25 | 40 | 201 | 10 | 20.0 | E 1 | 41 | 21 | 20. |
| 20. | 55. | 49. | 35. | 40. | 30. | 51. | 41. | 51. | 29. |
| 35. | 23. | 35. | 30. | 48. | 33. | 29. | 33. | 39. | 31. |
| 51. | 38 | 25 | 39 | 41 | 50 | 35 | 45 | 42 | 42 |
| 4.4 | 50. | 22. | 52. | | | 55. | 50. | -12. | 12. |
| 44. | 53. | 38. | 53. | 52. | 40. | 54. | 58. | 35. | 45. |
| 43. | 43. | 53. | 60. | 64. | 65. | 71. | 48. | 49. | 52. |
| 55 | 63 | 68 | 71 | 79 | 91 | 77 | 9.9 | 60 | 00 |
| 30. | 0.5. | 70. | , <u>,</u> , | 70. | 101. | 77. | 00. | 05. | 50. |
| 79. | 98. | //. | 89. | 99. | 103. | 75. | /1. | 61. | 68. |
| 58. | 50. | 64. | 68. | 78. | 55. | 44. | 56. | 42. | 60. |
| 30 | 4.9 | 17 | 47 | 52 | 53 | 45 | 20 | 40 | 45 |
| 52. | | -17. | | | 55. | 40. | 55. | -10. | 4 |
| 51. | JJ. | 49. | 45. | 40. | 47. | 28. | 38. | 36. | 36. |
| 33. | 28. | 42. | 31. | 25. | 51. | 45. | 41. | 45 | 30 |
| 21 | 22 | 20 | 20 | 20. | 20 | C 1 | 40 | 24 | 201 |
| 51. | 22. | 30. | 30. | 32. | 28. | 5I. | 42. | 24. | 21. |
| 32. | 29. | 40. | 36. | 37. | 42. | 28. | 44. | 33. | 28. |
| 35 | 36 | 26 | 49 | 29 | 34 | 20 | 36 | 30 | 30 |
| 33. | 50. | 20. | 42. | 29. | 74. | 29. | | JZ. | 50. |
| 39. | 32. | 21. | 29. | 21. | 24. | 21. | 42. | 39. | 31. |
| 30. | 22. | 48. | 31. | 35. | 31. | 35. | 38. | 19. | 41. |
| 51 | 33 | 22 | 26 | 26 | 20 | 25 | 27 | 22 | 27 |
| 74. | 55. | 55. | 50. | 50. | 20. | 55. | 57. | 22. | 57. |
| 36. | 44. | 40. | 38. | 25. | 41. | 30. | 22. | 47. | 23. |
| 41. | 37. | 37 - | 57 | 45 | 33 | 2.4 | 32 | 29 | 45 |
| 30 | 2 | 20 | 27. | 22. | 55. | 2.4.1 | 22. | 40 | |
| 39. | 66. | 50. | 52. | 51. | 54. | 35. | 32. | 48. | 67. |
| 48. | 34. | 31. | 61. | 74. | 44. | 67. | 55. | 46. | 42. |
| 52 | 30 | 3.0 | 29 | 4.8 | 46 | 36 | ንፍ | 1.9 | 20 |
| 22. | JJ. | 50. | 27.
20 | 40. | 40. | J0. | 20. | 40. | <u> </u> |
| 26 | 31. | 19. | 38. | 34. | 32. | 22. | 33. | 37. | 45. |
| 26. | 33. | 31. | 38. | 28. | 36. | 29. | 38. | 23. | 25. |
| 31 | 30 | 25. | 20, | 20. | 22. | 22. | 41 | 22. | 30 |
| 71. | JJ. | 40. | 23. | <u>4</u> 3. | 66. | ۵۵. | 41. | 41. | 30. |
| 6/. | 23. | 20. | 23. | 27. | 19. | 21. | 30. | 40. | 24. |
| 40. | 42. | 33. | 46. | 38 | 45 | 44 | 35 | 45 | 37 |
| 35. | Ξ. | E A | | 40 |
E 0 |
 | 22. | 1 | 57. |
| 55. | 50. | 54. | 55. | 42. | 50. | 51. | 59. | 41. | 52. |
| 40. | 57. | 47. | 48. | 44. | 32. | 38. | 29. | 49. | 29. |
| 36 | 31 | 26 | 26 | 30 | 34 | 29 | 40 | 31 | 33 |

| 24 | 41 | 20 | 3.4 | 36 | 20 | 31 | 23 | 26 | 30 |
|-----------|-----|-----|-----------|-----------|-----------|-----------|-----------|-----------|------------|
| 24. | 41. | 38. | 54. | 30. | 20. | 34. | 23. | 20. | 20. |
| 28. | 23. | 38. | 34. | 20. | 29. | 20. | 22. | 34. | 20. |
| 44. | 23. | 22. | 30. | 34. | 34. | 24. | 23. | 23. | 30. |
| 31. | 36. | 26. | 23. | 24. | 34. | 66. | 28. | 29. | 42. |
| 33. | 39. | 48. | 29. | 37. | 40. | 36. | 31. | 33. | 24. |
| 33. | 31. | 33. | 33. | 35. | 23. | 35. | 36. | 24. | 22. |
| 38. | 37. | 36. | 27. | 32. | 39. | 28. | 32. | 34. | 34. |
| 24. | 31. | 30. | 24. | 32. | 38. | 34. | 19. | 28. | 29. |
| 42. | 41. | 24. | 31. | 16. | 27. | 34. | 30. | 19. | 23. |
| 27 | 19 | 20. | 31. | 29. | 42. | 35. | 43. | 22. | 36. |
| 27 | 29 | 55 | 38 | 26 | 24 | 38 | 42 | 17. | 35. |
| 31 | 31 | 31 | 30 | 36 | 50 | 41 | 30 | 28 | 22 |
| 10 | 31. | 21. | 12 | 25. | 34 | 20 | 20 | 25 | 26 |
| 18. | 20. | 29. | 23. | 23. | 54.
10 | 2.5. | 20. | 20. | 20. |
| 28. | 37. | 35. | 28. | 54. | 20. | 21. | 24. | J/.
DE | 20. |
| 33. | 19. | 30. | 42. | 26. | 28. | 34. | 31.
26 | 35. | 39. |
| 25. | 26. | 62. | 30. | 41. | 33. | 35. | 36. | 40. | 33. |
| 43. | 54. | 43. | 35. | 35. | 37. | 39. | 46. | 46. | 29. |
| 26. | 35. | 31. | 24. | 28. | 32. | 29. | 36. | 21. | 32. |
| 25. | 29. | 33. | 32. | 33. | 46. | 34. | 43. | 31. | 26. |
| 33. | 23. | 29. | 28. | 34. | 37. | 29. | 37. | 41. | 33. |
| 43. | 34. | 36. | 54. | 40. | 38. | 31. | 42. | 32. | 55. |
| 40. | 38. | 36. | 41. | 43. | 52. | 23. | 44. | 34. | 24. |
| 36 | 41. | 22. | 32. | 34. | 26. | 39. | 31. | 30. | 32. |
| 38 | 32 | 22 | 28 | 38. | 32. | 35. | 37. | 51. | 37. |
| 31 | 43 | 30 | 43 | 42 | 32 | 31 | 40 | 35. | 26. |
| 20 | 40 | 20. | 21 | 42. | 52. | 13 | 34 | 34 | 52 |
| 20. | 40. | 23. | 40 | 92.
E1 | 10. | 45. | 40 | 54. | 15 |
| 39. | 30. | 57. | 49. | 20 | 43. | 4.5. | 42. | 10 | 40 |
| 43. | 47. | 44. | 57. | 39. | 47. | 45. | 47. | 40. | 40. |
| 29. | 40. | 45. | 32. | 42. | 34. | 50. | 48. | 40. | 34. |
| 44. | 33. | 38. | 46. | 40. | 34. | 32. | 30. | 32. | 23. |
| 25. | 39. | 27. | 28. | 29. | 61. | 33. | 27. | 29. | 32. |
| 39. | 27. | 29. | 39. | 35. | 33. | 44. | 40. | 29. | 32. |
| 52. | 34. | 34. | 53. | 27. | 25. | 24. | 27. | 39. | 19. |
| 35. | 28. | 26. | 38. | 42. | 29. | 41. | 30. | 42. | 34. |
| 40. | 36. | 23. | 40. | 37. | 59. | 44. | 28. | 53. | 37. |
| 41. | 44 | 45. | 43. | 39. | 42. | 40. | 33. | 54. | 42. |
| 37 | 53 | 40 | 42 | 54 | 46 | 39. | 47. | 48. | 37. |
| 20 | 33. | 10. | 43 | 40 | 45 | 34 | 27 | 51 | 53. |
| £1 | 37 | 37 | 30 | 31 | 38 | 50 | 46 | 40 | 53 |
| 10 | 57. | 40 | 45 | 10 | 36 | 38 | 10. | 10. | 26 |
| 40. | 54. | 40. | 40. | 45 | 43 | 36 | 47.
60 | 13 | 78
78 |
| 49. | 30. | 47. | JU. | 4.3 | 40 | 10. | 47 | 30 | 40. |
| 35. | 40. | 04. | 40. | 43. | 40. | 45. | 42. | 55. | 49.
60 |
| 52. | 51. | 47. | 48. | 42. | 41. | 20. | 23. | 55. | 45 |
| 43. | 4/. | 47. | 53. | 40. | 44. | 49. | 41. | 44. | 40. |
| 42. | 38. | 56. | 42 | 37. | 43. | 22. | 40. | 38. | 39. |
| 48. | 45. | 41. | 35. | 33. | 40. | 40. | 40. | 48. | 49. |
| 33. | 53. | 45. | 37. | 51. | 40. | 37. | 30. | 42. | 48. |
| 44. | 44. | 53. | 37. | 44. | 45. | 47. | 50. | 43. | 59. |
| 36. | 75. | 44. | 57. | 58. | 65. | 68. | 69. | 80. | 65. |
| 65. | 50. | 66. | 55. | 54. | 75. | 78. | 65. | 59. | 81. |
| 59. | 45. | 59. | 101. | 93. | 68. | 64. | 81. | 77. | 79. |
| 70. | 79. | 74. | 89. | 80. | 66. | 78. | 77. | 71. | 65. |
| 71. | 62. | 67. | 60. | 57. | 78. | 65. | 71. | 63. | 68. |
| 99 | 70 | 80 | 55 | 90. | 79. | 56. | 78. | 50. | 58. |
| 55 | 63 | 51 | 51 | 64 | 54 | 58 | 82 | 56. | 52 |
| 55. | 44 | 52 | 16 | 53 | 41 | 55 | 57 | 60 | 49 |
| 01.
cc | 44. | 22. | 40.
50 | 50 | 54. | 53. | 57. | 43 | 80 |
| 55. | 49. | 47. | 50. | 41 | 50. | 51 | 40 | | 63 |
| 40.
E1 | 47. | 0J. | 04. | 41.
70 | ۲0 · | リエ・
フェ | 44+
55 | 51. | 50.
50. |
| D4. | 59. | 20. | 40. | 70. | 24. | 10. | 20.
21 | C1. | ، ∠ر
01 |
| 112. | 94. | 19. | 01. | 02. | 4/. | οU.
Γη | ۲C
۲O | 04.
rn | 01.
C 7 |
| 50. | 57. | 54. | 40. | 45. | 92. | 53. | 45. | 53. | 53. |
| 48. | 52. | 51. | 45. | 48. | 5/. | 56. | 40. | 45. | 42 |
| 38. | 61. | 41. | 43. | 46. | 36. | 43. | 53. | 42. | 46. |
| 26. | 35. | 32. | 39. | 39. | 38. | 36. | 27. | 30. | 38. |
| 38. | 49. | 36. | 34. | 57. | 31. | 50. | 36. | 40. | 34. |
| 38. | 51. | 37. | 36. | 35. | 35. | 46. | 38. | 44. | 46 |
| 34. | 40. | 52. | 30. | 43. | 22. | 43. | 41. | 47. | 47. |
| 57. | 45. | 39. | 40. | 52. | 39. | 79. | 32. | 48. | 62 |
| 57. | 52. | 56. | 55. | 46. | 48. | 51. | 52. | 51. | 42 |
| | | - | | | | | | | |

| 38. | 47. | 47. | 45. | 34. | 49. | 72. | 37. | 43. | 35. |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 60. | 40. | 50. | 44. | 54. | 49. | 43. | 53. | 59. | 45. |
| 43. | 50. | 66. | 48. | 47. | 59. | 54. | 66. | 45. | 51. |
| 38. | 63. | 51. | 54. | 73. | 57. | 44. | 43. | 37. | 50. |
| 41. | 58. | 49. | 46. | 30. | 49. | 35. | 45. | 56. | 36. |
| 53. | 44. | 40. | 41. | 27. | 47. | 47. | 44. | 26. | 47. |
| 41. | 33. | | | | | | | | |

Appendix P-26: step-intensity (of neutron diffraction) data of muscovite

| 4.00 | .05 | 117.00 | pure n | nuscovite | | | | | |
|-------|-------|--------|--------|-----------|-------|--------|-------|---------------|-----------|
| 5360. | 5409. | 5320. | 5258. | 5368. | 5480. | 5424. | 5302. | 5274. | 5326. |
| 5423. | 5429. | 5422. | 5368. | 5373. | 5226. | 5205. | 5178. | 5233. | 5169. |
| 5084. | 5149. | 5152. | 5126. | 5254 | 5140 | 5009 | 5057 | 5043 | 4944 |
| 4984 | 5013 | 4956 | 4987 | 5041 | 1983 | 1882 | 4881 | 1842 | 4965 |
| 1917 | 5104 | 5012 | 4951 | 4756 | 4761 | 4002. | 4001. | 4042. | 4000. |
| 4940 | 104. | 1012. | 4051. | 4730. | 4/01. | 4000. | 400/. | 4///. | 4000. |
| 4940. | 4034, | 4800. | 4869. | 4919. | 4833. | 4829. | 4/36. | 4796. | 4/64. |
| 4656. | 4589. | 4561. | 4626. | 4642. | 46/5. | 4699. | 4575. | 4672. | 4599. |
| 4639. | 4509. | 4538. | 4764. | 4679. | 4539. | 4716. | 4693. | 4758. | 4545. |
| 4470. | 4605. | 4567. | 4569. | 4513. | 4594. | 4704. | 4566. | 4696. | 4748. |
| 4743. | 4862. | 4894. | 4920. | 4889. | 5054. | 5051. | 5000. | 5062. | 4995. |
| 4788. | 4656. | 4728. | 4503. | 4506. | 4458. | 4418. | 4481 | 4466 | 4520 |
| 4590. | 4460 | 4515 | 4408 | 4333 | 4407 | 4409 | 4431 | 1371 | 1020. |
| 1125 | 4208 | 1320 | 4407 | 1350. | 4205 | 4411 | 4370 | 4470 | 4400 |
| 4423. | 4200. | 4323. | 4407. | 4303. | 4393. | 4411. | 4370. | 44/0. | 4422. |
| 4431. | 4400. | 4444. | 4332. | 4387. | 4417. | 4436. | 4359. | 4364. | 4305. |
| 4435. | 4312. | 4280 | 4379. | 4437. | 4281. | 4180. | 4228. | 4203. | 4374. |
| 4417. | 4471. | 4522. | 4344. | 4418. | 4388. | 4306. | 4324. | 4271. | 4323. |
| 4329. | 4344. | 4373. | 4314. | 4370. | 4273. | 4184. | 4256. | 4276. | 4274. |
| 4303. | 4320. | 4428. | 4422. | 4370. | 4372. | 4316. | 4355. | 4343. | 4195. |
| 4234. | 4236. | 4293. | 4289. | 4308. | 4323. | 4357 | 4280 | 4231 | 4246 |
| 4271 | 4322 | 4286 | 4289 | 4318 | 4285 | 4239 | 4240 | 1251. | 4208 |
| 1230 | 1255 | 41 47 | 4227 | 4200 | 4176 | 4232. | 4953 | 4205. | 4200. |
| 4232. | 4231. | 4147. | 4447. | 4200. | 4170. | 4220, | 4200. | 4100. | 4240. |
| 4237. | 4200. | 4274. | 4100. | 4240. | 4297. | 43/4. | 4507. | 4555. | 4257. |
| 4016. | 4178. | 4271. | 4235. | 4278. | 4260. | 4144. | 4168. | 4261. | 4146. |
| 4013. | 4095. | 4156. | 4141. | 4113. | 4068. | 3966. | 4011. | 4236. | 4238. |
| 4179. | 4214. | 4272. | 4202. | 4181. | 4101. | 4152. | 4179. | 4233. | 4231. |
| 4166. | 4183. | 4147. | 4288. | 4337. | 4174. | 4131. | 4032. | 4030. | 4080. |
| 3899. | 3979. | 4129. | 4097. | 4114. | 4107. | 3968. | 4009. | 4285. | 4472. |
| 4612. | 4648. | 4631. | 4520. | 4572. | 4330. | 4254. | 4186. | 4114. | 3992 |
| 4161. | 4106. | 4089 | 4180 | 4051 | 4012 | 3986 | 4091 | 4075 | 4038 |
| 4032 | 4026 | /169 | 4175 | 4134 | 4057 | 4002 | 4074 | 4075. | 4030. |
| 4022. | 4020. | 4102. | 4160 | 4134. | 4007. | 4092. | 4074. | 4034. | 4134. |
| 4020. | 4130. | 4049. | 4103. | 4210. | 4306. | 4297. | 4400. | 4571. | 4872. |
| 5590. | 6345. | 6627. | /114. | 1234. | 6987. | 6555. | 6009. | 5522. | 5045. |
| 5055. | 4917. | 4652. | 4514. | 4139. | 4170. | 4223. | 4235. | 4248. | 4299. |
| 4205. | 4079. | 4087. | 4093. | 4083. | 4038. | 4218. | 4104. | 4108. | 4103. |
| 4135. | 4065. | 4072. | 4242. | 4213. | 4135. | 4254. | 4347. | 4393. | 4388. |
| 4291. | 4259. | 4176. | 4085. | 3568. | 3477. | 3581. | 3552. | 3997. | 4138. |
| 3993. | 3983. | 4069. | 4101. | 4030. | 3982. | 4098. | 4043. | 4089. | 4095. |
| 4230. | 4469. | 4503. | 4473. | 4462. | 4277. | 4314. | 4254. | 4225. | 4088 |
| 3990. | 4129 | 4083 | 3989 | 3955 | 4011 | A137 | 4204 | 1156 | 4120 |
| 4358 | 4468 | 4579 | 4477 | 1212 | 4135 | 4100 | 4060 | 2010 | 2025 |
| 3025 | 2020 | 2051 | 2057 | 2000 | 2001 | 4100. | 4000. | 3910. | 3025. |
| 2020 | 3920. | 1010 | 3032. | 3909. | 3661. | 3921. | 4005. | 4002. | 3945. |
| 3930. | 3951. | 4049. | 4095. | 4154. | 4144. | 4102. | 4095. | 4049. | 4084. |
| 4224. | 4316. | 4420. | 4510. | 4548. | 4487. | 4420. | 4345. | 4299. | 4207. |
| 4027. | 3940. | 3953. | 4030. | 3997. | 3962. | 3909. | 3840. | 3976. | 4085. |
| 4153. | 4262. | 4392. | 4616. | 4768. | 4969. | 5236. | 5302. | 5404. | 5539. |
| 5322. | 5031. | 4766. | 4438. | 4293. | 4156. | 4088. | 4062. | 4006. | 3851. |
| 3807. | 3836. | 3809. | 3741. | 3770. | 3912 | 3898 | 3955 | 4005 | 4235 |
| 4160. | 3943 | 3978 | 4107 | 4160 | 4172 | 4068 | 4008 | 3024 | 3800 |
| 3813 | 3930 | 3005 | 3000 | 2704 | 27/0 | 2711 | 3740 | 3924. | 3800. |
| 3010 | 2762 | 2024 | 2001 | 2724. | 2010 | 3711. | 3742. | 3070. | 3/93. |
| 3900. | 3/02. | 3924. | 3981. | 3957. | 3916. | 4026. | 3964. | 3986. | 3821. |
| 38/3. | 4044. | 4031. | 3884. | 3905. | 3946. | 3978. | 4078. | 4120. | 4120. |
| 4141. | 4252. | 4096. | 4055. | 4133. | 4021. | 3957. | 3885. | 3927. | 3812. |
| 3913. | 3885. | 4005. | 3924. | 3837. | 3771. | 3927. | 3947. | 3985. | 4009. |
| 3949. | 3858. | 3949. | 3871. | 3807. | 3879. | 3925. | 3831. | 3665. | 3937. |
| 3903. | 3702. | 3641. | 3697. | 3622. | 3898. | 3855. | 3810. | 3816. | 3943 |
| 4099. | 3907. | 3930. | 4222. | 4023. | 4074 | 4063 | 3789 | 3767 | 3718 |
| 3679 | 3686 | 3855 | 3590 | 3619 | 3727 | 3716 | 3701 | 3773 | 3857 |
| 3912 | 3777 | 3721 | 3800 | 3000 | 3765 | 20240. | 2000 | J//J.
2011 | JOJ/. |
| 2020 | 2010 | 2010 | 2000. | 2000. | 3/03. | 3034. | 2092. | 3014. | 3720. |
| 3030. | 2222 | 3042. | 3/49. | 3/53. | 360/. | 3550. | 36/5. | 3696. | 3772. |
| 3/96. | 3932. | 3981. | 3823. | 3728. | 3809. | 3/69. | 3786. | 3915. | 3943. |
| 3924. | 4141. | 4113. | 4231. | 4217. | 4359. | 4446. | 4282. | 4338. | 4494. |
| 4623. | 4523. | 4320. | 4299. | 4226. | 3959. | 3876. | 3926. | 3781. | 3631. |
| 3629. | 3756. | 3801. | 3892. | 4029. | 4045. | 3913. | 3901. | 3955. | 3932. |
| 3929. | 4011. | 4129. | 4313. | 4677. | 4942. | 5332. | 5922. | 6498 | 6667 |
| 6645. | 6420. | 6070. | 5857. | 5667. | 5439 | 5206 | 4942 | 4754 | 4491 |
| | | | | | | | | * * * * * | * * * * * |

| 1727 | 4005 | 4014 | 2052 | 2025 | 20.01 | 2026 | 2022 | 2600 | 2622 |
|---------------|-------|--------|---------------|-------|-------|---------------|-------|-------|--------|
| 4237. | 4093. | 4014. | 29021 | 3933. | 2901. | 3920. | 3033. | 5050. | 3023. |
| 3685. | 3765. | 3805. | 3882. | 3929. | 3949. | 3921. | 3852. | 3714. | 3751. |
| 3874 | 3764 | 37.01 | 3744 | 3798 | 3812 | 3759 | 3751 | 3729 | 3795 |
| 2072 | 2760 | 3701. | 2040 | 2010 | 2012, | 2752. | 2026 | 2000 | 2050 |
| 38/3. | 3769. | 3129. | 3849. | 3846. | 3827. | 3/58. | 3820. | 2880. | 3850. |
| 3804. | 3718. | 3579. | 3638. | 3820. | 3928. | 3898. | 3797. | 3701. | 3695. |
| 3695 | 3703 | 3679 | 3735 | 3768 | 3841 | 3904 | 4050 | 4183. | 4330 |
| 5055. | 5705. | 5075. | 3735. | | 5041. | 3304. | 40501 | 100. | 1000 |
| 4638. | 4804. | 4867. | 4965. | 4887. | 4667. | 4459. | 4258. | 4276. | 4203. |
| 3884. | 3937. | 4016. | 4252. | 4381. | 4579. | 4497. | 4598. | 4706. | 4598. |
| 4541 | 1305 | 1121 | 1371 | 4267 | 1270 | 1101 | 1193 | 1010 | 1128 |
| 4041+ | 4305. | 4424. | 43/4. | 4207. | 4270. | 4101. | 4101. | 4219. | 4120. |
| 4102. | 3980. | 3776. | 3992. | 4041. | 4203. | 4411. | 4705. | 4618. | 4759. |
| 5119 | 5156. | 5165. | 5343. | 5662. | 5820. | 5536. | 5342. | 5473. | 5077. |
| 4661 | 4421 | 4450 | 1225 | 4374 | 1060 | 4471 | 4400 | 4401 | 1572 |
| 4001. | 4421. | 4400. | 4333. | 42/4. | 4200. | 44/1. | 4400. | 4401. | 4373. |
| 4750. | 4751. | 4716. | 4627. | 4519. | 4369. | 4185. | 4190. | 4234. | 4260. |
| 4508 | 4360. | 4080 | 4081 | 4015 | 3973. | 3850. | 3865. | 3966. | 3940. |
| 2002 | 2040 | 2045 | 2017 | 2020 | 2007 | 2020 | 2047 | 2705 | 2027 |
| 3902. | 3949. | 3043. | 3647. | 3929. | 2020. | 3020. | 3047. | 3705. | 5057. |
| 3918. | 3890. | 3948. | 4046. | 3920. | 3948. | 4029. | 4151. | 4290. | 4508. |
| 4785 | 5053 | 5259 | 5182 | 5052 | 4761 | 4365 | 4168 | 4047 | 4053 |
| 2007 | 2041 | 2000 | 4050 | 20(2) | 2001 | 2004 | 2007 | 2040 | 2010 |
| 3997. | 3941. | 3986. | 4058. | 3962. | 3901. | 3994. | 3987. | 3940. | 2210. |
| 3861. | 3837. | 3818. | 3825. | 3801. | 3880. | 3863. | 3864. | 3903. | 3940. |
| 3778 | 3744 | 3739 | 3754 | 3705 | 3704 | 3729 | 3723. | 3714. | 3693. |
| 2770 | 2000 | 2000 | 2020 | 2705 | 2710 | 2,00 | 2711 | 2715 | 2740 |
| 3120. | 3808. | 2002. | 3920. | 2/02. | 2118. | 2090. | 5/11. | 3/13. | 5749. |
| 3814. | 3894. | 3930. | 3989. | 4109. | 4205. | 4168. | 4202. | 4253. | 4282. |
| 4276 | 4283 | 4346 | 4375 | 4389 | 4415 | 4380 | 4316 | 4289 | 4308 |
| 4200 | 40.41 | 44 34 | 4075 | 2046 | 2212. | 1000 | 2000 | 2052 | 20001 |
| 4303. | 4241. | 4131. | 4037. | 3940. | 3869. | 3883. | 3852. | 3823. | 3947. |
| 3984. | 4007. | 4047. | 4043. | 4017. | 3964. | 3881. | 3812. | 3819. | 3826. |
| 3721 | 3674 | 3668 | 3602 | 3659 | 3778 | 3720 | 3591 | 3575 | 3506 |
| 2721. | 2014. | 2200 | 22021 | 2000 | 3770. | 2501 | 2610 | 2575. | 2500. |
| 3553. | 3/14. | 3709. | 3729. | 3698. | 3281. | 3594. | 3612. | 3572. | 3520. |
| 3596. | 3677. | 3640. | 3566. | 3589. | 3636. | 3662. | 3561. | 3531. | 3646. |
| 3608 | 3577 | 3695 | 3801 | 3842 | 3802 | 3837 | 3846 | 3755 | 3727 |
| 2000. | 2200 | 3693. | 2601. | 2251 | 2002. | 2027. | 2020. | 2071 | 2027. |
| 3691. | 3700. | 3697. | 3642. | 3/51. | 3760. | 3820. | 3832. | 3871. | 3926. |
| 3951. | 3926. | 3929. | 3909. | 3889. | 3901. | 3892. | 3994. | 4010. | 4015. |
| 3947 | 3821 | 3783 | 3771 | 3719 | 3675 | 3526 | 3442 | 3569 | 3689 |
| 2/11 | 3021. | 3703. | 2054 | 3712. | 2072. | 220. | 2020 | 3302. | 12002. |
| 36/1. | 3848. | 3//6. | 3854. | 3827. | 3932. | 3967. | 3938. | 4015. | 4309. |
| 4393. | 4024. | 4054. | 4165. | 4122. | 4054. | 4022. | 3926. | 3783. | 4045. |
| 4082 | 3995 | 4116 | 4267 | 4333 | 4189 | 4178 | 4173 | 4185 | 4241 |
| 4002. | 3995. | 4110. | 4207. | 4333. | 2102. | 4170. | 41/5. | 4100. | 7241. |
| 4224. | 4055. | 4088. | 4226. | 4044. | 3893. | 3910. | 3996. | 3825. | 3990. |
| 3977. | 3868. | 4004. | 3993. | 4107. | 4214. | 4291. | 4223. | 4355. | 4515. |
| 4571. | 4568. | 4412. | 4429. | 4322. | 4365. | 4253. | 4061. | 3985. | 3983. |
| 40.20 | 2000 | 2007 | 2010 | 2000 | 4021 | 4054 | 2052 | 4007 | 4065 |
| 4020. | 3990. | 1997. | 1000 | JUJU. | 4031. | 40.04. | 1120 | 4007. | 40000 |
| 4070. | 4085. | 4078. | 4092. | 4115. | 4125. | 4106. | 4139. | 4257. | 4053. |
| 4027. | 4024. | 3957. | 3934. | 3928. | 3854. | 3770. | 3774. | 3724. | 3643. |
| 3700. | 3696 | 3695 | 3668 | 3660 | 3724 | 3720 | 3737. | 3716. | 3616. |
| 20010 | 2710 | 2720 | 2210. | 2744 | 2721 | 2700 | 2757 | 2020 | 2610. |
| 5047. | 3712. | 3730. | 3112. | 5/44. | 3721. | 3700. | 2020. | 2020. | 3030. |
| 3640. | 3725. | 3846. | 3834. | 3751. | 3673. | 3642. | 3711. | 3733. | 3718. |
| 3723. | 3785. | 3760. | 3766. | 3745. | 3679. | 3611. | 3620. | 3650. | 3648. |
| 3600 | 35.80 | 3502 | 3617 | 3656 | 3706 | 3771 | 3820 | 3872 | 3888 |
| 5000. | 5502. | JJ94. | 5017. | 3030. | 3700. | 3774. | 5025. | 5072. | 5000. |
| 3967. | 4111. | 41/8. | 4103. | 4041. | 3934. | 3834. | 3863. | 3942. | 4111. |
| 4283. | 4288. | 4208. | 4118. | 4075. | 4024. | 4063. | 4238. | 4517. | 4822. |
| 5137. | 5505. | 5796. | 6008. | 6026. | 5857. | 5437. | 5030. | 4689. | 4478. |
| 4257 | 4100 | 4020 | 2070 | 3067 | 2055 | 2000 | 4123 | 1253 | 4057 |
| 4237. | 4100. | 4029. | 3970. | 3907. | 2222. | 3909. | 4123. | 4233. | 4057. |
| 3907. | 3914. | 3955. | 3921. | 3928. | 3846. | 3779. | 3888. | 3864. | 3829. |
| 3741. | 3704. | 3719. | 3685. | 3573. | 3544. | 3554. | 3518. | 3597. | 3586. |
| 3560 | 3536 | 3635 | 3679 | 3809 | 3886 | 3804 | 3810 | 3736 | 3714 |
| 2500. | 2550. | 2022. | 2012. | 20021 | 2400 | 2400 | 3400 | 2520. | 2714. |
| 3202. | 3208. | 3288. | 3392. | 3212. | 3498. | 3480. | 3498. | 3520. | 3634. |
| 3625. | 3577. | 3479. | 3505. | 3532. | 3625. | 3690. | 3703. | 3581. | 3670. |
| 3802 | 3807 | 3711 | 3638 | 3615 | 3469 | 3502 | 3520 | 3452 | 3467 |
| 2401 | 2551 | 2401 | 2010 | 2015. | 2720 | 2752 | 2220. | 20120 | 3617 |
| 3401. | 2221. | 3491. | 3610. | 3003. | 3720. | 3733. | 5752. | 3070. | 5017. |
| 3571. | 3537. | 3558. | 3478. | 3515. | 3405. | 3444. | 3429. | 3411. | 3401. |
| 3346. | 3477. | 3386. | 3494. | 3538. | 3593. | 3637. | 3683. | 3628. | 3617. |
| 3530 | 3407 | 3127 | 3170 | 3571 | 3501 | 3552 | 3512 | 35.95 | 35.90 |
| 2520. | 3407. | 222/ . | 370. | 20111 | 3040 | 3334. | 2244. | 2202. | 2202. |
| 3560. | 36/4. | 3/56. | 3/86. | 3952. | 3842. | 3866. | 5194. | 36/3. | 3064. |
| 3539. | 3546. | 3628. | 3643. | 3624. | 3591. | 3576. | 3521. | 3550. | 3635. |
| 3637 | 3684 | 3721 | 3825 | 3952 | 4025 | 4142 | 4367 | 4497 | 4779 |
| 1005 | 1070 | 1007 | 1076 | 1610 | 1360 | 1202 | 4022 | 2022 | 3000 |
| 4000. | 42/0. | 420/. | 40/0. | 4043. | 4302. | 4203. | 4044. | .2001 | 3007. |
| 3886. | 3945. | 3939. | 3971. | 4039. | 4171. | 4291. | 4356. | 4386. | 4260. |
| 4084. | 4014. | 3839. | 3652. | 3555. | 3562. | 3626. | 3640. | 3579. | 3579. |
| 3583 | 3545 | 3606 | 3633 | 3624 | 3637 | 3661 | 3702 | 3691 | 3658 |
| 3303.
3504 | 2242. | 2000. | JUJJ.
DECC | 2402 | 2027. | 5001.
5111 | 32041 | 2402 | 5050. |
| 2221. | 3560. | 3519. | 3366. | 3493. | 3426. | 3411. | 3381. | 3403. | 3444. |
| 3490. | 3491. | 3434. | 3403. | 3431. | 3485. | 3530. | 3599. | 3643. | 3712. |

| 2700 | 2710 | 2012 | 2000 | 2000 | 1110 | 1011 | 4010 | 1255 | 4404 |
|-------|--------|--------|--------|-------|-------|-------|-------|-------|-------|
| 3709. | 5/10. | 3813. | 3908. | 2988. | 4116. | 4214. | 4213. | 4355. | 4424. |
| 4400. | 4331. | 4318. | 4268. | 4113. | 4016. | 3950. | 3912. | 3870. | 3768. |
| 3665 | 3640 | 3632 | 3630 | 3650 | 3660 | 2676 | 2720 | 3500 | 3176 |
| 2405 | 26540. | 2022. | 1010. | 3035. | 5000. | 5070. | 3730. | 3339. | 5420. |
| 3485. | 3654. | 3690. | 3631. | 3626. | 3741. | 3661. | 3666. | 3734. | 3789. |
| 3749. | 3665 | 3675 | 3714 | 3615 | 3644 | 3614 | 3600 | 3545 | 3508 |
| 2505 | 2005. | 2000 | 3103 | 2012. | 2011. | 2014. | 2000. | 2545. | 3,00. |
| 3585. | 3615. | 3608. | 3492. | 3556. | 3651. | 3569. | 3527. | 3556. | 3477. |
| 3489. | 3533. | 3552. | 3514. | 3523. | 3573. | 3636 | 3710 | 3861 | 3904 |
| 4007 | 4205 | 4460 | 4501 | 4(22 | 1(11 | 4(1) | 4504 | 4447 | 4001 |
| 4007. | 4305. | 4402. | 4521. | 4032. | 4011. | 4013. | 4524. | 4447. | 4201. |
| 4123. | 4222. | 4220. | 4112. | 4375. | 4350. | 4569. | 4481. | 4461. | 4353. |
| 1268 | 1170 | 2051 | 2000 | 3006 | 2020 | 4011 | 2012 | 2062 | 4000 |
| 4200. | 4170. | 5954. | 5600. | 3000. | 3930. | 4011. | 3942. | 3962. | 4006. |
| 4038. | 3939. | 3970. | 3937. | 3996. | 3905. | 4017. | 4093. | 4147. | 4299. |
| 4297 | 4406 | 4394 | 4297 | 4401 | 4611 | 4602 | 4558 | 4531 | 1073 |
| 2000 | 2000 | 2220 | 2207. | 2401. | 3011. | 4002. | 40000 | 4001. | 4275. |
| 3986. | 3963. | 3770. | 3699. | 3671. | 3662. | 3664. | 3602. | 3588. | 3649. |
| 3680. | 3740. | 3872. | 4025. | 4047. | 4109. | 4178. | 4242. | 4245. | 4305 |
| 1220 | 4106 | 1202 | 4104 | 1176 | 4050 | 2020 | 1770 | 2220 | 1701 |
| 4520. | 4100. | 4202. | 4124. | 4120. | 4058. | 2930. | 5/19. | 3129. | 3121. |
| 3716. | 3746. | 3744. | 3847. | 3908. | 3890. | 3807. | 3939. | 3913. | 3888. |
| 3800 | 3024 | 3000 | 3974 | 3763 | 2727 | 3660 | 2600 | 2721 | 3(33) |
| 1090. | JJ24. | 5090. | 5074. | 5702. | 5727. | 5000. | 5099. | 5751. | 2022. |
| 3599. | 3657. | 3722. | 3737. | 3814. | 3983. | 4010. | 3915. | 3936. | 4040. |
| 4042 | 3914 | 3839 | 3827 | 3810 | 3696 | 3631 | 3590 | 3580 | 3603 |
| 2012. | 2000 | 2700 | 3027. | 2010. | 2020. | 2011. | 3550. | 3300. | 3003. |
| 3011. | 3686. | 3708. | 3683. | 3654. | 3641. | 3640. | 3626. | 3729. | 3952. |
| 4102. | 4303. | 4479. | 4218. | 4012. | 4063. | 4092. | 3908. | 3743. | 3804. |
| 3911 | 3802 | 2021 | 3207 | 3716 | 3006 | 2067 | 2025 | 2076 | 2025 |
| 2013. | 3002. | 2021. | 5007. | 5740. | J000. | 1907. | 5955. | 3070. | 2022. |
| 3722. | 3773. | 3762. | 3775. | 3885. | 3786. | 3679. | 3634. | 3593. | 3541. |
| 3464 | 3475 | 3522 | 3513 | 3441 | 3400 | 3476 | 3389 | 3278 | 3315 |
| 2227 | 2210 | 2222. | 2220 | 2220 | 22001 | 22/01 | 2245 | 3270. | 0010. |
| 3335. | 3310. | 3323. | 3308. | 3350. | 3364. | 3345. | 3345. | 3393. | 3370. |
| 3276. | 3273. | 3309. | 3366. | 3428. | 3485. | 3448. | 3394. | 3404. | 3434. |
| 2100 | 3570 | 3627 | 3500 | 3453 | 3400 | 2440 | 2450 | 2405 | 2201 |
| 5455. | 7712. | 3027. | 5500. | 5455. | 5469. | 5440. | 5450. | 5425. | 3304. |
| 3382. | 3420. | 3455. | 3511. | 3660. | 3591. | 3545. | 3570. | 3483. | 3425. |
| 3598 | 3613 | 3537 | 3425 | 3384 | 3464 | 3590 | 3660 | 3617 | 3624 |
| 2661 | 2020 | 2647 | 2740 | 2700 | 2002 | 2010 | 2704 | 2407 | 2404 |
| 2001. | 2010. | 3647. | 5740. | 3790. | 3802. | 3840. | 3704. | 3487. | 3494. |
| 3525. | 3479. | 3541. | 3653. | 3567. | 3486. | 3359. | 3341. | 3585. | 3556. |
| 2/30 | 3278 | 3065 | 3157 | 3550 | 3507 | 3533 | 3500 | 3343 | 2020 |
| 5455. | 5270. | 5005. | 5151. | 5550. | 5591. | 2722. | 3300. | 5545. | 5250. |
| 3535. | 3440. | 3225. | 3166. | 315/. | 3301. | 3323. | 3381. | 3314. | 3200. |
| 3146. | 3276. | 3299. | 3366. | 3245. | 3351. | 3131 | 3049 | 3165 | 3288 |
| 2242 | 22/01 | 22/1 | 3450 | 2104 | 2201 | 2200 | 2201 | 2020 | 2000 |
| 5245. | 3243. | 3341. | 3430. | 5184. | 3201. | 3390. | 3391. | 3236. | 32/3. |
| 3354. | 3332. | 3388. | 3368. | 3386. | 3214. | 3377. | 3548. | 3462. | 3520. |
| 3298 | 3313 | 3/51 | 3/52 | 3593 | 3579 | 3361 | 3357 | 3404 | 3364 |
| 3290. | 5515. | 5451. | 3434. | 22021 | 5570. | JJ04. | 2221. | 3434. | 5554. |
| 3491. | 3528. | 3506. | 3514. | 346/. | 3473. | 3493. | 3380. | 3390. | 3342. |
| 3332. | 3399 | 3247. | 31.88. | 3254 | 3352 | 3344 | 3343 | 3308 | 3293 |
| 2041 | 2552 | 2612 | 2505 | | 2470 | 2505 | 2401 | 2440 | 2450 |
| 5041. | 2222. | 2022. | 22021 | 3202. | 34/8. | 3202. | 3491. | 3442. | 3458. |
| 3592. | 3592. | 3373. | 3334. | 3294. | 3294. | 3275. | 3165. | 3144. | 3167. |
| 3231 | 3195 | 3166 | 2115 | 3171 | 3253 | 3230 | 3206 | 3753 | 3361 |
| 2221. | 5155. | 5100. | 5115. | J1/4. | 5255. | 5250. | 5200. | JZJJ. | 2201. |
| 3313. | 3243. | 3228. | 3182. | 3234. | 3321. | 3185. | 3115. | 3197. | 3153. |
| 3254. | 3364. | 3269. | 3238. | 3297. | 3363. | 3353. | 3309. | 3289. | 3264 |
| 3203 | 2224 | 2224 | 2210 | 225.1 | 2201 | 2222. | 20020 | 2222 | 2172 |
| 3293. | 3324. | 3334. | 22101 | 3353. | 2221. | 3311. | 3212. | 3232. | 31/2. |
| 3168. | 3187. | 3172. | 3144. | 3193. | 3218. | 3263. | 3345. | 3310. | 3313. |
| 3348 | 3368 | 3347 | 3256 | 3294 | 2205 | 3424 | 3480 | 3503 | 3408 |
| 2224 | 2107 | 2100 | 3200 | 2224. | 2020 | 2727. | 2200. | 2102. | 3420. |
| 3324. | 5107. | 3180. | 3282. | 3286. | 3278. | 3331. | 3243. | 3197. | 3332. |
| 3338. | 3236. | 3276. | 3207. | 3222. | 3112. | 3190. | 3225. | 3190. | 3173. |
| 3160 | 3003 | 2126 | 2051 | 2002 | 2160 | 2166 | 2174 | 20.00 | 2050 |
| 5109. | 5205. | 7120. | 2021. | 5095. | 2100. | 3100. | 51/4. | 2009. | 3036. |
| 3052. | 3140. | 3092. | 3196. | 3138. | 3035. | 3117. | 2858. | 3006. | 3151. |
| 3227. | 3062 | 3094 | 3024 | 3056 | 3158 | 3159 | 3050 | 3129 | 2227 |
| 2205 | 2104 | 2021. | 2122 | 2140 | 2150. | 2200 | 2020. | 2222 | 22277 |
| 3295. | 3184. | 3212. | 3132. | 3146. | 3154. | 3206. | 3296. | 3248. | 3198. |
| 3195. | 3123. | 3207. | 3238. | 3335. | 3274. | 3154. | 3111. | 3096. | 3074. |
| 3140 | 3090 | 3202 | 3351 | 3370 | 3200 | 3762 | 2405 | 2262 | 2224 |
| J140. | 3202. | 5696. | 2224. | 77101 | 5200. | 5205. | 5405. | 5262. | 5224. |
| 3308. | 3347. | 3228. | 3248. | 3174. | 3308. | 3231. | 3147. | 3203. | 3039. |
| 3108 | 32.61 | 3142 | 3159 | 3198 | 3258 | 3052 | 2948 | 2931 | 3105 |
| 2100 | 2110 | 22.10. | 22.22. | 3014 | 2220. | 2100 | 2240. | 2221. | 2122. |
| 2192. | 3129. | 3202. | 3241. | 3610. | 3225. | 3192. | 3121. | 3082. | 3182. |
| 3203. | 3189. | 3130. | 3176. | 3201. | 3177. | 3158. | 3183. | 3239. | 3241. |
| 3367 | 3328 | 3253 | 3217 | 3340 | 3/3/ | 3175 | 3/20 | 3375 | 3/10 |
| 2421 | 2020. | 3633. | 7711. | 5542. | 5454. | 5475. | 3447. | 33/3. | 3410. |
| 3431. | 3290. | 3152. | 3379. | 3348. | 3171. | 3107. | 3042. | 3035. | 3037. |
| 3103. | 3118. | 3138. | 3068. | 3087 | 2969 | 2995 | 3213 | 3288 | 3158 |
| 2000 | 2200 | 2200. | 2220. | 2460 | 22020 | 2222. | 2213. | 2200. | 21201 |
| 2098. | 3201. | 3269. | 2336. | 346U. | 3386. | 3438. | 3529. | 3531. | აააც. |
| 3518. | 3436. | 3442. | 3473. | 3457. | 3370. | 3309. | 3357. | 3400. | 3337. |
| 3327 | 2225 | 3007 | 3216 | 3200 | 3304 | 3776 | 3004 | 3202 | 3007 |
| 2027. | 2000 | 3441. | JZ10. | 5655. | 5504. | 5210. | JZZ4. | 5202. | 3441. |
| 3081. | 3020. | 3046. | 3215. | 3311. | 3305. | 3346. | 3386. | 3430. | 3583. |
| 3634. | 3627. | 3589. | 3472. | 3410. | 3410. | 3355. | 3300 | 3285 | 3303 |
| 3370 | 3200 | 3050 | 2121 | 3040 | 2100 | 2222. | 2220 | 2202. | 2202. |
| 3370. | 3209. | 2020. | 2101. | 3249. | 3290. | 3340. | 3330. | 33/0. | 3342. |
| 3274 | 3238 | 3202 | 3256 | 2003 | 3298 | 3314 | 3180 | 3063 | 3155 |

\$

| 2166 | 21.42 | 2075 | 2010 | 1000 | 2025 | 2051 | 2021 | 3061 | 30.01 |
|-------|---------------|-------|-------|-------|---------------|-------|-------|-------|-------|
| 2100. | 3143.
2110 | 3075. | 2010. | 2900. | 3035. | 3051. | 2051. | 3025 | 3010 |
| 3100. | 3110. | 2979. | 2940. | 2900. | 2022. | 2912. | 2910. | 3023. | 3120 |
| 3081. | 3128. | 3170. | 3018. | 3023. | 3032.
2101 | 2973. | 2020. | 3241 | 3254 |
| 3103. | 3149. | 3061. | 2990. | 22121 | 2121. | 2111. | 3097. | 3700 | 3234. |
| 3237. | 3202. | 3241. | 3192. | 3312. | 3204. | 22222 | 3430. | 3086 | 3006 |
| 3422. | 2202. | 3270. | 2200. | 3200. | 3200. | 2001 | 3102 | 3189 | 3166 |
| 3068. | 3119. | 3022. | 3082. | 2990. | 2098. | 2091. | 3102. | 3203. | 3242 |
| 3271. | 3101. | 3288. | 31/4. | 3133. | 3217. | 2140 | 2004 | 3105 | 3103 |
| 3039. | 3084. | 3078. | 2900. | 33/3. | 27221 | 3149. | 2024. | 3169 | 3130 |
| 3202. | 3192. | 3140. | 3143. | 3100. | 3234. | 2150 | 2212. | 3165 | 3156 |
| 2/81. | 2122. | 3094. | 3190. | 2922. | 2994. | 3123. | 2030 | 3050 | 3068 |
| 3146. | 3186. | 2998. | 2918. | 3004. | 3030. | 2000. | 2020. | 2006 | 2100 |
| 3005. | 2999. | 3045. | 3048. | 3040. | 3008. | 3093. | 3091. | 3090. | 3100. |
| 2935. | 3001. | 3034. | 2948. | 2916. | 2979. | 3160. | 3100. | 3092. | 2002. |
| 3174. | 3247. | 3273. | 3199. | 3058. | 3053. | 3193. | 3206. | 3252. | 3245. |
| 3122. | 3134. | 3266. | 3222. | 3099. | 3031. | 3088. | 3149. | 3048. | 3029. |
| 3148. | 3091. | 3107. | 3183. | 3145. | 3093. | 3225. | 3259. | 3184. | 3208. |
| 3259. | 3264. | 3285. | 3387. | 3436. | 3410. | 3381. | 3415. | 3439. | 3460. |
| 3525. | 3503. | 3524. | 3606. | 3571. | 3545. | 3591. | 3612. | 3591. | 3555. |
| 3473. | 3394. | 3463. | 3526. | 3435. | 3373. | 3423. | 3461. | 3459. | 3409. |
| 3320. | 3300. | 3299. | 3337. | 3374. | 3400. | 3380. | 3286. | 3373. | 3396. |
| 3287. | 3311. | 3381. | 3344. | 3283. | 3330. | 3415. | 3460. | 3368. | 3249. |
| 3234. | 3266. | 3284. | 3291. | 3294. | 3289. | 3270. | 3231. | 3163. | 3142. |
| 3145. | 3166. | 3159. | 3061. | 3086. | 3151. | 3131. | 3066. | 3129. | 3165. |
| 3131. | 3173. | 3230. | 3214. | 3228. | 3301. | 3206. | 3193. | 3234. | 3277. |
| 3277. | 3202. | 3148. | 3175. | 3272. | 3282. | 3256. | 3096. | 3106. | 3009. |
| 3078. | 3226. | 3171. | 3171. | 3163. | 3181. | 3181. | 3187. | 3237. | 3213. |
| 3321. | 3248. | 3256. | 3276. | 3175. | 2955. | 3022. | 3287. | 3243. | 2904. |
| 2904. | 3243. | 3212. | 3289. | 3239. | 3367. | 3262. | 3368. | 3274. | 3336. |
| 3182. | 3070. | 3137. | 3314. | 3245. | 3344. | 3239. | 3214. | 3151. | 3261. |
| 3283. | 3162. | 3165. | 3152. | 3249. | 3176. | 3155. | 3169. | 3341. | 3091. |

Appendix P-27: step-intensity data of B-muscovite

| 8.00 | .02 | 122.00 | | | | | | | |
|-------|-------|--------|-------|-------|-------|-------|-------|--------------|-------------|
| 363. | 381. | 341. | 321. | 334. | 334. | 321. | 350. | 373. | 360. |
| 373. | 371. | 353. | 412. | 390. | 407. | 400. | 367. | 395. | 358. |
| 411. | 399. | 406. | 396. | 420. | 487. | 461. | 444. | 518. | 589. |
| 555. | 569. | 646. | 665. | 702. | 880. | 812. | 834. | 990. | 1072. |
| 1175. | 1259. | 1433. | 1699. | 1822. | 1994. | 2132. | 2000. | 1711. | 1348. |
| 1055. | 760. | 527. | 451. | 387. | 402. | 369. | 316. | 314. | 334. |
| 270. | 295 | 269 | 251 | 286 | 280 | 296 | 271 | 255 | 246 |
| 286 | 231 | 274 | 254 | 261 | 276 | 271 | 279 | 247 | 269 |
| 238 | 251. | 265 | 2/3 | 252 | 270. | 2710 | 255 | 247, | 2020 |
| 230. | 200. | 203. | 243. | 200. | 250. | 212. | 2.30. | 202. | 2020 |
| 234. | 232. | 203. | 272. | 224. | 202. | 231. | 245. | 239. | 232. |
| 210. | 249. | 211. | 220. | 234. | 230. | 201. | 219. | 257. | 221. |
| 229. | 239. | 205. | 248. | 233. | 206. | 232. | 203. | 230. | 209. |
| 207. | 185. | 214. | 224. | 221. | 210. | 224. | 203. | 253. | 219. |
| 216. | 221. | 185. | 217. | 221. | 220. | 221. | 212. | 192. | 209. |
| 198. | 228. | 226. | 201. | 243. | 247. | 239. | 219. | 203. | 214. |
| 190. | 211. | 224. | 221. | 217. | 201. | 248. | 181. | 185. | 203. |
| 196. | 212. | 205. | 194. | 216. | 202. | 210. | 212. | 205. | 214. |
| 211. | 209. | 177. | 197. | 198. | 193. | 216. | 174. | 209. | 205. |
| 186. | 191. | 194. | 175. | 182. | 181. | 185. | 184. | 180. | 190. |
| 199. | 163. | 182. | 188. | 213. | 195. | 197. | 167. | 201. | 181. |
| 201. | 200. | 196. | 198. | 174. | 176. | 185. | 183. | 194. | 210. |
| 170. | 199. | 198. | 217. | 213. | 203. | 192. | 202 | 161. | 178 |
| 185. | 180. | 211 | 195. | 190 | 194 | 172 | 165 | 167 | 167 |
| 184 | 170 | 182 | 179 | 183 | 216 | 186 | 185 | 192 | 152 |
| 157 | 189 | 180 | 177 | 174 | 163 | 171 | 171 | 1/0 | 170 |
| 175 | 199 | 164 | 167 | 155 | 103. | 170 | 107 | 199. | 170. |
| 101 | 174 | 104. | 155 | 171 | 191. | 1/0. | 107. | 160. | 179. |
| 100 | 1/4. | 107. | 100. | 201 | 207. | 143. | 190. | 104. | 100. |
| 104 | 200. | 170 | 100 | 201. | 203. | 191. | 192. | 444 | 202. |
| 184. | 165. | 1/9. | 180. | 192. | 207. | 204. | 178. | 182. | 168. |
| 188. | 192. | 205. | 212. | 1/3. | 182. | 165. | 195. | 180. | 222. |
| 182. | 186. | 180. | 218. | 240. | 175. | 210. | 172. | 161. | 190. |
| 176. | 202. | 158. | 174. | 176. | 173. | 144. | 211. | 163. | 167. |
| 162. | 154. | 172. | 141. | 169. | 186. | 151. | 158. | 168. | 172. |
| 187. | 164. | 179. | 163. | 153. | 159. | 140. | 133. | 158. | 168. |
| 181. | 155. | 158. | 186. | 173. | 148. | 154. | 150. | 146. | 171. |
| 139. | 170. | 178. | 164. | 136. | 126. | 168. | 159. | 108. | 160. |
| 172. | 153. | 153. | 126. | 149. | 166. | 171. | 133. | 173. | 152. |
| 156. | 162. | 135. | 133. | 163. | 119. | 139. | 170. | 139. | 130. |
| 139. | 135. | 164. | 152. | 127. | 144. | 154. | 131. | 145. | 121. |
| 144. | 134. | 155. | 158. | 149. | 149. | 171. | 124. | 150. | 158. |
| 162. | 139. | 195. | 137. | 140. | 132. | 160. | 132. | 131. | 149 |
| 128. | 142. | 152 | 195 | 134 | 140 | 136 | 143 | 136 | 167 |
| 125. | 137. | 122 | 152 | 133 | 124 | 172 | 152 | 171 | 143 |
| 182 | 161 | 151 | 149 | 160 | 140 | 127 | 158 | 127 | 126 |
| 140 | 148 | 152 | 163 | 171 | 120. | 157 | 1/1 | 147 | 150 |
| 172 | 149 | 151 | 142 | 1/10 | 162 | 169 | 13/ | 147. | 117 |
| 138 | 151 | 126 | 166 | 191 | 140 | 105. | 154. | 174. | 177 |
| 150. | 177 | 166 | 100. | 101. | 140. | 190. | 100. | 1/0. | 1/7. |
| 170 | 1//. | 100. | 140. | 100. | 190. | 120. | 104. | 100. | 193. |
| 1/0. | 160. | 180. | 179. | 198. | 184. | 198. | 201. | 237. | 237. |
| 251. | 306. | 346. | 388. | 430. | 445. | 422. | 434. | 509. | 454. |
| 406. | 347. | 228. | 239. | 211. | 203. | 174. | 162. | 151. | 140. |
| 166. | 194. | 136. | 150. | 121. | 147. | 122. | 134. | 144. | 145. |
| 138. | 144. | 150. | 144. | 148. | 151. | 135. | 137. | 149. | 154. |
| 170. | 136. | 140. | 150. | 122. | 134. | 140. | 147. | 121. | 136. |
| 127. | 129. | 152. | 119. | 155. | 140. | 143. | 143. | 132. | 143. |
| 114. | 134. | 160. | 133. | 114. | 154. | 135. | 128. | 135. | 141. |
| 127. | 136. | 139. | 127. | 134. | 128. | 133. | 150. | 172. | 135. |
| 163. | 138. | 156. | 181. | 159. | 196. | 216. | 201. | 187. | 197. |
| 234. | 234. | 245. | 238. | 297. | 332 | 332 | 423 | 398 | 391 |
| 394 | 397. | 369. | 364. | 360. | 397. | 394 | 452 | 542 | 573 |
| 620 | 738 | 822 | 964 | 1124 | 1184 | 1315 | 1402 | 1530 | 1616 |
| 1666 | 1667 | 1720 | 1561 | 1432 | 1343 | 1259 | 1194 | 10/3 | 961 |
| 805 | 769 | 620 | 567 | 506 | 520 | 508 | 154. | 1042. | 170 |
| 430 | 102. | 307 | 402 | 112 | 307 | 200. | 404. | 405.
405. | 350 |
| 369 | 400 | 327. | 400 | 413. | 440 | 277. | 414. | 702. | 30E
2021 |

| 460 | 406 | A1 A | 414 | 427 | 410 | 366 | 370 | 362 | 361 |
|-------------|-------------|-------------|---|-------------|-------------|-------------|-------------|---------------------|-------------|
| 340 | 338 | 201 | 296 | 304 | 250 | 280 | 278 | 238 | 260 |
| 223 | 234 | 244 | 245 | 256 | 251 | 247 | 233 | 258 | 194 |
| 229 | 230 | 236 | 178 | 241 | 197 | 231. | 227. | 237. | 245 |
| 227 | 200. | 230. | 212 | 300 | 316 | 304 | 335 | 354 | 348 |
| 347 | 375 | 351 | 355 | 329 | 337 | 306 | 285 | 297 | 267 |
| 238 | 230 | 199 | 220 | 240 | 220 | 219 | 191 | 236 | 207. |
| 200. | 239. | 209 | 220. | 240. | 220. | 217 | 206 | 196 | 192 |
| 202. | 215. | 202. | 200. | 257 | 232. | 217. | 255 | 280 | 275 |
| 230. | 210. | 204. | 237. | 254. | 240. | 270. | 255. | 260. | 275. |
| 270. | 200. | 200. | 242, | 204. | 200 | 234. | 200 | 3/9 | 350 |
| 293 | 404 | 232. | 204. | 507 | 501 | 571 | 400 | 742. | 116 |
| 160 | 424. | 407. | 374 | 307. | 363 | 310 | 310 | 409.
265 | 240. |
| 400. | 442. | 401. | 374. | 261 | 202. | 310. | 212. | 203. | 240. |
| 270. | 202. | 225. | 232. | 201. | 247. | 224. | 252. | 227. | 240. |
| 234. | 232. | 200. | 245. | 210. | 306 | ZOI.
111 | 200. | 576 | 520 |
| 510 | 540 | 522. | 501. | 560 | 560. | 507 | 492.
504 | 320. | 401 |
| 240. | 540.
111 | 204. | 224. | 202. | 220 | 227. | 204. | 473. | 421. |
| 202. | 411. | 270. | 201 | 237. | 410 | 420. | 200. | 453. | 293. |
| 312. | 305. | 331. | 301. | J⊥J.
303 | 410. | 439. | 30/. | 457. | 204. |
| 440. | 441. | 3/4. | 300. | 293. | 410. | 308. | 332. | 320. | 204. |
| 310. | 296. | 267. | 265. | 237. | 219. | 2//. | 274. | 272. | 247. |
| 209. | 249. | 243. | 269. | 242. | 208. | 243. | 200. | 200. | 201. |
| 235. | 258. | 260. | 279. | 254. | 286. | 265. | 298. | 345. | 334. |
| JJJ. | 314. | 335. | 328. | 318. | 351. | 426. | 431. | 41/. | 493. |
| 531. | 4/1. | 582. | 5/4. | 563. | 540. | 565. | 641. | 596. | 298. |
| 533. | 517. | 500. | 4//. | 481. | 436. | 350. | 364. | 301. | 315. |
| 276. | 289. | 2/6. | 270. | 240. | 241. | 256. | 273. | 231. | 238. |
| 246. | 209. | 249. | 234. | 246. | 212. | 238. | 224. | 258. | 252. |
| 292. | 281. | 298. | 291. | 257. | 214. | 301. | 321. | 324. | 360. |
| 341. | 398. | 3/3. | 491. | 559. | 663. | 1105 | 812. | 899. | 1103. |
| 1008. | 11/6. | 1147. | 1239. | 1185. | 1206. | 1195. | 1089. | 1013. | 8/1. |
| /45. | 616. | 563. | 463. | 450. | 361. | 365. | 335. | 303. | 285. |
| 2/1. | 262. | 2/3. | 295. | 255. | 231. | 200. | 218. | 235. | 220. |
| 211. | 233. | 201. | 205. | 224. | 210. | 217. | 196. | 207. | 21/. |
| 239. | 201. | 204. | 195. | 270. | 207. | 213. | 246. | 263. | 264. |
| 213. | 283. | 334. | 517. | 512. | 343. | 383. | 402. | 492. | 401. |
| 521. | 208. | 561. | 545. | 543. | D4⊥•
201 | 514. | 503. | 519. | 210. |
| 502. | 4//. | 445. | 348. | 396. | 331. | 293. | 275. | 269. | 240. |
| 200. | 244. | 234. | 238. | 233. | 227. | 194. | 223. | 250. | 199. |
| 19/. | 218. | 209. | 1/5. | 243. | 201. | 192. | 207. | 208. | 232. |
| 231. | 260. | 223. | 222. | 235. | ∠38.
201 | 244. | 253. | 233. | 270. |
| 230. | 269. | 240. | 249. | 243. | 291. | 240. | 207. | 270. | 219. |
| 201 | 363. | 208. | <u>,</u>
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 334. | 3/9. | 403. | 301. | 300. | 204. |
| 301. | 304. | 312. | 220. | 323. | 407. | 200. | 270. | 2/1. | 240. |
| 203. | 222. | 223. | 220. | 243. | 222. | 227. | 220. | 242.
A1C | 230. |
| 440 | 400 | 2/4. | 2/4. | 294.
E10 | J42. | 595. | 551. | 410.
51 <i>4</i> | 4701 |
| 449. | 490. | 211. | 717. | 710. | 233. | 201 | 247. | 214. | 242. |
| 202. | 471. | JJU. | 402. | 400. | 410. | 106 | JJZ.
220 | 200 | 104 |
| 205. | 272. | 205 | 100 | 199 | 201. | 214 | 220. | 196 | 213 |
| 217. | 105 | 201. | 199. | 102. | 243. | 214. | 220. | 100. | 21J.
101 |
| 100 | 195.
011 | 203. | 200. | 203. | 200 | 100 | 200. | 207. | 211 |
| 190. | 211. | 220. | 212. | 223. | 209. | 301 | 209. | 343 | 211. |
| 200 | 100. | 200. | 230. | 232. | 212. | 314 | 330 | 343. | 350 |
| 210. | 342. | 329. | 300 | 204. | 741. | 250 | 220. | 103 | 202 |
| 221 | 104 | 192. | 190. | 177 | 106 | 194 | 122. | 195. | 175 |
| 100 | 194. | 107. | 105. | 204 | 170 | 194. | 100. | 1900 | 175. |
| 199.
001 | 252 | 200 | 190. | 200. | 1/0. | 234. | 213. | 200 | 204. |
| 201. | 202. | 233. | 277. | 308. | 200. | 270. | 201. | 102 | 2,50. |
| 145 | 203. | 207. | 200. | 209. | 105 | 200. | 230. | 192. | 222. |
| 140 | 175. | 212. | 110 | 114 | 100. | 111 | 142. | 122. | 140. |
| 140. | 112 | 90. | 110. | 114. | 109. | 111. | 100 | 144. | 110. |
| 03
TIO' | 143. | 100 | 110
110 | 117 | 100. | 101. | 110 | 03
TTJ. | 100. |
| טטע.
101 | 114. | 111 | 110. | 111 | 122. | 103. | 150 | 23.
121 | 127 |
| 121.
126 | 120. | 1 | 127 | 111. | 120. | 170 | 102 | 154. | 107 |
| 177 | 100 | 176. | 10/. | 131 | 127 | 155 | 133. | 100. | 10/. |
| 120 | 107.
101 | 12/0. | 155. | 105 | 107.
100 | 101 | 110 | 110 | 147 |
| 140 | 101. | 134.
130 | 140 | 100. | 144 | 167
157 | 161 | 115. | 160 |
| 107. | 55.
160 | 153 | 144. | 200 | 144.
151 | 190 | 101. | 747. | 172 |

| 221 | 187 | 197 | 224 | 230 | 228 | 201 | 225 | 2/3 | 200 |
|-------|-------|---------|------------|-------|-------|--------------|-------|-------|-------|
| 221. | 2207. | 1 2 1 . | 447. | 230. | 220. | 201. | 223. | 24J. | 495. |
| 292. | 312. | 344. | 407. | 422. | 478. | 493. | 491. | 598. | 592. |
| 648. | 679. | 754. | 744. | 831. | 852. | 901. | 897. | 979. | 995 |
| 1015 | 1004 | 1000 | 1041 | 1051 | 1020 | 11 / / | 1162 | 1150 | 1100 |
| 1015. | 1094. | 1089. | 1041. | 1001. | 1028. | 1144. | 1103. | 1153. | 1120. |
| 1233. | 1232. | 1306. | 1361. | 1391. | 1404. | 1456. | 1502. | 1419. | 1456. |
| 1478 | 1395 | 1315 | 1220 | 1144 | 007 | 832 | 814 | 682 | 5.84 |
| 1470. | 1355. | 1313. | 1220. | 1144. | 991. | 0.52. | 014. | 002. | 204. |
| 540. | 451. | 340. | 309. | 310. | 252. | 286. | 253. | 248. | 210. |
| 211. | 240. | 251. | 228. | 219 | 212 | 223 | 227 | 234 | 255 |
| 005 | 210. | 105 | 220. | 212. | 100 | 223. | 100 | 201. | 255. |
| 445. | 238. | 195. | 215. | 201. | 180. | 202. | 190. | 186. | 162. |
| 191. | 166. | 136. | 191. | 173. | 154. | 182. | 145. | 158. | 197. |
| 160 | 1 / 5 | 170 | 172 | 102 | 200 | 200 | 202 | 200. | 240 |
| 109. | 145. | 1/0. | 1/3. | 195. | 200. | 206. | 202. | 220. | 248. |
| 226. | 248. | 272. | 312. | 290. | 277. | 280. | 337. | 353. | 349. |
| 397 | 346 | 308 | 202 | 361 | 395 | A A A | 121 | 301 | 420 |
| | 540. | 300. | 222. | 301. | 505. | | 444. | 501. | 420. |
| 405. | 360. | 301. | 320. | 319. | 259. | 324. | 276. | 229. | 250. |
| 240. | 262. | 224. | 222. | 198. | 218. | 203. | 201. | 206. | 168. |
| 104 | 176 | 166 | 207 | 177 | 150 | 100 | 202 | 1.00 | 100. |
| 194. | 170. | 100. | 207. | 1//. | 152. | 190. | 206. | 169. | 184. |
| 210. | 224. | 222. | 207. | 257. | 239. | 243. | 307. | 301. | 292. |
| 320 | 326 | 376 | 333 | 400 | 133 | 157 | 100 | 460 | 505 |
| 520. | 520. | 570. | 552. | 400. | 400. | 437. | 420. | 400. | 505. |
| 518. | 4/5. | 508. | 497. | 533. | 505. | 495. | 477. | 466. | 446. |
| 463. | 363. | 364. | 375. | 381 | 320 | 304 | 251 | 226 | 250 |
| 170 | 2000 | 10010 | 105 | 1 7 7 | 1 5 1 | 140 | 120 | 220. | 100. |
| 179. | 200. | 130. | 182. | 137. | 121. | 146. | 130. | 147. | 135. |
| 127. | 116. | 134. | 124. | 113. | 110. | 90. | 95. | 122. | 83. |
| 63 | 1.01 | 0.4 | 00 | 107 | 110 | 100 | 02 | 71 | 70 |
| | 101. | 24. | 09. | 107. | 112. | 109. | 35. | 11. | 19. |
| 103. | 108. | 88. | 107. | 115. | 110. | 82. | 86. | 82. | 88. |
| 84. | 82. | 96. | 98. | 86. | 77. | 91 | 92 | 87 | 94 |
| 04 | 07 | 00 | 07 | 00. | | 01 | 04 | 100 | 21. |
| 04. | 90. | 98. | 87. | 82. | 69. | 91. | 94. | 108. | 99. |
| 82. | 82. | 105. | 88. | 123. | 99. | 102. | 118. | 130. | 119. |
| 92 | 103 | 117 | 97 | 100 | 107 | 00 | 02 | 115 | 100 |
| 100 | 105. | 11/ • | 07. | 109. | 107. | 99. | 92. | 112. | 102. |
| 109. | 79. | 92. | 152. | 120. | 105. | 105. | 138. | 134. | 130. |
| 146. | 159. | 174. | 166. | 182. | 196. | 2.27 . | 229. | 262 | 276 |
| 150 | | 201 | 210 | 200. | 200. | 220 | 201 | 202. | 207 |
| 250. | 233. | 291. | 513. | 286. | 322. | 326. | 391. | 352. | 397. |
| 336. | 365. | 358. | 337. | 281. | 336. | 313. | 285. | 262. | 247. |
| 256 | 244 | 224 | 240 | 242 | 103 | 206 | 215 | 150 | 220 |
| 230. | 211. | 470 | 240. | 242. | 155. | 200. | 41J. | 139. | 220. |
| 219. | 186. | 179. | 204. | 247. | 168. | 240. | 197. | 226. | 216. |
| 208. | 210. | 238. | 220. | 263. | 239. | 249. | 262. | 286. | 261 |
| 222 | 244 | 247 | 240 | 2000 | 2021 | 224 | 274 | 2001 | 222 |
| 200. | 244. | 247. | 240. | 223. | 441. | 224. | 2/4. | 205. | 232. |
| 242. | 240. | 212. | 222. | 239. | 255. | 262. | 232. | 214. | 189. |
| 229 | 21/ | 195 | 212 | 242 | 1.90 | 211 | 201 | 100 | 105 |
| 222. | 217. | 195. | 213. | 242. | 100. | 211. | 201. | 102. | 195. |
| 189. | 203. | 242. | 237. | 207. | 226. | 240. | 242. | 259. | 251. |
| 263. | 279. | 262. | 298. | 334. | 325. | 387. | 347. | 369. | 354 |
| 250 | 250 | 201 | 200 | 422 | 421 | 105 | 170 | 400 | 402 |
| 550. | 330. | 201. | 200. | 455. | 451. | 400. | 4/6. | 486. | 493. |
| 528. | 544. | 519. | 512. | 599. | 552. | 514. | 552. | 545. | 520. |
| 545 | 518 | 496 | 537 | 188 | 408 | 156 | 166 | 388 | 308 |
| 147 | 2.0. | | 557. | 100. | 4,00. | - 30. | 400. | 500. | 550. |
| 417. | 363. | 341. | 304. | 305. | 292. | 246. | 242. | 237. | 211. |
| 182. | 176. | 177. | 186. | 163. | 142. | 146. | 148. | 128. | 141. |
| 1/3 | 100 | 146 | 147 | 127 | 126 | 1 47 | 100 | 122 | 1 / 5 |
| 100 | 122. | 190. | 147. | 137. | 130. | T 4 1 + | 129. | 155. | 145. |
| 123. | 125. | 132. | 117. | 108. | 141. | 126. | 127. | 124. | 123. |
| 121. | 131. | 135. | 111. | 145. | 155. | 158. | 164. | 179. | 154. |
| 144 | 120 | 1 4 2 | 120 | 106 | 124 | 1 / 1 | 170 | 140 | 1 5 5 |
| 144. | 120. | 142. | 139. | 120. | 154. | 141. | 112. | 149. | 100. |
| 135. | 125. | 128. | 124. | 137. | 122. | 140. | 171. | 121. | 123. |
| 132. | 122. | 154. | 140 | 115 | 136 | 109 | 129 | 124 | 99 |
| 107 | 110 | 117 | 110. | 101 | 100. | 100. | 100 | 100 | 105 |
| 127. | 110. | 11/. | 110. | 104. | 122. | 132. | 129. | 100. | 105. |
| 109. | 139. | 119. | 113. | 141. | 122. | 129. | 143. | 108. | 137. |
| 106 | 123 | 123 | 150 | 165 | 1 / 1 | 151 | 163 | 160 | 100 |
| 170 | 123. | 120. | 132. | 105. | 141. | 1.54. | 101. | 100. | 100. |
| 1/8. | 211. | 214. | 231. | 228. | 247. | 240. | 234. | 258. | 254. |
| 252. | 259. | 294. | 301. | 361. | 334. | 342. | 342. | 347. | 330. |
| 210 | 224 | 205 | 202 | 770 | 222 | 240 | 100 | 100 | 100 |
| 210. | JJ4. | 400. | 474. | 210. | 220. | 249. | 130. | 100. | 103. |
| 165. | 137. | 139. | 130. | 146. | 140. | 139. | 140. | 159. | 140. |
| 119. | 139 | 159 | 131 | 148 | 167 | 174 | 167 | 160 | 170 |
| 100 | 102 | 222. | 2021 | 170. | 10/ | 112. | 1010 | 100. | 170. |
| 196. | 103. | 666. | 207. | 1/5. | 194. | 211. | 213. | 201. | 1/3. |
| 229. | 261. | 184. | 255. | 207. | 192. | 243. | 234. | 208. | 228. |
| 210 | 200 | 205 | 230 | 210 | 210 | 104 | 215 | 100 | 210 |
| 410. | 200. | 200. | 230. | 410. | 219. | 190. | 213. | 107. | 218. |
| 196. | 187. | 217. | 218. | 217. | 163. | 190. | 187. | 177. | 192. |
| 186. | 176. | 171 | 160 | 130 | 145 | 156 | 140 | 151 | 107 |
| 140 | 101 | | 100. | 100. | 4 2 4 | 101
TJU 1 | 100 | 100 | 100 |
| 140. | 101. | 110. | 108. | 100. | 139. | 101. | 123. | 100. | 108. |
| 104. | 97. | 68. | 100. | 93. | 65. | 92. | 65. | 88. | 81. |
| 87 | 96 | 73 | 90 | 03 | 80 | 63 | 86 | 76 | 75 |
| 70 | 20. | | <i>.</i> . | 2J. | 07. | 03. | 00. | /0. | /3. |
| 79. | 71. | 77. | 83. | 78. | 73. | 65. | 86. | 78. | 77. |
| 62 | 83. | 68 | 76 | 69 | 80 | 95 | 83 | Q1 | 65 |

| 92. | 78. | 83. | 64. | 84. | 85. | 89. | 97. | 78. | 94. |
|-------------|-------------|-------------|-------------|----------|-------------|-----------|-------------|-------------|-------------|
| 108. | 89. | 88. | 84. | 90. | 94. | 102. | 99. | 90. | 82. |
| 88. | 103. | 100. | 106. | 84. | 95. | 99. | 72. | 106. | 78. |
| 89. | 77. | 90. | 100. | 110. | 100. | 104. | 105. | 108. | 102. |
| 121. | 112. | 102. | 104. | 98. | 84. | 116. | 99. | 103. | 110. |
| 107. | 102 | 115. | 84. | 97. | 104. | 98. | 104. | 101. | 97. |
| 90.
91 | 102. | 95. | 92.
70 | 88
88 | 94.
88 | 92.
70 | 97.
73 | 79.
94 | 68.
97 |
| 89 | 83 | 91 | 89. | 88 | 76 | 88 | 79 | 80
80 | 04.
91 |
| 90. | 89. | 83. | 100. | 83. | 66. | 74. | 90. | 78. | 76. |
| 75. | 85. | 69. | 83. | 80. | 73. | 79. | 61. | 80. | 77. |
| 93. | 77. | 74. | 67. | 104. | 100. | 80. | 79. | 89. | 81. |
| 64. | 79. | 83. | 61. | 83. | 69. | 63. | 80. | 64. | 94. |
| 75. | 83. | 86. | 82. | 86. | 80. | 72. | 78. | 67. | 101. |
| /4. | 70. | 88. | 90. | 88. | 90. | 82. | 71. | 92. | 80. |
| 90. | 85.
65 | 99.
77 | 91.
70 | 84. | 50.
65 | 71. | 91. | 83.
67 | /1. |
| 83. | 87 | 74 | 62 | 80 | 85 | 90. | 70. | 84 | 02.
79 |
| 62. | 61. | 92. | 73. | 74. | 92. | 76. | 99. | 92. | 82. |
| 68. | 83. | 95. | 100. | 94. | 74. | 96. | 85. | 96. | 89. |
| 92. | 110. | 123. | 109. | 87. | 106. | 87. | 88. | 115. | 94. |
| 91. | 101. | 87. | 102. | 105. | 73. | 97. | 100. | 90. | 95. |
| 95. | 84. | 105. | 96. | 111. | 122. | 130. | 100. | 108. | 79. |
| 106. | 101. | 92. | 107. | 115. | 123. | 100. | 97. | 85. | 88. |
| 11/. | 138. | 122. | 101. | 138. | 144. | 106. | 122. | 143. | 145. |
| 1/19 | 161 | 140 | 120. | 120 | 155. | 139. | 142. | 155. | 135. |
| 148. | 129. | 136. | 124. | 158. | 149. | 133. | 121. | 173. | 118. |
| 138. | 136. | 130. | 127. | 132. | 128. | 129. | 113. | 131. | 122. |
| 112. | 123. | 104. | 115. | 116. | 126. | 124. | 136. | 105. | 101. |
| 124. | 130. | 124. | 112. | 123. | 105. | 126. | 123. | 120. | 122. |
| 134. | 149. | 130. | 117. | 116. | 132. | 145. | 146. | 173. | 155. |
| 167. | 173. | 157. | 172. | 193. | 193. | 160. | 173. | 179. | 169. |
| 105. | 1//. | 222. | 211. | 196. | 188. | 1/5. | 180. | 1/4. | 181. |
| 188 | 187 | 183 | 171 | 185 | 222 | 212 | 233 | 188 | 1/4. |
| 215. | 183. | 200. | 228. | 212. | 222. | 2212. | 253. | 241. | 230. |
| 248. | 240. | 252. | 202. | 235. | 239. | 238. | 264. | 254. | 248. |
| 264. | 248. | 271. | 255. | 292. | 266. | 269. | 294. | 280. | 289. |
| 352. | 304. | 325. | 300. | 336. | 306. | 310. | 336. | 314. | 312. |
| 332. | 296. | 327. | 309. | 327. | 303. | 328. | 300. | 331. | 348. |
| 321. | 329. | 301. | 323. | 288. | 289. | 272. | 269. | 281. | 280. |
| 290.
201 | 270. | 242. | ∠48.
233 | 200. | 241. | 201. | 266. | 224. | 217. |
| 253. | 211. | 276. | 219. | 285. | 308. | 256 | 235 | 238 | 217. |
| 240. | 222. | 199. | 283. | 228. | 226. | 203. | 197. | 208. | 236. |
| 193. | 229. | 230. | 223. | 198. | 205. | 237. | 227. | 196. | 208. |
| 206. | 226. | 198. | 204. | 164. | 187. | 186. | 150. | 195. | 172. |
| 179. | 188. | 183. | 171. | 159. | 193. | 145. | 166. | 182. | 141. |
| 207. | 170. | 140. | 198. | 151. | 194. | 165. | 149. | 163. | 165. |
| 151. | 128. | 168. | 200.
156 | 198. | 169. | 1/5. | 185. | 151.
159 | 199. |
| 168. | 134. | 140. | 149. | 147. | 167 | 150 | 131 | 133 | 107. |
| 137. | 124. | 135. | 127. | 119. | 153. | 141. | 155. | 133. | 126. |
| 115. | 137. | 128. | 129. | 120. | 118. | 108. | 121. | 128. | 159. |
| 125. | 110. | 100. | 118. | 100. | 122. | 113. | 143. | 127. | 129. |
| 137. | 127. | 104. | 123. | 125. | 117. | 117. | 135. | 129. | 110. |
| 114. | 132. | 128. | 141. | 122. | 107. | 123. | 127. | 130. | 144. |
| 131. | 129. | 144. | 157. | 131. | 113. | 111. | 122. | 135. | 142. |
| 133 | 165 | 165 | 142.
150 | 140. | 134.
170 | 140. | 152.
161 | 140.
164 | 145.
116 |
| 138. | 133. | 133. | 129. | 175. | 123 | 140 | 138 | 147 | 136 |
| 146. | 185. | 167. | 154. | 146. | 160. | 177. | 141. | 128. | 149. |
| 170. | 167. | 191. | 159. | 184. | 151. | 186. | 177. | 180. | 166. |
| 173. | 185. | 178. | 171. | 168. | 216. | 198. | 170. | 204. | 243. |
| 224. | 237. | 212. | 204. | 229. | 235. | 213. | 244. | 210. | 246. |
| 257. | 251. | 244. | 226. | 249. | 237. | 201. | 215. | 207. | 206. |
| 105 | 207.
174 | 257.
192 | 218.
107 | 216. | 190. | 186. | 198. | 201. | 196. |
| | 1 7 11 | 107 | 101 | 203 | 100 | 10/ | 100 | 1 7 / | 1.45 |

| 166 | 101 | 175 | 1 E A | 100 | 107 | 104 | 150 | 207 | 156 |
|--------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|--------------|
| 186. | 191. | 230 | 204. | 225. | 272. | 264. | 243. | 301. | 298 |
| 318. | 311. | 341. | 353. | 351. | 378. | 391. | 384. | 392. | 442. |
| 460. | 489. | 464. | 471. | 522. | 498. | 499. | 552. | 509. | 557. |
| 591. | 590. | 571. | 643. | 560. | 590. | 650. | 587. | 604. | 555. |
| 561. | 519. | 507. | 443. | 403. | 437. | 366. | 333. | 323. | 330. |
| 288. | 244. | 242. | 207. | 205. | 211. | 213. | 181. | 216. | 214. |
| 153. | 203. | 185. | 155. | 188. | 154. | 155. | 162. | 185. | 199. |
| 187. | 207. | 211. | 187. | 154. | 169. | 167. | 156. | 194. | 154. |
| 109. | 205.
151 | 154. | 127. | 182. | 161. | 138. | 150. | ±13.
122 | 104. |
| 131 | 131. | 129. | 126 | 120. | 97 | 97 | 124. | 100 | 128 |
| 114. | 121. | 105. | 117. | 103. | 92. | 118. | 119. | 116. | 178. |
| 84. | 109. | 81. | 110. | 102. | 115. | 109. | 122. | 99. | 109. |
| 101. | 99. | 99. | 87. | 107. | 81. | 112. | 87. | 113. | 97. |
| 87. | 92. | 109. | 75. | 86. | 78. | 109. | 89. | 70. | 84. |
| 90. | 88. | 95. | 92. | 94. | 100. | 84. | 73. | 93. | 114. |
| 11. | 108. | 105. | 89. | 89. | 98. | 115. | 94. | 87. | 93. |
| 83. | 117. | 104. | 108. | 113. | 101. | 89. | 101. | 96. | 30.
130 |
| 110 | 120. | 108 | 105 | 100. | 119 | - <u>9</u> 3 | 124. | 111 | 105 |
| 110.
111. | 120. | 121. | 104. | 92. | 98. | 87. | 66. | 79. | 92. |
| 105. | 94. | 94. | 95. | 83. | 63. | 97. | 84. | 93. | 99. |
| 90. | 91. | 86. | 93. | 82. | 99. | 103. | 91. | 112. | 75. |
| 94. | 95. | 111. | 102. | 79. | 59. | 86. | 95. | 67. | 80. |
| 90. | 86. | 66. | 86. | 78. | 100. | 85. | 102. | 79. | 85. |
| 96.
QQ | 85.
85 | 88.
83 | 65.
97 | 94. | 87. | 82.
98 | 83.
75 | 92. | / D .
83 |
| 72 | 109. | 74. | 101. | 106 | 102. | 92. | 109 | 104 | 105 |
| 123. | 68. | 118. | 87. | 90. | 85. | 105. | 89. | 99. | - 98. |
| 78. | 92. | 90. | 92. | 102. | 87. | 107. | 101. | 84. | ć8. |
| 100. | 68. | 82. | 95. | 82. | 92. | 96. | 100. | 93. | 73. |
| 102. | 93. | 79. | 79. | 91. | 94. | 96. | 83. | 96. | <u>9</u> 7. |
| 77. | 84. | 73. | /4. | 85. | 103. | 97. | 76. | 74. | 100. |
| 99.
112 | 108. | 91. | 85. | 114.
81 | 111.
111 | 96.
116 | 101 | 111.
95 | 120. |
| 96. | 99 | 107. | 121. | 94 | 105. | 105. | 101. | 115. | 35. |
| 106. | 98. | 108. | 125. | 109. | 134. | 120. | 128. | 149. | 107. |
| 107. | 128. | 132. | 118. | 135. | 112. | 132. | 134. | 113. | 119. |
| 127. | 127. | 131. | 169. | 139. | 147. | 150. | 156. | 147. | 169. |
| 173. | 157. | 186. | 150. | 173. | 145. | 156. | 172. | 175. | 139. |
| 200. | 205. | 188. | 164. | 1/6. | 16/. | 150. | 157. | 199. | 157. |
| 180. | 183. | 169. | 210.
175 | 109. | 1/0. | 1/4. | 159. | 169. | 10/. |
| 148. | 120. | 169. | 151. | 167. | 193. | 179. | 161. | 125. | 124. |
| 142. | 152 | 162. | 165. | 172. | 139. | 141. | 118. | 144. | 128. |
| 126. | 135. | 108. | 118. | 101. | 121. | 106. | 129. | 98. | 111. |
| 135. | 113. | 116. | 121. | 93. | 113. | 98. | 102. | 102. | 102. |
| 114. | 96. | 91. | 100. | 115. | 108. | 104. | 99. | 103. | 122. |
| 108. | 104. | 88. | 86. | 86. | 103. | 89. | 10. | 112 | . 1±1.
00 |
| 105. | 88 | 98 | 104 | 105. | 104 | 103 | 103. | 104 | 160 |
| 114. | 116. | 96. | 115. | 96. | 89. | 116. | 115. | 118. | 104. |
| 110. | 113. | 103. | 84. | 123. | 115. | 112. | 105. | 90. | 105. |
| 79. | 88. | 101. | 112. | 111. | 95. | 89. | 100. | 82. | 114. |
| 82. | 95. | 110. | 126. | 103. | 108. | 121. | 117. | 105. | 119. |
| 126. | 103. | 87. | 122. | 115. | 98. | 112. | 104. | 99. | 107. |
| 112. | 107. | 110. | 99.
118 | 145. | 94.
147 | 101. | 148. | 146 | 125. |
| 155. | 169. | 203. | 201. | 196. | 187. | 206. | 195. | 197. | 243 |
| 214. | 205. | 211. | 264. | 232. | 240. | 241. | 243. | 280. | 251. |
| 263. | 285. | 277. | 305. | 282. | 297. | 295. | 292. | 275. | 317. |
| 286. | 309. | 276. | 319. | 285. | 252. | 302. | 246. | 273. | 253. |
| 288. | 236. | 238. | 220. | 246. | 229. | 199. | 218. | 201. | 200. |
| 183. | 174. | 190. | 204. | 199. | 182. | 185. | 164. | 179. | 182. |
| 114 | 100. | 140.
110 | 149.
125 | 146.
160 | 126.
171 | 138. | 131.
131 | 167 | 1-0 |
| 145 | 128 | 122. | 119 | 117 | 117 | 165 | 214 | 122 | 1-3. |
| 138. | 106. | 149. | 116. | 154 | 130. | 145. | 139. | 132. | 113. |

•

| 104 | 1 17 | 1 7 7 | 110 | 1 47 | 105 | 1 (1 | 150 | 121 | 150 |
|----------|-----------|------------|-----------|----------|-----------|-------|-----------|-----------|------|
| 124. | 147. | 133. | 119. | 147. | 125. | 101. | 150. | 104. | 109. |
| 140. | 128. | 162. | 136. | 13/. | 139. | 133. | 118. | 107. | 127. |
| 160. | 123. | 161. | 138. | 155. | 122. | 176. | 132. | 101. | 142. |
| 124. | 139. | 124. | 139. | 11/. | 138. | 105. | 126. | 121. | 105. |
| 118. | 118. | 130. | 99. | 116. | 105. | 118. | 107. | 107. | 109. |
| 117. | 119. | 141. | 113. | 123. | 124. | 115. | 101. | 83. | 99. |
| 121. | 111. | 90. | 101. | 101. | 124. | 118. | 129. | 113. | 105. |
| 111. | 105. | 126. | 139. | 97. | 130. | 101. | 111. | 121. | 150. |
| 139. | 133. | 132. | 162. | 128. | 130. | 129. | 141. | 159. | 151. |
| 133. | 175. | 143. | 138. | 137. | 148. | 143. | 143. | 143. | 131. |
| 165. | 163. | 168. | 163. | 181. | 177. | 157. | 124. | 147. | 171. |
| 161. | 152. | 181. | 145. | 164. | 151. | 164. | 148. | 170. | 122. |
| 142. | 166. | 129. | 151. | 129. | 147. | 140. | 131. | 135. | 135. |
| 117. | 103. | 97. | 104. | 118. | 103. | 124. | 128. | 97. | 114. |
| 110. | 90. | 108. | 82. | 103. | 95. | 100. | 109. | 107. | 121. |
| 102. | 110. | 80. | 96. | 81. | 108. | 99. | 101. | 90. | 90. |
| 106. | 91. | 98. | 84. | 119. | 84. | 103. | 109. | 135. | 110. |
| 115. | 111. | 120. | 89. | 122. | 127. | 117. | 109. | 97. | 123. |
| 98. | 119. | 114. | 107. | 101. | 128. | 128. | 108. | 90. | 126. |
| 123. | 109. | 105. | 129. | 97. | 118. | 110. | 120. | 98. | 125. |
| 123 | 105 | 105 | 134 | 113 | 107 | 134 | 107. | 108 | 116. |
| 110 | 96 | 106 | 98 | 117. | 94 | 107. | 105. | 109. | 86. |
| 115 | 101 | Q1 | 88 | 113 | 94 | 115 | 98 | 88 | 101 |
| 47 | 101. | 113 | 90 | 94 | 104 | 92 | 103 | 91 | 74 |
| 01
01 | 67 | 84 | 107 | 75 | 96 | 90 | 96 | 71 | 01 |
| 120 | 07. | 94.
94 | 107. | 95 | 90. | 93 | 90. | 111 | 81 |
| 120. | 97.
02 | 04. | 20. | 80
80 | 90. | 73 | 91.
91 | 96 | 105 |
| 04. | 02.
70 | 126 | 00.
90 | 00. | 95.
95 | 103 | 97 | 90.
81 | 70J. |
| 04. | 105 | 120. | 09. | 91. | 74 | 105. | 103 | 100 | 70 |
| 00. | 105. | 99.
07 | 90. | 92. | 74. | 93. | 113 | 100. | 06 |
| 93. | 105 | 83.
101 | 20. | 09. | 04. | 94. | 112. | 0.0 | 00. |
| 89. | 105. | 101. | 75. | 81. | 74. | 01. | 113. | 94. | 01. |
| 83. | 109. | 95. | 11. | 80. | 89. | 97. | 74. | 00. | 0/. |
| 91. | 66. | 8/. | 86. | 108. | 110. | 94. | 109. | 93. | 111. |
| 83. | 83. | 107. | 85. | 98. | 111. | 84. | 97. | 91. | 105. |
| 81. | 86. | 93. | 95. | 103. | 105. | 99. | 85. | 94. | 96. |
| 100. | /1. | 90. | 87. | 103. | 101. | 86. | 68. | 87. | 11. |
| 92. | 90. | 92. | 80. | 95. | /8. | 86. | 66. | 83. | 84. |
| 77. | 86. | 69. | 82. | 85. | /5. | 90. | 69. | 51. | /5. |
| 75. | 91. | 64. | 93. | 73. | /3. | 80. | 81. | 91. | 92. |
| 75. | 53. | 82. | 66. | 12. | 56. | 12. | 80. | 63. | //. |
| 71. | 73. | 76. | 90. | 73. | 76. | 68. | 63. | 51. | 5/. |
| 75. | 65. | 77. | 55. | 74. | /3. | 65. | 69. | 59. | 13. |
| 66. | 60. | 69. | 72. | 75. | 67. | 95. | 67. | 79. | /8. |
| 59. | 60. | 80. | 80. | 68. | 57. | /8. | 63. | 69. | 76. |
| 65. | 68. | 53. | 82. | /1. | 68. | 58. | 52. | 70. | 56. |
| 49. | 62. | 65. | 86. | 69. | 71. | 72. | 86. | 64. | 57. |
| 77. | 88. | 70. | 63. | 71. | 75. | 70. | 69. | 70. | 67. |
| 64. | 62. | 76. | 70. | 66. | 78. | 52. | 68. | 79. | 69. |
| 65. | 51. | 79. | 64. | 90. | 56. | 76. | 47. | 51. | 69. |
| 76. | 83. | 84. | 84. | 60. | 67. | 73. | 69. | 62. | 70. |
| 65. | 55. | 67. | 73. | 62. | 50. | 48. | 53. | 59. | 73. |
| 50. | 59. | 54. | 72. | 65. | 70. | 72. | 86. | 64. | 53. |
| 68. | 58. | 44. | 62. | 77. | 43. | 64. | 69. | 49. | 53. |
| 76. | 65. | 80. | 74. | 55. | 51. | 49. | 58. | 71. | 69. |
| 52. | 77. | 75. | 68. | 74. | 44. | 69. | 70. | 66. | 65. |
| 73. | 62. | 78. | 55. | 73. | 64. | 75. | 42. | 49. | 52. |
| 92. | 63. | 76. | 79. | 56. | 69. | 73. | 51. | 64. | 86. |
| 66. | 54. | 65. | 50. | 73. | 65. | 53. | 56. | 68. | 64. |
| 40. | 64. | 64. | 62. | 62. | 64. | 87. | 56. | 74. | 74. |
| 79. | 60. | 62. | 59. | 60. | 54. | 71. | 80. | 83. | 77. |
| 68. | 72. | 66. | 66. | 73. | 58. | 74. | 57. | 56. | 69. |
| 80. | 78. | 64. | 59. | 84. | 55. | 80. | 75. | 59. | 71. |
| 67. | 95. | 74. | 112. | 102 | 67. | 76. | 79. | 72. | 69. |
| 77. | 82 | 83 | 75. | 96. | 86. | 71 | 87. | 78. | 80. |
| 106 | 79. | 89 | 102. | 91. | 107. | 109 | 67. | 95. | 102 |
| 82 | 95 | 113 | 99 | 101. | 114 | 101 | 104 | 92 | 115. |
| 86 | 92 | 87 | 102 | 89 | 104 | 122 | 92 | 92 | 90 |
| 110 | 112 | 89 | 84 | 82 | 87 | 87 | 97. | 80. | 88 |
| 105 | 116 | 111 | 103 | 80 | 101 | 102 | 96 | 96 | 103 |

| 83 | 85 | Q1 | 77 | 85 | 87 | 86 | 111 | 107 | 78 |
|-----------|--------------|-----------|-----------|-----------|-------------|------------|-----------|-----------|-----------|
| 91 | 89 | 95 | 85 | 87 | 95 | 72 | 89 | 98 | 100 |
| 103. | 84 | 73 | 91. | 90. | 85 | 66. | 59. | 87. | 88. |
| 86. | 81. | 93. | 58. | 64. | 78. | 53. | 78. | 67. | 86. |
| 87. | 66. | 84. | 62. | 75. | 51. | 66. | 76. | 80. | 77. |
| 77. | 73. | 79. | 81. | 79. | 63. | 71. | 79. | 60. | 55. |
| 76. | 67. | 67. | 47. | 48. | 93. | 68. | 56. | 54. | 53. |
| 48. | 56. | 70. | 60. | 54. | 55. | 59. | 46. | 59. | 57. |
| 57. | 41. | 70. | 53. | 48. | 75. | 47. | 62. | 50. | 61. |
| 49. | 51. | 53. | 67. | 77. | 45. | 61. | 59. | 57. | 68. |
| 60. | 41. | 47. | 65. | 55. | 79. | 56. | 62. | 65. | 68. |
| 65. | 74. | 72. | 46. | 55. | 53. | 53. | 59. | 52. | 68. |
| 53. | 71. | 90. | 50. | 56. | 72. | 59. | 66. | 56. | 44. |
| 50. | 76. | 70. | 47. | 92. | 49. | 64. | 55. | 46. | 71. |
| 68. | 50. | 63. | 54. | 64. | 74. | 47. | 65. | 66. | 66. |
| 80. | 52. | 54. | 59. | 54. | 65. | 58. | 15. | 61. | 66. |
| 12. | 59. | 6∠.
70 | 55. | 68. | 59. | /5. | 63. | 64. | /3. |
| 5∠.
01 | - 50.
74 | 70. | 79. | 68. | /2. | . טכ
קר | 64. | 70. | 29.
75 |
| 91. | /4.
60 | 03.
74 | / 2 . | 100 | ⊃7 •
≤ 4 | 70. | 69.
50 | 76. | 73. |
| 20.
20 | 57 | 66 | 54. | 100. | 64. | 60. | 50. | 15.
66 | 71.73 |
| 62 | 57.
60 | 68 | 88 | 54 | 64 | 69 | 71 | 71 | 82 |
| 62. | 82 | 72 | 67 | 70 | 73 | 80 | 54 | 70 | 69 |
| 71. | 68. | 78. | 80. | 71. | 88. | 51. | 78. | 75. | 79. |
| 94. | 58. | 71. | 80. | 76. | 87. | 77. | 102. | 86. | 65. |
| 76. | 95. | 71. | 62. | 83. | 85. | 66. | 90. | 74. | 60. |
| 70. | 72. | 73. | 80. | 66. | 73. | 58. | 69. | 77. | 92. |
| 87. | 65. | 59. | 92. | 79. | 61. | 80. | 71. | 82. | 68. |
| 64. | 63. | 71. | 85. | 73. | 59. | 74. | 66. | 66. | 79. |
| 54. | 65. | 70. | 88. | 80. | 56. | 62. | 80. | 74. | 88. |
| 75. | 67. | 64. | 77. | 73. | 67. | 49. | 51. | 72. | 56. |
| 57. | 57. | 53. | 62. | 50. | 76. | 52. | 63. | 65. | 69. |
| 57. | 59. | 54. | 54. | 56. | 56. | 72. | 70. | 55. | 58. |
| 76. | 53. | 58. | 54. | 61. | 63. | 55. | 55. | 56. | 68. |
| 58. | 63. | 68. | 62. | 67. | 61. | 51. | 46. | 60. | 65. |
| 45. | 58. | 73. | 60. | 64. | 61. | 61. | 58. | 74. | 56. |
| 60. | 65. | 59. | 65. | 62. | 43. | 62. | 55. | 5/. | 66. |
| 51. | 55. | /5. | 63. | 64. | 61.
50 | 63.
EE | 65. | 57. | 28. |
| 49. | 01.
74 | 52. | 02.
66 | 67. | 20.
20 | 55. | 66.
50 | 69.
20 | 70. |
| 66 | 74.
61 | 66 | 76 | 66 | 50. | 50.
64 | JU.
72 | 50. | 15. |
| 64 | 57 | 55 | 74 | 70 | 56 | 60 | 53 | 79 | 54 |
| 72. | 79. | 60. | 65. | 93. | 74. | 76. | 64. | 62 | 59. |
| 66. | 64. | 80. | 63. | 44. | 46. | 59. | 65. | 56. | 70. |
| 57. | 51. | 71. | 67. | 59. | 53. | 59. | 62. | 75. | 63. |
| 54. | 72. | 47. | 86. | 62. | 55. | 85. | 69. | 68. | 68. |
| 48. | 76. | 68. | 52. | 57. | 56. | 61. | 59. | 57. | 49. |
| 57. | 45. | 51. | 60. | 63. | 47. | 63. | 45. | 65. | 80. |
| 55. | 60. | 64. | 55. | 54. | 66. | 61. | 48. | 48. | 65. |
| 57. | 42. | 52. | 36. | 55. | 59. | 55. | 51. | 60. | 56. |
| 66. | 63. | 53. | 53. | 66. | 59. | 57. | 53. | 46. | 47. |
| 51. | 54. | 56. | 62. | 52. | 63. | 47. | 61. | 45. | 71. |
| 56. | 49. | 55. | 54. | 59. | 63. | 55. | 68. | 46. | 82. |
| 51. | 58. | 52. | 39. | /4. | 53. | 62. | 76. | 65. | 76. |
| 64.
65 | 53. | 55. | 70 | 79. | 69.
60 | /8. | 66. | 59. | 65.
74 |
| 70 | / 1 .
C A | 07.
70 | 70. | 59.
60 | 50.
70 | o∠.
on | 6U. | 09. | 67 |
| 60. | 04.
07 | 20. | 22 | 00.
73 | 72. | 02. | 04.
7/ | 60.
60 | 07.
QA |
| 87 | 72 | 87 | 67 | 7J.
93 | 70 | 61 | 97 | 78 | 76 |
| 92 | 76 | 77 | 72 | 80 | 85 | 92 | 76 | 79. | 89 |
| 71. | 86 | 101 | 80. | 96. | 90. | 73. | 78. | 74 | 81 |
| 73. | 84. | 82 | 69 | 111. | 93. | 86. | 78. | 72. | 73 |
| 81. | 96. | 72. | 101. | 86. | 68. | 69. | 59. | 89. | 81 |
| 85. | 98. | 88. | 82. | 100. | 80. | 98. | 91. | 89. | 83. |
| 83. | 57. | 76. | 91. | 64. | 65. | 68. | 80. | 74. | 80. |
| 61. | 63. | 79. | 65. | 68. | 73. | 62. | 86. | 67. | 75. |
| 83. | 80. | 82. | 78. | 76. | 67. | 93. | 45. | 83. | 80. |
| 85. | 94. | 73. | 74. | 83. | 67. | 69. | 102. | 80. | 87. |
| 92. | 72. | 77. | 77. | 69. | 73. | 74. | 80. | 70. | 62. |

| 80 | 66 | E7 | 0.0 | 7 4 | 0.2 | 61 | 65 | 70 | () |
|-----------|-----------|------|-----------|------|-------------|------|----------|-----------|------|
| 02. | 00. | 57. | 90. | 74. | 02. | 04. | 05. | 12. | 63. |
| 79. | 86. | 17. | 68. | /6. | 65. | 63. | 82. | 59. | 73. |
| 61. | 64. | 57. | 58. | 62. | 58. | 71. | 66. | 75. | 66. |
| 58. | 67. | 69 | 75 | 76 | 61 | 95 | 73 | 79 | 53 |
| 77 | 60 | 74 | 71 | 01 | | | (0) | | |
| 77. | 02. | 74. | 74. | 01. | 00. | 57. | 60. | 67. | 78. |
| 12. | 65. | 83. | 67. | 60. | 58. | 69. | 44. | 55. | 79. |
| 59. | 59. | 76. | 53. | 83. | 79. | 55. | 65. | 58. | 67. |
| 67 | 66 | 63 | 56 | 79 | 84 | 71 | 65 | 65 | 00 |
| 63 | EC. | (7 | 70 | () | 5-1-
5-1 | 71. | ()
() | | 02. |
| 03. | 50. | 67. | 19. | 60. | 53. | 61. | 63. | 18. | 80. |
| 92. | 92. | 70. | 61. | 77. | 67. | 82. | 56. | 57. | 59. |
| 73. | 76. | 78. | 88. | 74. | 82. | 86. | 86. | 63. | 105. |
| 78 | 71 | 86 | 79 | 92 | 75 | 70 | 82 | 80 | 96 |
| 07 | (0 | 00. | 00 | 01 | | 00 | 02. | 00. | 00. |
| 0/. | 66. | 80. | 90. | 91. | 80. | 80. | 90. | 88. | 79. |
| 96. | 76. | 86. | 100. | 78. | 77. | 96. | 96. | 84. | 94. |
| 86. | 79. | 84. | 107. | 72. | 88. | 89. | 103. | 90. | 81. |
| 82. | 85. | 93. | 84. | 88. | 80. | 100 | 87 | 103 | 110 |
| 00 | 01 | 74 | 04 | 07 | 75 | 76 | 01. | 105. | 110. |
| 09. | 01. | /4. | 94. | 97. | /5. | 74. | 81. | 70. | 94. |
| 79. | 82. | 64. | 94. | 87. | 86. | 89. | 86. | 85. | 93. |
| 81. | 88. | 88. | 89. | 83. | 84. | 84. | 93. | 86. | 92. |
| 91. | 74. | 104. | 80. | 99. | 94. | 63. | 104 | 89 | 94 |
| 06 | 05 | 70 | 110 | 70 | 00 | 01 | 112 | 134 | 102 |
| 100 | 105. | 70. | 110. | 79. | 99. | 91. | 115. | 124. | 103. |
| 128. | 105. | 99. | 86. | 99. | 82. | 83. | 70. | 95. | 119. |
| 97. | 84. | 106. | 87. | 115. | 118. | 126. | 118. | 122. | 90. |
| 95. | 98. | 119. | 93. | 125. | 102. | 108. | 129. | 95. | 96. |
| 124 | 111 | 132 | 113 | 93 | 102 | 101 | 104 | 102 | 101 |
| 101 | 110 | 132. | 104 | 111 | 102. | 105 | 104. | 102. | 101. |
| 101. | 113. | 99. | 104. | 111. | 120. | 105. | 114. | 95. | 95. |
| 123. | 101. | 85. | 113. | 95. | 90. | 82. | 101. | 85. | 83. |
| 123. | 84. | 92. | 94. | 87. | 113. | 81. | 95. | 91. | 103. |
| 99 | 96 | 84 | 90 | 84 | 113 | 95 | 90 | 77 | 107 |
| 101 | 04 | 01 | 70. | 04. | 101 | 111 | 50. | 11. | 107. |
| 101. | 94. | 91. | 78. | 84. | 104. | 111. | 98. | 93. | 94. |
| 81. | 90. | 82. | 102. | 101. | 99. | 87. | 78. | 102. | 98. |
| 68. | 88. | 92. | 74. | 81. | 88. | 64. | 67. | 93. | 78. |
| 59. | 71. | 72. | 75 | 74 | 92 | 75 | 96 | 64 | 86 |
| 01 | 00 | 72 | 71 | 07 | 20 | 70 | 00. | 71 | 74 |
| 24. | 00. | 75. | /1. | 57. | 70. | 12. | 92. | /4. | 74. |
| 75. | /4. | 52. | 64. | 75. | 82. | 94. | 85. | 61. | 61. |
| 65. | 66. | 72. | 78. | 64. | 100. | 59. | 77. | 94. | 85. |
| 69. | 67. | 62. | 66. | 84. | 67. | 73. | 76 | 67 | 64 |
| 86 | 63 | 67 | 70 | 67 | 51 | 77 | 71 | 60 | 70 |
| 50. | 03. | 07. | 70. | 07. | 54. | 11. | 11. | 69. | 12. |
| 58. | 67. | 48, | 64. | 83. | 55. | 68. | 60. | 51. | 43. |
| 72. | 77. | 66. | 62. | 56. | 70. | 55. | 56. | 75. | 46. |
| 71. | 56. | 70. | 60. | 51. | 60. | 67. | 51. | 64. | 39. |
| 65 | 69 | 75 | 60 | 62 | 71 | 64 | 55 | 71 | 40 |
| 63 | 43 | r5. | 65.
75 | C2. | 7-1.
FO | 64. | | 74. | 49. |
| 63. | 43. | 00. | 65. | 22. | 59. | 00. | 64. | /5. | 63. |
| 69. | 46. | 53. | 69. | 60. | 71. | 70. | 63. | 65. | 75. |
| 56. | 65. | 50. | 67. | 48. | 66. | 72. | 53. | 46. | 69. |
| 52 | 75 | 67 | 54 | 5.8 | 45 | 54 | 52 | 45 | 57 |
| 60 | 60 | 50 | E0. | E 4 | 50 | 50. | <u> </u> | | 57. |
| 50. | 00.
(5 | 59. | 59. | 54. | 52. | 50. | 60. | 64. | 60. |
| 59. | 65. | 69. | 60. | 51. | 49. | 53. | 72. | 72. | 64. |
| 75. | 51. | 76. | 57. | 59. | 56. | 73. | 56. | 78. | 74. |
| 54. | 58. | 63. | 64. | 61. | 72 | 51 | 52 | 60 | 80 |
| 70 | 52 | 66 | 62 | 77 | 50 | 51. | (2) | 70 | c0. |
| 70. | 55. | 00. | 03. | //. | 50. | 50. | 03. | 70. | 63. |
| 67. | 70. | 68. | 65. | 78. | 46. | 63. | 58. | 56. | 61. |
| 76. | 58. | 53. | 51. | 55. | 59. | 53. | 56. | 56. | 64. |
| 67. | 54. | 62. | 55. | 74. | 49 | 53 | 65 | 70 | 55 |
| 62 | 67 | 60 | 50 | 51 | 6.4 | 500 | 65. | , 0. | 70 |
| 02. | 07. | 00. | | 51. | 04. | 50. | 65. | 55. | 70. |
| 63. | 62. | 60. | 46. | /1. | 76. | 72. | 67. | 66. | 54. |
| 65. | 72. | 51. | 57. | 54. | 56. | 68. | 68. | 65. | 59. |
| 59. | 53. | 63. | 85. | 50. | 78. | 57. | 59. | 48. | 48 |
| 54 | 50 | 65 | 77 | 57 | 66 | 65 | 66 | 67 | 40. |
| 23.
CE | | 400. | | | 00. | 001 | 00. | 07. | ۰.co |
| 65. | 49. | 46. | 66. | 62. | 13. | 54. | /4. | 56. | 85. |
| 66. | 83. | 67. | 80. | 53. | 51. | 79. | 65. | 68. | 81. |
| 56. | 69. | 60. | 65. | 68. | 66. | 61. | 74. | 52 | 60 |
| 63 | 69 | 65 | 50 | 5.9 | 65 | 50 | 60 | 50 | 67 |
| 40 | 70 | (J). | 50. | | C1 | | | 50. | 07. |
| 47. | 70. | 63. | 10. | 45. | 0 Ι. | 45. | 59. | 52. | 68. |
| 78. | 51. | 68. | 67. | 64. | 59. | 59. | 60. | 55. | 78. |
| 70. | 54. | 54. | 65. | 64. | 61. | 60. | 63. | 66. | 60. |
| 72 | 67 | 59 | 64 | 52 | 38 | 43 | 68 | 65 | 51 |
| 15 | 73 | 77 | 70 | 54. | 70. | | | 0J.
En | |
| 45. | 13. | 14. | 70. | 54. | 12. | 04. | 4/. | 53. | 50. |
| 66 | 60 | 66 | 5.1 | 9A | 66 | 48 | 55 | 50 | 96 |

| 43. | 46. | 53. | 58. | 42. | 61 | 58 | 64 | 63 | 30 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 66. | 51. | 64. | 71. | 82. | 44 | 50 | 55 | 50 | 58 |
| 66. | 46. | 61. | 81. | 54 | 58 | 44 | 54 | 61 | 66 |
| 68. | 69. | 59. | 59. | 61 | 61 | 56 | 67 | 48 | 62 |
| 63. | 61. | 59. | 65. | 56 | 56 | 60 | 60 | 64 | 61 |
| 62. | 61. | 58. | 49. | 51. | 56. | 43. | 61 | 58 | 76 |
| 54. | 64. | 52. | 68. | 58. | 50. | 66 | 64 | 60 | 55 |
| 58. | 62. | 56. | 50. | 69. | 45. | 62. | 54. | 66. | 61 |
| 60. | 67. | 53. | 57. | 59. | 57. | 79. | 74. | 60. | 59. |
| 59. | 57. | 63. | 80. | 54. | 49. | 73. | 47. | 58 | 74. |
| 73. | 55. | 73. | 59. | 68. | 59. | 68. | 82. | 65. | 74. |
| 71. | 61. | 42. | 58. | 49. | 59. | 74. | 65. | 51. | 73. |
| 53. | 65. | 72. | 69. | 78. | 63. | 67. | 52. | 70. | 38. |
| 65. | 60. | 66. | 52. | 57. | 51. | 60. | 77. | 62. | 49. |
| 72. | 77. | 57. | 49. | 72. | 71. | 82. | 48. | 83. | 76. |
| 72. | 68. | 66. | 50. | 74. | 68. | 61. | 71. | 55. | 70. |
| 39. | 71. | 74. | 58. | 64. | 64. | 58. | 88. | 83. | 69. |
| 62. | 60. | 78. | 79. | 65. | 73. | 61. | 83. | 85. | 69. |
| 66. | 84. | 67. | 90. | 75. | 87. | 49. | 71. | 73. | 70. |
| 84. | 76. | 69. | 74. | 56. | 71. | 74. | 94. | 63. | 50. |
| 74. | 70. | 71. | 78. | 66. | 72. | 71. | 64. | 91. | 70. |
| 71. | 85. | 80. | 90. | 76. | 79. | 76. | 79. | 80. | 57. |
| 96. | | | | | | | | | |

Appendix S-1: Observed and calculated structure factors for olivine

| h k 1 | l 10Fo 10Fc 10s | h k l 10Fo 10Fc 10s | h k 1 10Fo 10Fc 10s | h k l 10Fo 10Fc 10s | h k 1 10Fo 10Fc 10s |
|--------|------------------------------|--|---|---|--|
| 2 0 0 | 0 147 177 1 | 1 3 1 595 611 1 | 2 5 2 95 -95 1 | 4 8 3 60 61 1 | 4 3 5 37 34 1 |
| 6 0 0 | 0 677 710 2 | 2 3 1 31 -29 1
3 3 1 373 380 1 | 3 5 2 375 375 2 | 5 8 3 16 -8 2
1 9 3 157 157 1 | 5 3 5 53 -53 1 |
| 1 1 0 | 0 49 -47 0 | 4 3 1 26 -24 1 | 5 5 2 362 363 2 | 2 9 3 80 -79 1 | 1 4 5 89 90 1 |
| 210 | 0 336 336 1 | 5 3 1 71 -73 1 | 6 5 2 72 -67 1
1 6 7 81 -84 1 | 3 9 3 38 35 1 | 2 4 5 326 - 329 2 |
| 4 1 0 | 82 85 1 | 0 4 1 367 -376 1 | 2 6 2 211 208 1 | 0 10 3 202 -199 1 | 4 4 5 24 10 1 |
| 510 | 0 188 189 1 | 1 4 1 15 -2 1 | 3 6 2 51 -34 1 | 1 10 3 14 5 2 | 5 4 5 103 98 1 |
| 0 2 0 | 0 297 296 1 | 2 4 1 413 -411 1
3 4 1 306 309 2 | 5 6 2 380 386 2
5 6 2 26 -21 1 | 2 10 3 216 -219 1
3 10 3 209 205 1 | 2 5 5 129 -129 1 |
| 1 2 0 | 249 -249 1 | 4 4 1 61 -60 1 | 1 7 2 139 -143 1 | 4 10 3 80 -80 1 | 3 5 5 12 -2 2 |
| 3 2 0 | 0 271 -277 1 | 6 4 1 34 31 1 | 2 7 2 262 271 2
3 7 2 54 56 1 | 2 11 3 15 3 2 | 4 5 5 183 -178 1
0 6 5 369 371 2 |
| 4 2 0 | 30 29 1 | 1 5 1 208 -207 1 | 4 7 2 55 53 1 | 3 11 3 78 79 1 | 1 6 5 88 -89 1 |
| 6 2 0 |) 148 - 153 1
) 45 - 45 1 | 2 5 1 277 - 285 1
3 5 1 65 - 62 1 | 5 7 2 18 15 2
0 8 2 222 224 1 | 0 12 3 327 333 2
1 12 3 91 -93 1 | 2 6 5 112 110 1
3 6 5 278 272 2 |
| 2 3 0 | 214 216 1 | 4 5 1 219 -222 1 | 1 8 2 229 -239 1 | 2 12 3 105 104 1 | 4 6 5 155 150 1 |
| 430 | J 347 351 1
D 183 191 1 | 5 5 1 190 ~187 1
6 5 1 111 -109 1 | 2 8 2 139 139 1
3 8 2 165 -169 1 | 1 13 3 199 -196 1
2 0 4 347 333 2 | 1 7 5 76 -72 1
2 7 5 60 -58 1 |
| 5 3 0 | 295 294 2 | 0 6 1 590 597 1 | 4 8 2 144 146 1 | 4 0 4 489 479 2 | 3 7 5 6 -6 -6 |
| 040 | 5 19 13 2
5 66 63 1 | 2 6 1 164 159 1 | 1925225412 | 3 1 4 205 202 1 | 4 7 5 44 -42 1
0 8 5 29 22 1 |
| 140 | 608 574 1 | 3 6 1 283 290 2 | 2 9 2 162 164 1 | 4 1 4 101 99 1 | 1 8 5 93 89 1 |
| 340 | 0 675 671 1
0 493 -505 1 | 4 6 1 203 206 1
5 6 1 44 44 1 | 3 9 2 332 333 2 | 5 1 4 167 165 1
0 2 4 215 207 1 | 2 8 5 33 -31 1 |
| 4 4 0 | 306 308 2 | 6 6 1 14 4 2 | 5 9 2 184 180 1 | 1 2 4 76 -81 1 | 1 9 5 114 -112 1 |
| 540 |) 80 78 1
) 374 367 2 | 1 7 1 119 -117 1
2 7 1 104 -110 1 | $0\ 10\ 2\ 123\ -123\ 1$
$1\ 10\ 2\ 119\ 121\ 1$ | 2 2 4 26 22 13 2 4 259 -261 2 | 2 9 5 25 11 1 |
| 150 | 339 334 1 | 3 7 1 35 35 1 | 2 10 2 95 98 1 | 4 2 4 40 38 1 | 0 10 5 290 290 2 |
| 2 5 0 |) 72 -70 1
) 185 188 1 | 4 7 1 26 -23 1 | 3 10 2 134 -133 1 | 5 2 4 105 -102 1 | 1 10 5 99 97 1 |
| 4 5 0 | 207 216 1 | 0 8 1 127 134 1 | 1 11 2 142 143 1 | 2 3 4 162 167 1 | 1 11 5 21 -16 1 |
| 5 5 0 | | 1 8 1 88 95 1 | 2 11 2 88 -89 1 | 3 3 4 300 290 2 | 0 0 6 315 -325 2 |
| 0 6 0 | 27 - 30 1 | 3 8 1 64 -59 1 | 4 11 2 33 32 1 | 5 3 4 211 205 1 | 4 0 6 17 -12 2 |
| 160 | | 4 8 1 135 -136 1 | 0 12 2 202 207 1 | 0 4 4 149 137 1 | 1 1 6 386 391 2 |
| 3 6 0 |) $16 -7 1$ | 1 9 1 162 -165 1 | 2 12 2 52 54 1
2 12 2 52 52 1 | | 3 1 6 210 209 1 |
| 4 6 0 | 171 176 1 | 2 9 1 48 45 1 | 3 12 2 61 59 1 | 3 4 4 326 -318 2 | 4 1 6 139 -135 1 |
| 660 |) 4/ 41 1 | 3 9 1 44 -41 1 4 9 1 105 104 1 | 1 13 2 221 227 1
2 13 2 108 -107 1 | 4 4 4 256 256 2
5 4 4 50 43 1 | 0 2 6 185 188 1
1 2 6 63 -60 1 |
| 170 | 662 660 1 | 5 9 1 97 94 1 | 0 14 2 77 78 1 | 1 5 4 265 264 2 | 2 2 6 387 386 2 |
| 370 |) 172 -179 1
) 477 473 2 | 0 10 1 320 331 2 | 1 0 3 89 -76 1
3 0 3 334 337 2 | 2 5 4 17 -16 1
3 5 4 130 129 1 | 3 2 6 289 282 2 |
| 4 7 0 | 191 -192 1 | 2 10 1 173 173 1 | 5 0 3 28 26 1 | 4 5 4 145 143 1 | 1 3 6 76 75 1 |
| 570 |) 164 162 1
) 135 126 1 | 3 10 1 282 -281 2
4 10 1 142 144 1 | 1 1 3 227 213 1 | 5 5 4 107 -103 1 | 2 3 6 121 -124 1 |
| 1 8 0 | 113 -112 1 | 1 11 1 18 -15 1 | 3 1 3 127 121 1 | 1 6 4 103 103 1 | 4 3 6 129 -125 1 |
| 280 |) 425 417 2
} 413 414 2 | 2 11 1 156 155 1 | 4 1 3 120 -121 1 | | |
| 4 8 0 | 104 106 1 | 4 11 1 172 170 1 | 6 1 3 79 -77 1 | 4 6 4 112 109 1 | 2 4 6 122 120 1 |
| 580 |) 62 64 1
 82 -77 1 | 0 12 1 342 -346 2 | | 5 6 4 32 32 1 | 3 4 6 166 163 1 |
| 2 9 0 | 154 -155 1 | 2 12 1 130 -128 1 | 2 2 3 156 155 1 | 2 7 4 151 -156 1 | 1 5 6 133 132 1 |
| 3 9 0 |) 141 -139 1 | 3 12 1 162 -163 1
1 13 1 236 235 1 | 3 2 3 67 64 1 | 3 7 4 349 349 2 | 2 5 6 36 -32 1 |
| 5 9 0 | 195 193 1 | 2 13 1 9 3 -4 | 5 2 3 125 123 1 | 0 8 4 128 126 1 | 4 5 6 53 -51 1 |
| 0 10 0 | 331 324 2 | | 6 2 3 164 -160 1 | | 0 6 6 541 537 2 |
| 2 10 0 | 427 425 2 | 0 0 2 450 -445 1 | 2 3 3 46 -41 1 | 3 8 4 295 295 2 | 2 6 6 207 209 1 |
| 3 10 0 | 14 -9 2 | | 3 3 3 316 -318 2 | 4 8 4 94 94 1 | 3 6 6 23 -21 1 |
| 1 11 0 | 178 178 1 | 6 0 2 189 188 1 | 5 3 3 71 71 1 | 2 9 4 124 -125 1 | 2 7 6 152 148 1 |
| 2 11 0 | | 1 1 2 716 715 1
2 1 2 91 - 95 1 | 6 3 3 81 -75 1
0 4 3 536 524 1 | 3 9 4 93 -92 1 | 3 7 6 23 19 1 |
| 4 11 0 | 90 86 1 | 3 1 2 397 401 1 | 1 4 3 112 104 1 | 0 10 4 279 282 2 | 1 8 6 86 -84 1 |
| 0 12 0 | 320 318 2 | 4 1 2 267 -275 1 | | 1 10 4 37 35 1 | |
| 2 12 0 | 30 28 1 | 6 1 2 19 -9 2 | 4 4 3 126 126 1 | 3 10 4 22 16 1 | 2 9 6 110 106 1 |
| 3 12 0 | | 0 2 2 153 152 1 | 5 4 3 57 -57 1 | 1 11 4 139 139 1 | 0 10 6 52 -48 1 |
| 2 13 0 | 161 161 1 | 2 2 2 858 870 1 | 2 5 3 270 274 2 | 0 12 4 223 225 2 | 3 0 7 225 226 1 |
| 0 14 0 | | 3 2 2 579 602 1 | 3 5 3 128 122 1 | 1 12 4 32 -29 1 | 1 1 7 87 89 1 |
| 1 0 1 | 289 - 277 1 | 5 2 2 14 10 2 | 4 5 3 1/3 1/1 1
5 5 3 111 109 1 | 3 0 5 68 -69 1 | 2 1 7 115 - 115 1
3 1 7 45 43 1 |
| 3 0 1 | 198 -206 1 | 6 2 2 352 343 2 | 0 6 3 463 -463 2 | 5 0 5 113 -110 1 | 0 2 7 27 25 1 |
| 5 0 1 | 237 - 213 1 | 1 3 2 217 200 1
2 3 2 183 -188 1 | 1 6 3 161 -164 1
2 6 3 153 -155 1 | 1 1 5 94 -89 1
2 1 5 223 224 1 | 1 2 7 118 117 1
2 2 7 124 122 1 |
| 211 | 350 347 1 | 3 3 2 17 -19 1 | 3 6 3 143 -144 1 | 3 1 5 187 -184 1 | 3 2 7 29 25 1 |
| 3 1 1 | 234-229 1
80 84 1 | 4 3 2 185 -194 <u>1</u>
5 3 2 247 241 1 | 4 6 3 167 -166 1
5 6 3 90 -90 1 | 4 1 5 45 44 1
5 1 5 139 -136 1 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| 5 1 1 | 254 - 256 1 | 6 3 2 12 -2 -3 | 1 7 3 134 135 1 | 0 2 5 325 -335 2 | 3 3 7 169 -169 1 |
| 6 1 1 | 128 125 1 | | 2 7 3 125 126 1 | 1 2 5 18 -13 1 | 0 4 7 296 303 2 |
| 1 2 1 | 138 -136 1 | 2 4 2 284 281 1 | 4 7 3 19 -13 1 | 3 2 5 138 -137 1 | 2 4 7 77 79 1 |
| 2 2 1 | 64 51 1 | 3 4 2 177 178 1 | 5 7 3 75 -74 1 | 4 2 5 9 0 -3 | 3 4 7 211 -207 1 |
| 4 2 1 | 73 73 1 | 5 4 2 44 43 1 | $1 \ 8 \ 3 \ 238 - 242 \ 1$ | 1 3 5 386 385 2 | 2 5 7 161 160 1 |
| 5 2 1 | 103 -104 1 | 6 4 2 55 -55 1 | 2 8 3 251 252 1 | 2 3 5 57 -59 1 | 0 6 7 231 -227 1 |
| 267 | 218 215 1
89 -89 1 | 1 5 2 2/3 267 1
0 0 8 486 504 2 | 3 8 3 22 19 1
2 1 8 75 74 1 | 3 3 5 239 236 2
1 2 8 25 24 1 | 1 6 7 133 -131 1
0 4 8 94 98 1 |
| 1 7 7 | 91 90 1 | 2 0 8 237 243 2 | 0 2 8 135 137 1 | 1 3 8 199 205 1 | 1 4 8 36 32 1 |
| 087 | 186 - 180 1 | 1 1 8 15 -5 2 | | | |

Appendix S-2: Observed and calculated structure factors for diopside

| h k | 1 10Fo 10Fc 10s | h k | l 10Fo 10Fc 10a | h k | 1 10Fo 10Fc 10s | h k | 1 10Fo 10Fc 10s | s h k | 1 10Fo 10Fc 10s |
|-------------------|------------------------------|--------------|------------------------------|---------------|------------------------------|----------------|----------------------------|------------|----------------------------|
| 2 0 | 0 76 50 1 | 2 2 | 1 1162 1144 2 | 6 10 | 1 228 -248 2 | 26 | 2 108 -109 | i -4 4 | 3 321 354 2 |
| 40
60 | 0 135 190 1
0 886 849 2 | 4 2
6 2 | 1 284 265 2 | -5 11 | 1 259 -256 2 | 4 6 | 2 191 188 1 | | 3 371 -384 2 |
| 8 0 | 0 819 819 3 | 8 2 | 1 416 404 3 | -1 11 | 1 132 -126 1 | 86 | 2 164 160 1 | 24 | 3 27 14 2 |
| 10 0 | 0 565 559 3 | 10 2 | 1 46 -38 2 | 1 11 | 1 375 - 367 2 | 10 6 | 2 195 189 2 | 2 4 4 | 3 493 506 3 |
| 1 1 | 0 30 -28 1 | -13 3 | 1 244 236 2 | 5 11 | 1 15 0 -6 | -9 7 | 2 205 -194 2 | 2 8 4 | 3 137 132 1 |
| 31 | 0 812 766 1 | ~11 3 | 1 269 256 2 | -4 12 | 1 189 179 2 | -7 7 | 2 138 148 1 | 1 -11 5 | 3 90 -94 1 |
| 7 i | 0 419 412 2 | -7 3 | 1 485 -486 2 | 0 12 | 1 32 -18 4 | -3 7 | 2 116 110 1 | i -75 | 3 29 18 2 |
| 9 1 | 0 51 -38 1 | -53 | 1 1146 1117 2 | 2 12 | 1 485 480 3 | -1 7 | 2 420 -412 3 | 3 -5 5 | 3 323 -362 2 |
| 13 1 | 0 209 -205 2 | -1 3 | 1 889 856 2 | -10 0 | 2 706 - 699 3 | 3 7 | 2 192 206 1 | l - 15 | 3 24 -14 2 |
| 02 | 0 240 230 1 | 1 3 | 1 251 -205 2 | -8 0 | 2 332 -329 2 | 57 | 2 364 -369 2 | 2 1 5 | 3 310 - 318 2 |
| 4 2 | 0 245 -231 2 | 73 | 1 215 -217 2 | -4 0 | 2 1080-1097 2 | 97 | 2 197 -192 2 | 2 3 5 | 3 109 105 1 |
| 62 | 0 222 -224 2 | 93 | 1 492 484 3 | -2 0 | 2 380 358 2 | -10 8 | 2 202 192 2 | 2 7 5 | 3 63 -66 2 |
| 10 2 | 0 33 -28 2 | -12 4 | 1 278 270 2 | 4 0 | 2 1229-1200 2 | -6 8 | 2 203 196 1 | -10 6 | 3 251 -253 2 |
| 12 2 | 0 203 -198 2 | -10 4 | 1 343 -331 3 | 60 | 2 105 114 1 | -4 8 | 2 222 208 2 | 2 -8 6 | 3 139 -152 1 |
| 3 3 | 0 676 670 2 | ~6 4 | 1 138 -136 1 | 10 0 | 2 797 -821 3 | 0 8 | 2 288 289 3 | -46 | 3 209 -221 1 |
| 53 | 0 444 441 2 | -4 4 | 1 130 -139 1 | -13 1 | 2 147 -145 1 | 28 | 2 168 173 1 | -2 6 | 3 195 -199 1 |
| 93 | 0 360 350 2 | 0 4 | 1 1000 -985 10 | -9 1 | 2 304 309 2 | 6 8 | 2 278 286 2 | 2 6 | 3 36 22 2 |
| 11 3 | 0 204 204 2 | 24 | 1 169 158 1 | -7 1 | 2 966 -966 2 | 88 | 2 111 105 1 | 46 | 3 410 -429 3 |
| 24 | 0 155 173 1 | 64 | 1 61 58 1 | -3 1 | 2 110 87 1 | -7 9 | 2 291 -272 2 | 8 6 | 3 114 -111 1 |
| 6 4 | 0 669 -672 2 | 84
104 | 1 74 -75 1 | -1 1 | 2 85 97 1 | 5 9 | 2 189 179 1 | -11 7 | 3 138 134 1 |
| 8 4 | 0 133 125 1 | -11 5 | 1 102 -98 1 | 3 ī | 2 218 -212 1 | -1 9 | 2 66 63 1 | -7 7 | 3 27 -6 3 |
| 10 4 | 0 502 -486 3 | -95 | 1 103 99 1
1 101 101 1 | 5171 | 2 405 406 2 2 522 -516 3 | 19 | 2 100 -94 1 | -57 | 3 576 593 3 |
| 1 5 | 0 1035 -999 2 | -5 5 | 1 126 125 1 | 9 1 | 2 306 317 2 | 5 9 | 2 152 159 1 | -17 | 3 664 655 3 |
| 5 5 | 0 649 -704 2 | -35 | 1 140 -127 1
1 355 334 2 | 11 1
-12 2 | 2 302 -289 2 2 356 348 2 | 79
~810 | 2 211 -210 2 2 200 -177 2 | | 3 290 293 2 |
| 7 5 | 0 1228-1187 3 | 15 | 1 125 132 1 | -10 2 | 2 247 -245 2 | -6 10 | 2 289 -267 2 | 57 | 3 454 466 3 |
| 11 5 | 0 131 -122 1
0 475 -459 3 | 35
55 | 1 177 -175 1
1 215 218 2 | -8 2 | 2 281 278 2 2 506 528 2 | -4 10
-2 10 | 2 557 -525 3 | -10 8 | 3 41 45 2 |
| 0 6 | 0 1034-1004 2 | 7 5 | 1 86 87 1 | -4 2 | 2 180 -180 1 | 0 10 | 2 604 -592 7 | -8 8 | 3 324 359 2 |
| 4 6 | 0 127 -130 1 | 11 5 | 1 86 80 1 | -2 2
0 2 | 2 201 232 1
2 661 630 12 | 2 10
4 10 | 2 59 -61 2
2 705 -732 3 | -68 | 3 147 142 1
3 213 214 2 |
| 6 6 | 0 90 94 1 | -10 6 | 1 266 253 2 | 2 2 | 2 464 463 2 | 6 10 | 2 117 -118 1 | -2 8 | 3 621 613 3 |
| 10 6 | 0 364 - 352 2 | -6 6 | 1 307 294 2 | 6 2 | 2 457 459 3 | -3 11 | 2 175 -170 2 | 28 | 3 695 695 3 |
| 17 | 0 30 -20 2 | -4 6 | 1 407 402 2 | 8 2 | 2 363 367 2 | -1 11 | 2 167 151 2 | 4 8 | 3 198 -193 2 |
| 5 7 0 | 0 435 482 3 | 0 6 | 1 543 543 11 | -13 3 | 2 227 -216 2 | 3 11 | 2 203 -208 2 | -99 | 3 277 299 2 |
| 971 | 0 288 -286 2 | 2 6 | 1 237 241 2 | -11 3 | 2 61 -60 2 | -2 12 | 2 420 394 3 | -79 | 3 445 -446 3 |
| 0 8 0 | 0 69 -66 1 | 6 6 | 1 81 84 1 | -7 3 | 2 315 -320 2 | -13 1 | 3 79 73 2 | -3 9 | 3 195 -192 1 |
| 280 | 0 342 -347 2 0 433 -457 3 | 86
106 | 1 269 264 2
1 247 244 2 | -53 | 2 335 - 369 2 | -11 1 | 3 124 119 1 | -19 | 3 365 354 2 |
| 6 8 (| 0 80 -84 1 | -11 7 | 1 123 -123 1 | -1 3 | 2 643 -656 2 | -7 1 | 3 417 434 3 | 3 9 | 3 369 - 370 2 |
| 10 8 0 | 0 120 ~121 1
0 360 -350 2 | -97 | 1 347 -333 2
1 40 19 2 | 1 3 3 | 2 501 -497 2 | -5 1 | 3 217 -225 1 | 5 9 | 3 278 281 2 |
| 190 | 0 63 -57 1 | -57 | 1 894 -906 3 | 5 3 | 2 352 -356 3 | -1 1 | 3 112 116 1 | -4 10 | 3 76 75 2 |
| 590 | 0 188 -199 1 | -1 7 | 1 56 48 1 | 93 | 2 288 -293 2
2 175 -177 1 | 11 | 3 79 64 1
3 383 382 2 | -210 | 3 169 164 2
3 44 6 6 |
| 7 9 (| 0 147 155 1 | 17 | 1 620 -624 3 | 11 3 | 2 50 -43 2 | 5 1 | 3 217 210 2 | 2 10 | 3 243 245 2 |
| 0 10 0 | 0 798 788 3 | 57 | 1 505 -537 3 | -12 4 | 2 224 219 2 | 91 | 3 187 -187 2 | 4 10 | 3 132 -141 1
3 108 95 2 |
| 2 10 (| 0 101 84 1 | 77 | 1 126 -127 1 | -8 4 | 2 18 9 3 | -12 2 | 3 556 -540 3 | -3 11 | 3 216 205 2 |
| 6 10 0 | 0 212 230 2 | -10 8 | 1 21 5 -4 | -4 4 | 2 48 49 1 | -10 2 | 3 634 -648 3 | -1 11 | 3 206 204 2 |
| 8 10 (| 0 211 235 2 | -88 | 1 377 - 371 2 | -2 4 | 2 232 -237 1 | -6 2 | 3 99 -90 1 | -12 0 | 4 141 131 1 |
| 3 11 0 | 0 228 230 2 | -4 8 | 1 189 -182 1 | 24 | 2 449 -449 2 | -2 2 | 3 1189-1217 2 | -8 0 | 4 423 416 3 |
| 5 11 (| 0 349 - 348 2 | -28 | 1 1026 -988 3
1 252 256 5 | 4 4 | 2 402 407 2 | 02 | 3 106 -102 1 | -60 | 4 1054 1080 3 |
| 2 1 2 0 | 0 287 -277 2 | 28 | 1 559 - 569 3 | 84 | 2 83 -79 1 | 4 2 | 3 93 94 1 | -2 0 | 4 74 -74 1 |
| -13 1 1 -11 1 1 | 1 30 -3 3
1 316 -307 2 | 48 | 1 162 -177 1
1 570 -597 3 | 10 4 | 2 94 93 2
2 421 403 3 | 62
82 | 3 711 -721 3 | 00 | 4 1068 1058 2 |
| -9 1 1 | 1 62 -57 1 | 8 8 3 | 1 167 -167 1 | -9 5 | 2 173 164 1 | 10 2 | 3 101 -107 2 | 4 0 | 4 949 957 3 |
| -5 1 1 | 1 140 134 1 | -7 9 1 | 1 575 638 3 | -/ 5 | 2 110 111 1 | -13 3 | 3 319 - 315 2 | 6 U
8 O | 4 157 163 1
4 410 430 3 |
| -3 1 1 | 880 -895 2 | -591 | 1 375 - 375 3 | -3 5 | 2 1054 1081 2 | -93 | 3 752 -764 3 | -13 1 | 4 119 108 1 |
| 1 1 1 | 1 190 -199 1 | -1 9 1 | 1 154 147 1 | -1 5
1 5 | 2 747 742 2 | -5 3 | 3 627 -685 2 | -11 1 | 4 136 127 1 |
| 3 1 1 | 850 -822 2 | 191 | 1 263 260 2 | 35 | 2 1120 1142 2 | -33 | 3 242 -248 2 | -7 1 | 4 239 242 2 |
| 7 1 1 | 310 - 308 2 | 5 9 1 | 1 268 -280 2 | 7 5 | 2 617 617 3 | 1 3 | 3 179 -175 1 | -3 1 | 4 726 747 2 |
| 9 1 1 | 1 51 43 2
1 411 - 419 3 | 791 | 1 399 412 2 | 95 | 2 141 144 1 | 33 | 3 50 -23 1 | -1 1 | 4 554 -563 2 |
| 12 2 1 | 720 704 3 | -6 10 1 | 1 38 -4 2 | -10 6 | 2 51 42 2 | 7 3 | 3 92 -94 1 | 3 1 | 4 446 450 3 |
| 10 2 1 | 1 24 16 3
1 372 357 3 | -4 10 1 | 1 44 -39 2
1 410 -399 3 | -86
-66 | 2 26 10 2 2 473 524 3 | 93
-124 | 3 553 -571 3 | 51 | 4 90 -87 1 |
| -6 2 1 | 503 494 2 | 0 10 1 | 1 157 140 16 | -4 6 | 2 26 -13 2 | -10 4 | 3 230 237 2 | 91 | 4 236 -243 2 |
| -4 2 1 | i 664 637 2
i 411 -410 4 | 2 10 1 | 1 79 -76 1 | -2 6 | 2 740 -736 2 | -84 | 3 128 -135 1 | -12 2 | 4 277 -268 2 |
| -8 2 4 | 111 -117 1 | -10 6 4 | 4 247 -257 2 | 3 î | 5 87 -83 1 | -6 6 | 5 265 268 2 | 2 2 | 6 344 334 2 |
| -6 2 6 | a 54 -44 1
333 -348 2 | -864
-664 | a 361 385 2
4 285 - 302 2 | 5 1
7 1 | 5 182 -189 2
5 360 -372 3 | -4 6
-2 6 | 5 218 224 2
5 45 48 2 | 42
-93 | 6 32 -13 3
6 113 -106 1 |
| -2 2 4 | 185 -192 1 | -4 6 4 | 4 403 -410 2 | -12 2 | 5 392 379 3 | 0 6 | 5 294 290 2 | -73 | 6 224 -218 2 |
| 2 2 4 | 611 - 609 3 | -2 6 4 | 4 146 -140 2 | -10 2 | 5 622 627 3 | 2646 | 5 122 116 1
5 253 255 2 | -53
-33 | ь 196-200 2
6 29 8 2 |
| 4 2 4 | 32 -17 2 | 264 | 4 125 103 1 | -6 2 | 5 148 145 1 | -7 7 | 5 21 -13 -4 | -1 3 | 6 322 -317 2 |
| 8 2 4 | 187 -189 2 | 6 6 4 | 348 350 2 | -2 2 | 5 479 477 3 | -37 | 5 123 118 1 | 33 | 6 78 -79 2 |
| 11 3 4 | 211 206 2 | -974 | 4 271 282 2 | 02 | 5 164 163 3 | -1 7 | 5 352 -351 2 | -8 4 | 6 76 -69 2 |
| -7 3 4 | 34 -25 2 | -5 7 4 | 4 210 218 2 | 4 2 | 5 174 -167 1 | 3 7 | 5 313 -314 2 | -4 4 | 6 159 -156 1 |
| -5 3 4 | 300 316 2 | -3 7 4 | 4 54 -54 2
4 304 300 2 | 62
 | 5 415 428 3 | -68 | 5 23 -12 4 | -2 4 | 6 31 28 3 |
| -1 3 4 | 192 198 1 | 1 7 4 | 38 32 2 | -9 3 | 5 598 607 3 | -2 8 | 5 458 -453 3 | 2 4 | 6 372 - 363 3 |
| 134 | 128 128 1 | 374 | 4 72 66 1
4 162 155 1 | -73 | 5 118 117 1 | 08 | 5 70 -71 4 | -75 | 6 321 322 2 |

| 5 | 3 | 4 | 226 | 232 | 2 | -8 | 8 | 4 | 189 | -199 | 1 | -3 | 3 | 5 | 182 | -189 | 1 | -3 | 9 | 5 | 486 | 461 | 3 | -3 | 5 | 6 | 864 85 | 6 3 |
|-----|-----|-----|-----|---------|----|-----|----|----|------|------|-----|-----|----|----|------|-------|-----|-----|---|---|-----|-------|---|-----|----|----------|-----------|------------|
| 7 | 3 | 4 | 29 | 24 | 3 | -6 | 8 | 4 | 79 | -85 | 2 | -1 | 3 | 5 | 940 | 944 | 3 | -1 | 9 | š | 193 | -190 | 2 | -1 | 5 | 6 | 29 2 | 1 1 |
| -12 | 4 | 4 | 252 | 247 | 2 | - 4 | 8 | 4 | 246 | -250 | - 2 | 1 | 3 | 5 | 213 | 211 | 2 | -10 | ó | ĕ | 751 | -719 | 2 | 1 | 5 | Ğ. | 378 36 | i i |
| -10 | 4 | 4 | 358 | -364 | 2 | -2 | ã | 4 | 340 | -331 | 2 | 3 | 3 | 5 | 128 | 127 | ĩ | - 8 | ň | ĕ | 227 | 219 | 2 | -6 | 6 | 6 | 192 19 | 1 2 |
| -8 | 4 | 4 | 160 | 165 | ī | ñ | ā | Ā | 147 | -142 | ĩ | ŝ | 3 | 5 | 422 | 427 | - 1 | -6 | ň | ě | 425 | -469 | ĩ | - 4 | ž | Ă | 115 11 | 1 1 |
| - 6 | 4 | 4 | 60 | 10 | ĩ | 2 | ă | à | 127 | -129 | 1 | -10 | ž | 5 | 288 | -288 | 2 | - 4 | ň | ě | 694 | -677 | ž | -2 | Ř | š | 38 -29 | , <u>1</u> |
| -4 | 4 | 4 | 225 | -236 | 2 | 4 | 8 | d. | 314 | -325 | 2 | -8 | Ā | 5 | 145 | 148 | ĩ | | ň | š | 353 | -348 | ž | ñ | ĕ | 6 | 177 17 | 2 |
| | å | 6 | 21 | -14 | ñ | | ğ | | 91 | 26 | - | - 6 | Ă. | 5 | 197 | - 203 | ÷ | - 2 | ň | ž | 376 | - 340 | 2 | - 5 | ž | ž | 216 - 201 | |
| ō | à | ż | 126 | -119 | ĩ | -5 | á | 2 | 139 | -132 | - | - 4 | 2 | ś | 21.6 | -219 | 5 | 2 | ň | 2 | 272 | -300 | 2 | | 4 | č | 210 -20 | ć - 5 |
| 2 | Ā | 4 | 357 | 355 | 5 | - 1 | ó | | 245 | 242 | 5 | - 2 | 7 | ŝ | 277 | -215 | 1 | - | 0 | 2 | 000 | - 070 | ž | - 5 | ź | ž | 230 221 | 2 2 |
| ž | | - Ā | 524 | -528 | 2 | _1 | ő | 7 | 1.95 | -190 | 2 | -2 | | Ĕ. | 246 | 247 | - | | 4 | ĉ | 114 | - 070 | 1 | -1 | 4 | 2 | 210 -20 | |
| ž | 7 | 7 | 111 | 132 | 1 | - 1 | á | 2 | 105 | -100 | 2 | 2 | 2 | ÷ | 240 | -247 | ź | | 1 | 2 | 114 | 2111 | - | -/ | 1 | 4 | 200 24 | |
| 6 | 7 | 2 | 133 | 132 | 2 | 2 | 0 | 1 | 107 | 105 | | 2 | | 5 | 230 | 232 | 2 | -! | 1 | Š | 270 | -257 | 2 | - 5 | ÷. | 4 | 111 -10 | |
| | - Z | | 212 | 222 | 2 | 2 | 10 | | 107 | 105 | - | | 4 | 2 | 522 | -212 | 3 | - 5 | 1 | 6 | 254 | 247 | 2 | - 3 | 1 | 1 | 288 27 | 2 |
| -11 | 2 | | 217 | ~ 4 4 4 | 2 | - 9 | 10 | 4 | 322 | 309 | 2 | 6 | - | 2 | 39 | - 37 | 2 | - 3 | 1 | 6 | 369 | -362 | 2 | ~1 | 1 | <u>.</u> | 106 10 | 1 1 |
| -9 | 2 | 4 | 19 | 0 | -4 | -2 | 10 | 4 | 212 | 204 | 2 | -9 | 5 | 5 | 79 | 73 | 2 | -1 | 1 | 6 | 118 | 115 | 1 | -6 | 2 | 7 | 108 -10 | \$ 2 |
| -7 | 5 | 4 | 809 | -857 | 3 | 0 | 10 | 4 | 564 | 553 | 6 | -7 | 5 | 5 | 36 | -28 | 2 | 1 | 1 | 6 | 156 | -149 | 1 | -4 | 2 | 7 | 282 -272 | ! 2 |
| -5 | 5 | 4 | 135 | -141 | 1 | -11 | 1 | 5 | 70 | -63 | 2 | ~5 | 5 | 5 | 138 | 145 | 1 | 3 | 1 | 6 | 145 | 139 | 1 | -2 | 2 | 7 | 229 -215 |) 2 |
| - 3 | 5 | 4 | 793 | -809 | 3 | -9 | 1 | 5 | 66 | -68 | 2 | - 3 | 5 | 5 | 33 | -22 | 2 | -10 | 2 | 6 | 102 | -96 | 2 | 0 | 2 | 7 | 65 -56 | 8 ذ |
| -1 | 5 | 4 | 124 | -125 | 1 | -7 | 1 | 5 | 325 | -323 | 2 | -1 | 5 | 5 | 57 | 62 | 2 | -8 | 2 | 6 | 218 | 209 | 2 | -5 | 3 | 7 | 522 -50 | 5 3 |
| 1 | 5 | 4 | 621 | -617 | 3 | -5 | 1 | 5 | 152 | 150 | 1 | 1 | 5 | 5 | 78 | 37 | 1 | -6 | 2 | 6 | 154 | 152 | 1 | -3 | 3 | 7 | 253 24 |) 2 |
| 3 | 5 | 4 | 513 | -518 | 3 | - 3 | 1 | 5 | 469 | -464 | 3 | 3 | 5 | 5 | 125 | 128 | 1 | -4 | 2 | 6 | 111 | 110 | 1 | -1 | 3 | 7 | 482 -461 | / 3 |
| 5 | 5 | 4 | 271 | -276 | 2 | -1 | 1 | 5 | 84 | -83 | 1 | 5 | 5 | 5 | 34 | 31 | 3 | -2 | 2 | 6 | 84 | 80 | 1 | -4 | 4 | 7 | 87 83 | 2 2 |
| 7 | 5 | 4 | 640 | -663 | 4 | 1 | 1 | 5 | 186 | -180 | 1 | -8 | 6 | 5 | 34 | ~24 | 3 | 0 | 2 | 6 | 95 | 87 | 1 | | | | | |

(*)
Appendix S-3: Observed and calculated structure factors for muscovite

A152

| -4 4 14 | 325 328 11 | 1 1 16 128 -131 16 | -2 | 0 18 | 1148-1180 | 10 | 3 1 20 | 186 209 1 | 5 -1 | 1 23 | 513 491 10 |
|----------|--------------|----------------------|-----|------|-----------|-------|---------|-------------|-------|------|--------------|
| -2 4 14 | 882 911 8 | 3 1 16 47 -38 -47 | 0 | 0 18 | 211 232 | 10 - | 4 2 20 | 151 150 1 | 8 1 | 1 23 | 114 -135 -25 |
| 0 4 1 4 | 430 448 7 | 5 1 16 225 -220 14 | 2 | 0 18 | 956 -963 | 9 - | 2 2 20 | 32 -14 -3 | 2 3 | 1 23 | 111 110 -29 |
| 2 4 1 4 | 137 137 15 | -6 2 16 220 206 16 | 4 | 0 18 | 111 95 - | -24 | 0 2 20 | 220 250 1 | 0 -4 | 2 23 | 115 170 -29 |
| 4 4 1 4 | 142 -163 19 | -4 2 16 734 741 9 | -5 | 1 18 | 110 137 - | -29 | 2 2 20 | 138 151 2 | 0 -2 | 2 23 | 467 427 10 |
| -5 5 14 | 488 458 11 | -2 2 16 71 -66 -34 | - 3 | 1 18 | 236 258 | 12 | 4 2 20 | 386 398 1 | 2 0 | 2 23 | 284 277 9 |
| -3 5 14 | 234 241 12 | 0 2 16 323 331 7 | -1 | 1 18 | 30 13 - | -30 - | 5 3 20 | 126 -109 -2 | 8 2 | 2 23 | 337 356 13 |
| -1 5 14 | 610 638 8 | 2 2 16 338 - 324 9 | 1 | 1 18 | 30 36 - | -30 - | 3 3 20 | 69 -82 -5 | 0 -3 | 3 23 | 713 -711 10 |
| 1 5 14 | 248 241 10 | 4 2 16 115 145 -24 | 3 | 1 18 | 74 -80 - | -44 - | 1 3 20 | 77 -87 -4 | 2 -1 | 3 23 | 350 -334 11 |
| 3 5 1 4 | 458 457 10 | -5 3 16 36 -10 -36 | 5 | 1 18 | 36 -28 - | - 36 | 1 3 20 | 32 20 - 3 | 2 1 | 3 23 | 698 -666 10 |
| 5 5 1 4 | 35 14 - 35 | -3 3 16 50 57 -50 | -4 | 2 18 | 309 325 | 12 | 3 3 20 | 36 29 -3 | 6 3 | 3 23 | 336 319 13 |
| -4 6 14 | 848 - 820 9 | -1 3 16 200 -234 12 | -2 | 2 18 | 82 101 - | -28 - | 4 4 20 | 62 -53 -6 | 2 -4 | 4 23 | 222 218 16 |
| -2 6 14 | 226 -240 11 | 1 3 16 74 -131 -56 | 0 | 2 18 | 329 323 | 10 - | 2 4 20 | 114 99 2 | 2 -2 | 4 23 | 198 194 16 |
| 0 6 14 | 666 - 702 8 | 3 3 16 250 -275 13 | 2 | 2 18 | 46 6 - | -46 | 0 4 20 | 76 -92 -2 | 7 0 | 4 23 | 352 332 8 |
| 2 6 1 4 | 412 405 9 | 5 3 16 105 -89 -32 | 4 | 2 18 | 36 90 - | -36 | 2 4 20 | 181 -164 1 | .5 2 | 4 23 | ~160 167 22 |
| 4 6 1 4 | 35 -40 -35 | -4 4 16 547 -536 10 | -5 | 3 18 | 162 166 | 20 | 4 4 20 | 401 - 397 1 | .3 -3 | 5 23 | 207 -201 17 |
| -5 7 14 | 163 163 20 | -2 4 16 79 65 -28 | - 3 | 3 18 | 53 71 - | -53 - | 3 5 20 | 211 -198 1 | 4 -1 | 5 23 | 34 23 - 34 |
| -3 7 14 | 313 320 12 | 0 4 16 29 -26 -21 | -1 | 3 18 | 287 324 | 12 - | 1 5 20 | 138 -161 1 | 9 1 | 5 23 | 125 -148 23 |
| -1 7 14 | 131 124 18 | 2 4 16 255 279 11 | 1 | 3 18 | 35 55 - | -35 | 1 5 20 | 419 -401 1 | 0 -2 | 6 23 | 79 106 -49 |
| 1 7 14 | 363 378 10 | 4 4 16 33 -50 -33 | 3 | 3 18 | 169 157 | 16 | 3 5 20 | 142 -162 2 | 2 0 | 6 23 | 112 96 -23 |
| 3 7 14 | 112 106 22 | -5 5 16 274 -269 14 | -4 | 4 18 | 291 -305 | 13 - | 4 6 20 | 573 - 578 1 | 1 -1 | 7 23 | 575 -531 11 |
| -4 8 14 | 400 -371 12 | -3 5 16 83 -82 -31 | -2 | 4 18 | 207 202 | 13 - | 2 6 20 | 78 38 -4 | 0 -4 | 0 24 | 203 -197 17 |
| -2 8 14 | 271 246 11 | -1 5 16 167 -165 14 | 0 | 4 18 | 361 -354 | 18 | 0 6 20 | 405 - 398 1 | 3 -2 | 0 24 | 697 -656 10 |
| 0 8 1 4 | 242 - 246 9 | 1 5 16 77 56 -29 | 2 | 4 18 | 216 219 | 12 | 2 6 20 | 286 317 1 | 2 0 | 0 24 | 609 568 7 |
| 2 8 1 4 | 125 150 21 | 3 5 16 31 -32 -31 | 4 | 4 18 | 144 -148 | 21 - | 3 7 20 | 79 -14 -5 | 0 2 | 0 24 | 289 250 13 |
| -3 9 14 | 317 326 13 | -4 6 16 275 -309 15 | ~5 | 5 18 | 214 -174 | 17 - | 1 7 20 | 217 - 207 1 | 5 -3 | 1 24 | 328 319 12 |
| -1 9 14 | 213 235 15 | -2 6 16 32 -37 -32 | ~ 3 | 5 18 | 62 -89 - | -62 | 1 7 20 | 34 -76 -3 | 4 -1 | 1 24 | 77 117 -47 |
| 1 9 14 | 183 191 16 | 0 6 16 965-1003 7 | -1 | 5 18 | 139 -143 | 17 - | 2 8 20 | 109 116 -2 | 9 1 | 1 24 | 55 84 -55 |
| 3 9 1 4 | 36 -80 -36 | 2 6 16 86 -94 -28 | 1 | 5 18 | 82 90 - | -31 | 0 8 20 | 259 -246 1 | 1 3 | 1 24 | 36 -45 -36 |
| -2 10 14 | 797 -800 10 | 4 6 16 667 -689 10 | 3 | 5 18 | 33 -20 - | -33 - | 5 1 21 | 36 -2 -3 | 6 -4 | 2 24 | 131 126 23 |
| 0 10 14 | 239 -231 10 | -3 7 16 74 -64 -50 | -4 | 6 18 | 291 301 | 13 - | 3 1 21 | 238 - 282 1 | 3 -2 | 2 24 | 51 38 -51 |
| 2 10 14 | 162 -160 18 | -1 7 16 122 113 19 | -2 | 6 18 | 755 784 | 9 - | 1 1 21 | 74 -64 -3 | 9 0 | 2 24 | 218 228 10 |
| -5 1 15 | 502 482 10 | 1 7 16 32 -5 -32 | 0 | 6 18 | 94 94 - | 19 | 1 1 21 | 398 - 387 1 | 1 2 | 2 24 | 125 -143 -27 |
| -3 1 15 | 290 305 11 | 3 7 16 175 182 16 | 2 | 6 18 | 586 592 | 10 | 3 1 21 | 151 -148 1 | 9 -3 | 3 24 | 53 -20 -53 |
| -1 1 15 | 462 484 7 | -4 8 16 330 -332 14 | -3 | 7 18 | 207 -208 | 15 - | 4 2 21 | 35 ~65 -3 | 5 -1 | 3 24 | 89 102 - 36 |
| 1 1 15 | 58 -113 -58 | -2 8 16 34 -14 -34 | -1 | 7 18 | 98 -92 - | -26 - | 2 2 21 | 212 -231 1 | 3 1 | 3 24 | 104 -104 -57 |
| 3 1 15 | 282 285 11 | 0 8 16 38 -83 -28 | 1 | 7 18 | 33 -78 - | 33 | 0 2 21 | 313 -326 | 8 -2 | 4 24 | 124 -129 24 |
| 5 1 15 | 69 -94 -69 | 2 8 16 89 71 - 30 | 3 | 7 18 | 34 -14 - | 34 | 2 2 21 | 458 -438 1 | 0 0 | 4 24 | 411 -377 8 |
| -6 2 15 | 294 297 14 | -3 9 16 36 -59 -36 | -2 | 8 18 | 108 -80 - | 26 | 4 2 21 | 289 -300 1 | 4 2 | 4 24 | 259 251 14 |
| -4 2 15 | 606 605 9 | -1 9 16 263 263 13 | 0 | 8 18 | 184 -187 | 12 - | 5 3 21 | 146 -142 2 | 4 - 3 | 5 24 | 236 -210 15 |
| -2 2 1 5 | 577 593 8 | 1 9 16 312 305 12 | 2 | 8 18 | 35 -14 - | -35 - | 3 3 21 | 544 -532 1 | 0 -1 | 5 24 | 192 -183 17 |
| 0 2 1 5 | 418 417 10 | -2 10 16 108 -94 -27 | -1 | 9 18 | 397 -382 | 12 - | 1 3 2 1 | 165 189 1 | 51 | 5 24 | 35 33 - 35 |
| 2 2 1 5 | 29 -45 -29 | 0 10 16 144 -120 15 | 1 | 9 18 | 347 -312 | 12 | 1 3 21 | 208 188 1 | 4 -2 | 6 24 | 460 424 11 |
| 4 2 1 5 | 95 -132 -31 | -5 1 17 35 52 -35 | -5 | 1 19 | 156 -127 | 19 | 3 3 21 | 788 763 1 | 0 0 | 6 24 | 382 -343 9 |
| -5 315 | 270 -296 14 | -3 1 17 191 -201 13 | - 3 | 1 19 | 145 -154 | 17 - | 4 4 21 | 117 -135 -2 | 7 - 3 | 1 25 | 289 -300 14 |
| -3 315 | 825 - 835 8 | -1 1 17 465 479 8 | -1 | 1 19 | 213 219 | 12 - | 2 4 21 | 69 -80 -4 | 8 -1 | 1 25 | 35 63 - 35 |
| -1 3 15 | 382 414 8 | 1 1 17 369 -370 9 | 1 | 1 19 | 32 -13 - | -32 | 0 4 21 | 309 -321 1 | 1 1 | 1 25 | 36 33 - 36 |
| 1 3 1 5 | 495 521 8 | 3 1 17 338 321 10 | 3 | 1 19 | 217 213 | 13 | 2 4 21 | 215 -221 1 | 5 -2 | 2 25 | 194 -185 16 |
| 3 3 1 5 | 1049 1043 9 | 5 1 17 35 -90 -35 | -4 | 2 19 | 34 -19 - | -34 | 3 5 21 | 268 -287 1 | 4 0 | 2 25 | 34 11 -24 |
| 5 3 1 5 | 423 398 12 | -6 2 17 56 -80 -56 | -2 | 2 19 | 249 -246 | 11 - | 1 5 21 | 155 118 1 | 6 2 | 2 25 | 35 33 - 35 |
| -3 3 25 | 331 -315 13 | 1 5 25 116 -133 -27 | -1 | 1 26 | 115 174 - | 27 | 1 3 26 | 70 139 -7 | 0 -2 | 2 27 | 37 -93 -37 |
| -1 3 25 | 145 -142 21 | -2 0 26 1074-1009 11 | 1 | 1 26 | 194 188 | 17 - | 2 4 26 | 35 -12 -3 | 50 | 2 27 | 36 -73 -25 |
| 1 3 25 | 1014 -940 10 | 0 0 26 628 -584 17 | -2 | 2 26 | 152 -150 | 21 | 0 4 26 | 181 -186 1 | 6 -1 | 3 27 | 657 623 11 |
| -2 4 25 | 136 -98 20 | 2 0 26 727 -662 11 | 0 | 2 26 | 91 99 - | 25 - | 1 1 27 | 85 -76 -4 | 4 0 | 0 28 | 118 144 -24 |
| 0 4 25 | 36 11 -26 | -3 1 26 134 116 24 | -1 | 3 26 | 154 124 | 23 | 1 1 27 | 36 -40 -3 | 6 -1 | 1 28 | 75 29 - 75 |
| -1 5 25 | 63 19 -63 | | | | | | | | | | |

Appendix S-4: Observed and calculated structure factors for phlogopite

| h k l | l 10Fo 10Fc 10s | h k 1 10Fo 10Fc 10s | h k l 10Fo 10Fc 10s | h k 1 10Fo 10Fc 10s | h k 1 10Fo 10Fc 10s |
|--|---|--|---|--|---|
| h 24610246135024613502461350246135024613502413026413026420246753111111111111111111111111111111111111 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | h k 1 10F0 10FC 10s 1 7 1 55 45 6 3 7 1 369 366 3 -4 8 1 48 25 7 -2 8 1 123 123 366 4 0 8 1 122 128 123 128 2 2 8 1 122 128 1479 46 1 2 8 1 127 73 366 4 -3 1 9 1 479 469 4 -3 9 1479 469 4 1 1 137 -26 -9 -14 2 -10 1 37 -12 -12 -14 2 -14 10 1 17 12 11 12 -14 2 12 12 12 12 <td< td=""><td>h k 1 10F0 10FC 109 4 10 2 60 42 7 -3 11 2 19 -11 -19 -11 2 240 211 4 3 11 2 240 211 4 3 11 2 240 211 5 -2 12 2 166 -56 5 2 12 2 168 -56 5 2 0 3 395-744 4 -4 0 3 162 4 2 0 3 162 4 -2 3 367 3 2 0 3 162 162 4 -11 1 373 162 4 2 3 161 20 2 3 361 357 30 16 -11 1 3 361 357</td><td>h k 1 10F0 10Fc 109 -1 1 4 107 174 2 1 1 4 30 16 3 1 4 36 -30 6 3 1 4 36 -17 -6 -6 2 4 301 -307 3 -2 2 4 44 -307 3 -2 2 4 144 -1307 3 -2 2 4 144 -1307 3 -1 3 4 217 -1707 4 -7 3 4 217 -2707 -3 3 4 413 437 -5 3 225 -198 4 -6 4 130 33 -16 4 212 -14 -16 -17 -35 3 30 4 226 26 27</td><td>h k 1 10F0 10Fc 10s -2 4 5 34 -15 -7 0 4 5 34 -15 -7 0 4 5 14 137 -9 6 4 5 207 203 -9 -5 5 5 147 -151 37 1 5 5 39 -28 7 1 5 5 88 -88 4 -4 6 5 115 117 3 0 6 5 212 -250 4 -2 6 5 115 117 3 0 6 5 41 -11 5 10 7 5 137 136 45 -10 5 5 14 64 5 -2 8 5 107 119 <</td></td<> | h k 1 10F0 10FC 109 4 10 2 60 42 7 -3 11 2 19 -11 -19 -11 2 240 211 4 3 11 2 240 211 4 3 11 2 240 211 5 -2 12 2 166 -56 5 2 12 2 168 -56 5 2 0 3 395-744 4 -4 0 3 162 4 2 0 3 162 4 -2 3 367 3 2 0 3 162 162 4 -11 1 373 162 4 2 3 161 20 2 3 361 357 30 16 -11 1 3 361 357 | h k 1 10F0 10Fc 109 -1 1 4 107 174 2 1 1 4 30 16 3 1 4 36 -30 6 3 1 4 36 -17 -6 -6 2 4 301 -307 3 -2 2 4 44 -307 3 -2 2 4 144 -1307 3 -2 2 4 144 -1307 3 -1 3 4 217 -1707 4 -7 3 4 217 -2707 -3 3 4 413 437 -5 3 225 -198 4 -6 4 130 33 -16 4 212 -14 -16 -17 -35 3 30 4 226 26 27 | h k 1 10F0 10Fc 10s -2 4 5 34 -15 -7 0 4 5 34 -15 -7 0 4 5 14 137 -9 6 4 5 207 203 -9 -5 5 5 147 -151 37 1 5 5 39 -28 7 1 5 5 88 -88 4 -4 6 5 115 117 3 0 6 5 212 -250 4 -2 6 5 115 117 3 0 6 5 41 -11 5 10 7 5 137 136 45 -10 5 5 14 64 5 -2 8 5 107 119 < |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -2 2 10 200 -193 4
0 2 10 121 131 3
2 2 10 167 167 4
4 2 10 160 79 5
-5 3 10 115 107 5
-3 3 10 68 75 6
-1 3 10 140 131 4 | -1 7 11 59 60 7
1 7 11 169 149 5
-2 8 11 106 110 5
0 8 11 170 164 3
-4 0 12 44 23 -9
-2 0 12 236 -218 4
0 0 12 255 246 4 |

A154

| 0 | 0 | 7 | 451 | -471 | 3 | -5 | 1 | 8 | 199 | 193 | 4 | 1 | 1 | 9 | 39 | 37 | -9 | 1 | 3 10 | 70 | -67 | 6 | 2 | 0 12 | 452 | 432 | 4 |
|-----|---|-----|-----|------|-----|-----|---|---|-------|-------|-----|-----|-----|-----|-----|------|------------|-----|------|------|-------|-----|-----|-------|------|------|-----|
| 2 | 0 | 7 | 100 | 112 | 4 | - 3 | 1 | 8 | 351 | 351 | 3 | 3 | 1 | 9 | 142 | 142 | 4 | 3 | 3 10 | 457 | -444 | 4 | -5 | 1 12 | 65 | 59 | 7 |
| 4 | 0 | 7 | 51 | -28 | 7 | -1 | 1 | 8 | 181 | 172 | 3 | -6 | 2 | 9 | 244 | 235 | 4 | -4 | 4 10 | 202 | -202 | 4 | - 3 | 1 12 | 120 | 106 | Å |
| -3 | 1 | 7 | 123 | 125 | 3 | 1 | 1 | 8 | 67 | -62 | 5 | - 4 | 2 | ġ. | 54 | 40 | 6 | -2 | 4 10 | 39 | 32 | -9 | -1 | 1 12 | 156 | 146 | |
| -1 | 1 | 7 | 341 | 357 | 3 | 3 | 1 | 8 | 47 | -48 | 8 | -2 | 2 | 9 | 254 | -259 | ĩ | ñ | 4 10 | 36 | 21 | -11 | ī | 1 12 | 50 | 33 | |
| 1 | 1 | 7 | 304 | 308 | 3 | 5 | 1 | 8 | 46 | 45 | -10 | õ | 2 | 9 | 33 | -34 | _ <u> </u> | ž | 4 10 | 103 | 100 | - 5 | - 4 | 2 12 | 153 | 151 | 5 |
| 3 | 1 | 7 | 40 | -23 | -8 | -6 | 2 | Ř | 190 | 183 | - 4 | 5 | 2 | 9 | 98 | -77 | é | - 5 | 5 10 | 84 | -76 | 6 | - 2 | 2 12 | 284 | 240 | 2 |
| 5 | 1 | 7 | 108 | -100 | 5 | - 4 | 2 | Ř | \$ 70 | 181 | è | ž | 2 | á | 52 | 52 | | _ 1 | 5 10 | 37 | _ 10 | -10 | 0 | 2 12 | 104 | 100 | |
| -6 | 5 | 2 | 38 | -14 | -11 | -2 | 2 | 8 | 324 | 127 | - | _5 | รั | á | 205 | 212 | | | 5 10 | 100 | 104 | -10 | 2 | 2 12 | 104 | 102 | * |
| - 4 | 2 | 2 | 43 | 42 | 17 | ñ | 5 | ě | 53 | 35 | B B | 3 | ž | á | 536 | 578 | | -1 | 5 10 | 100 | 105 | 5 | 2 | 2 12 | 446 | 420 | °, |
| -2 | 2 | 2 | 600 | 599 | ż | ž | ົ | ă | 110 | - 121 | 2 | - 1 | ž | á | 594 | 200 | ž | | 5 10 | 1.02 | 101 | | - 3 | 2 12 | 440 | ~430 | |
| õ | ž | ź | 378 | 385 | | ž | 2 | 2 | 10 | - 323 | 10 | -1 | 2 | 0 | 602 | 600 | | 3 | 5 10 | 100 | 102 | | -1 | 3 12 | 606 | -455 | |
| 2 | 2 | 2 | 111 | 110 | ž | ž | 2 | 0 | 604 | (1) | -12 | 1 | 5 | 2 | 402 | 200 | | | 6 10 | 334 | 335 | 4 | 4 | 3 12 | 36 | -14 | -13 |
| 2 | 5 | 4 | 112 | 110 | 1 2 | -5 | 2 | | 524 | -013 | 2 | ŝ | 2 | 2 | 404 | 390 | ÷ | -2 | 6 10 | 299 | 302 | 4 | -4 | 4 12 | 115 | 116 | 5 |
| | ŝ | 4 | 113 | 454 | -13 | - 3 | 2 | 0 | 102 | -335 | 4 | -6 | • | 9 | 102 | 99 | 5 | ů. | 6 10 | 396 | 386 | 3 | -2 | 4 12 | -171 | 161 | 4 |
| ~ 5 | 2 | 4 | 443 | 436 | 4 | -1 | 3 | 8 | 103 | 100 | 4 | ~4 | 4 | 9 | 69 | 64 | 6 | 2 | 6 10 | 34 | 21 | -14 | 0 | 4 12 | 261 | 254 | 3 |
| - 3 | 2 | 4 | 111 | -121 | 4 | 1 | 3 | 8 | 102 | 113 | 4 | -2 | 4 | 9 | 98 | -99 | 4 | -3 | 7 10 | 76 | -73 | 6 | 2 | 4 12 | 51 | -23 | 9 |
| -1 | 3 | - | 313 | -324 | د | د | 3 | 8 | 69 | 69 | 6 | 9 | 4 | 9 | 281 | -289 | Z | -1 | 7 10 | 44 | 15 | -9 | - 3 | 5 1 2 | 82 | 72 | 6 |
| 1 | 5 | 2 | 267 | 264 | د | 5 | 3 | 8 | 129 | 116 | 5 | z | 4 | 9 | 49 | 41 | 7 | 1 | 7 10 | 154 | 148 | 4 | -1 | 5 12 | 145 | 140 | 5 |
| 3 | 3 | - 2 | 545 | 550 | 4 | -6 | 4 | 8 | 75 | 57 | 6 | 4 | 4 | 9 | 62 | 65 | 7 | -2 | 8 10 | 42 | -20 | -10 | 1 | 5 12 | 53 | 43 | 9 |
| 5 | 3 | 7 | 343 | 344 | 4 | -4 | 4 | 8 | 366 | 376 | 3 | -5 | 5 | 9 | 137 | 141 | 5 | 0 | 8 10 | 47 | 7 | 9 | -2 | 6 12 | 117 | -107 | 5 |
| -6 | 4 | 2 | 53 | -19 | 7 | -2 | 4 | 8 | 203 | 208 | 3 | - 3 | 5 | 9 | 75 | 68 | 5 | -1 | 9 10 | 119 | 117 | 5 | 0 | 6 12 | 74 | 64 | 6 |
| -4 | 4 | 7 | 192 | 195 | 3 | 0 | 4 | 8 | 106 | -104 | 3 | -1 | 5 | 9 | 102 | -106 | 4 | -4 | 0 11 | 35 | -3 | -12 | -1 | 7 12 | 83 | 86 | 7 |
| -2 | 4 | 7 | 186 | 198 | 3 | 2 | 4 | 8 | 59 | -62 | 6 | 1 | 5 | 9 | 13 | -11 | -13 | -2 | 0 11 | 67 | -72 | 6 | -4 | 0 13 | 273 | -255 | 4 |
| 0 | 4 | 7 | 488 | 503 | 8 | 4 | 4 | 8 | 124 | -119 | 5 | 3 | 5 | 9 | 134 | 142 | 5 | 0 | 0 11 | 465 | -453 | 3 | -2 | 0 13 | 50 | ~12 | 8 |
| 4 | 4 | 7 | 175 | -178 | 4 | -5 | 5 | 8 | 185 | 181 | 4 | -4 | 6 | 9 | 58 | ~50 | 7 | 2 | 0 11 | 480 | -462 | 4 | 0 | 0 13 | 310 | 280 | 3 |
| - 5 | 5 | 7 | 13 | ~9 | -13 | -3 | 5 | 8 | 314 | 324 | 3 | -2 | 6 | 9 | 47 | -32 | 7 | -5 | 1 11 | 27 | -21 | -27 | - 3 | 1 13 | 100 | 94 | 5 |
| - 3 | 5 | 7 | 76 | 80 | 5 | -1 | 5 | 8 | 103 | 94 | 4 | 0 | 6 | 9 | 75 | 72 | 4 | - 3 | 1 11 | 84 | 79 | 5 | -1 | 1 13 | 59 | -49 | 7 |
| -1 | 5 | 7 | 249 | 245 | 3 | 1 | 5 | 8 | 32 | -31 | -12 | - 3 | 7 | 9 | 39 | -25 | -9 | -1 | 1 11 | 158 | 154 | 4 | 1 | 1 13 | 123 | -122 | 5 |
| 1 | 5 | 7 | 276 | 284 | 3 | 3 | 5 | 8 | 37 | -25 | -11 | -1 | 7 | 9 | 42 | -37 | -9 | 1 | 1 11 | 167 | 163 | 4 | -4 | 2 13 | 126 | 118 | š |
| 5 | 5 | 7 | 118 | -108 | 5 | -4 | 6 | 8 | 258 | -262 | 4 | 1 | 2 | 9 | 61 | 50 | 7 | 3 | 1 11 | 102 | 93 | 5 | -2 | 2 13 | 169 | 166 | ă. |
| - 6 | 6 | 7 | 240 | 245 | 4 | -2 | 6 | 8 | 260 | 253 | 3 | 3 | 7 | 9 | 66 | 52 | 8 | -4 | 2 11 | 111 | 102 | 5 | õ | 2 13 | 120 | -103 | à |
| -4 | 6 | 7 | 189 | -192 | 4 | 0 | 6 | 8 | 539 | 547 | 12 | -4 | 8 | 9 | 14 | 47 | -14 | -2 | 2 11 | 94 | 101 | 5 | -1 | 3 13 | 65 | 61 | - |
| -2 | 6 | 7 | 591 | -601 | 5 | 2 | 6 | 8 | 290 | 297 | 4 | -2 | 8 | 9 | 90 | -80 | 5 | õ | 2 11 | 169 | 158 | ă | -1 | 3 1 3 | 455 | 423 | á |
| 0 | 6 | 7 | 530 | -536 | 9 | 4 | 6 | 8 | 342 | 341 | 4 | ō | 8 | 9 | 177 | -176 | 3 | 2 | 2 11 | 306 | 287 | Ā | 1 | 3 13 | 362 | 220 | 7 |
| 2 | 6 | 7 | 19 | -13 | ~19 | -5 | 7 | 8 | 124 | 121 | 5 | 2 | Ā | 9 | 44 | 29 | -10 | -5 | 3 11 | 319 | 337 | Ā | | 4 12 | 57 | 10 | - |
| -5 | 7 | 2 | 85 | -83 | | -3 | 2 | Ā | 185 | 194 | | - 1 | ã | á | 412 | 407 | | -1 | 3 11 | 13 | -20 | | - 2 | 4 1 2 | | - 40 | ÷. |
| -3 | 2 | 2 | 134 | 127 | ă | -1 | 2 | Ă | 172 | 172 | 2 | -1 | á | á | 335 | 110 | | -1 | 3 11 | 220 | -20 | -13 | . 1 | 6 1 3 | 42 | - 40 | |
| -1 | 7 | 2 | 301 | 309 | 3 | î | 5 | Ă | 106 | -105 | 4 | 1 | á | á | 341 | 338 | 7 | 1 | 3 11 | 230 | - 261 | 2 | | 0 14 | 262 | 220 | |
| î | 7 | ź | 134 | 134 | ă | 3 | ź | Ā | 200 | _78 | 2 | -6 | 6 1 | n. | 287 | 200 | | | 4 11 | 72 | 60 | ĉ | -2 | 0 14 | 101 | 120 | ÷. |
| 5 | 2 | ź | 23 | 16 | -23 | - 4 | Â | A | 246 | 234 | Å | - 4 | ň - | | 207 | 250 | | | 4 51 | 161 | - 33 | | 1 | 1 14 | 121 | 130 | 4 |
| | é | 2 | 137 | 137 | 23 | | R | ő | 107 | 134 | 2 | | 0 1 | 0 | 203 | 671 | ž | -2 | 4 14 | 101 | 766 | 9 | -1 | 7 14 | 94 | -83 | 5 |
| | 2 | ÷ | 101 | 190 | | -2 | 0 | 0 | 127 | T 2 4 | 4 | -2 | v 1 | L V | 003 | 601 | 2 | U | e 11 | 229 | 223 | 4 | -2 | 2 14 | 87 | -93 | 6 |
| -2 | 0 | | 727 | 120 | - | | | | | | | | | | | | | | | | | | | | | | |

Appendix S-5: Observed and calculated structure factors for chabazite

| h k | 1 10Fo 10Fc 10s | h k | 1 10Fo 10Fc 10s | h k | 1 10Fo 10Fc 10s | h k | 1 10Fo 10Fc 10s | h k l | 10Fo 10Fc 10s |
|----------------------|--|------------------|--------------------------------|-----------------------|----------------------------------|----------------------|--------------------------------|----------------------|-----------------------------|
| -1 2 | 0 892 -905 6 | -6 17 | 1 566 -564 9 | -8 10 | 3 558 535 5 | -10 16 | 4 541 535 5 | -396 | 75 8 - 25 |
| -24 | 0 1660-1545 8 | -3 17 | 1 158 110 12
1 462 421 6 | -5 10
-2 10 | 3 514 -446 4
3 93 85 17 | -7 16
-4 16 | 4 134 120 12
4 141 -143 12 | 096 | 1054-1098 11
186 -218 15 |
| -15 | 0 1557 1542 17
0 1420 1408 10 | -11 18 | 1 301 -267 7 | -10 11 | 3 199 158 8
3 805 810 5 | -1 16 | 4 316 320 9 | -5 10 6 | 797 -811 5 |
| 06 | 0 114 105 16 | -5 18 | 1 608 577 7 | -4 11 | 3 392 439 12 | -12 17 | 4 358 -332 12 | -10 11 6 | 347 334 6 |
| -2 7 | 0 982-1031 29
0 2633 2741 11 | -13 19
-10 19 | 1 71 -38 -32
1 139 83 22 | -1 11
-12 12 | 3 320 306 5
3 77 -77 -23 | -9 17
-6 17 | 4 601 -616 7 | -7 11 6 | 30 81 -21
587 533 5 |
| -1 8 | 0 172 56 7 | -7 19 | 1 242 -242 8 | -9 12 | 3 112 -151 13 | -3 17 | 4 188 -133 10 | -1 11 6 | 105 136 15 |
| 0 9 | 0 2896 3009 32 | -2 2 | 2 658 -625 17 | -6 12 | 3 253 -214 10
3 188 -197 8 | -14 18
-11 18 | 4 383 337 6 | -12 12 6
-9 12 6 | 191 -187 8
204 -157 8 |
| -5 10
-2 10 | 0 693 741 7
0 656 -673 16 | -1 3 | 2 1224-1125 6 | 0 12 | 3 171 -171 10 | -8 18
-5 18 | 4 275 -268 7 | -6 12 6 | 662 661 5 |
| -4 11 | 0 543 -541 4 | 04 | 2 1017 1028 18 | -8 13 | 3 450 -471 5 | -10 19 | 4 130 -119 14 | 0 12 6 | 130 -134 12 |
| -6 12 | 0 184 -229 11 | -2 5 | 2 705 -593 12 | -2 13 | 3 170 197 13 | -2 2 | 5 1365 1293 23 | -8 13 6 | 249 250 8
686 -709 5 |
| -3 12
0 12 | 0 428 450 5
0 683 703 13 | -46
-16 | 2 497 -515 6
2 507 -549 21 | -13 14
-10 14 | 3 106 -81 15
3 258 -231 14 | -1 3
-3 4 | 5 1679 1628 31 5 157 126 8 | -5 13 6 | 928 -958 6 |
| -5 13 | 0 1086 1100 8 | -67 | 2 958-1054 16 | -7 14 | 3 229 232 7 | 04 | 5 302 -272 14 | -13 14 6 | 644 -599 11 |
| -7 14 | 0 516 -505 7 | 0 7 | 2 141 82 8 | -1 14 | 3 294 -264 6 | -2 5 | 5 156 139 13 | -7 14 6 | 238 - 258 7 |
| -4 14
-1 14 | 0 432 388 6
0 450 444 11 | -88
-58 | 2 912 746 16
2 105 64 12 | -15 15
-12 15 | 3 105 118 18
3 32 32 -22 | -46
-16 | 5 542 436 5 56 44 -25 | -4 14 6 | 520 ~506 5
277 -347 7 |
| -6 15 | 0 167 -190 9 | -28 | 2 85 -87 20 | -9 15 | 3 68 38 -26 | -6 7 | 5 1657 1649 10 | -15 15 6 | 190 203 12 |
| 0 15 | 0 110 -111 17 | -4 9 | 2 331 339 5 | -3 15 | 3 114 123 14 | 0 7 | 5 845 929 5 | -12 15 6 | 236 219 7 |
| -8 16
-5 16 | 0 402 346 8
0 373 -350 7 | -1 9
-9 10 | 2 231 152 16
2 182 -176 9 | 0 15
-14 16 | 3 61 86 -29
3 98 111 24 | -88
-58 | 5 1210-1162 6
5 301 -336 9 | -6156
-3156 | 218 206 8
410 392 6 |
| -2 16 | 0 419 -397 6 | -6 10 | 2 81 -127 -25 | -11 16 | 3 326 305 10 | -2 8 | 5 809 786 11 | 0 15 6 | 293 267 18 |
| -4 17 | 0 889 857 6 | 0 10 | 2 106 77 -27 | -5 16 | 3 88 122 20 | -4 9 | 5 1486-1599 8 | -11 16 6 | 48 60 -28 |
| -1 17
-9 18 | 0 103 77 20
0 998 925 9 | -11 11
-8 11 | 2 96 -38 17
2 422 473 8 | -2 16
-16 17 | 3 190 178 10
3 67 -32 -30 | -1 9
-9 10 | 5 1077-1095 20
5 650 -634 8 | -8166
-5166 | 91 -96 20
291 281 7 |
| -6 18
-3 18 | 0 34 24 -24 | -5 11
-2 11 | 2 203 -259 8 | -13 17 | 3 384 -361 6 | -6 10 | 5 180 149 9 | -2 16 6 | 113 150 17 |
| -8 19 | 0 274 -247 15 | -10 12 | 2 454 -410 5 | -7 17 | 3 55 65 -28 | 0 10 | 5 402 -486 5 | -10 17 6 | 116 -101 16 |
| 0 2 | 1 1368-1205 9 | -4 12 | 2 216 221 7 | -4 17 | 3 357 -336 6
3 57 -16 -40 | -11 11 -8 11 | 5 595 591 6
5 570 473 7 | -7 17 6 | 39 40 -28
620 -612 5 |
| -23
-44 | 1 2121-2025 32
1 3937 3866 245 | -1 12
-12 13 | 2 54 19 -26 | -12 18 | 3 34 11 -24 | -5 11 | 5 503 497 8 | -12 18 6 | 34 -23 -24 |
| -1 4 | 1 725 551 4 | -9 13 | 2 74 39 -23 | -6 18 | 3 93 -76 22 | -10 12 | 5 766 724 9 | -6 18 6 | 100 73 21 |
| 0 5 | 1 459 317 7 | -3 13 | 2 49 -10 -26 | -8 19 | 3 254 203 8 | -4 12 | 5 330 -350 5 | 0 2 7 | 84 -128 14 |
| -56
-26 | 1 532 -469 8
1 418 -439 5 | 0 13
-14 14 | 2 54 1 -26
2 442 410 6 | -1 1
0 2 | 4 2277-2246 33
4 1274 1076 13 | -1 12
-12 13 | 5 483 440 6
5 362 -365 9 | -2 3 7 | 546 -635 6
130 -111 9 |
| -77 | 1 479 -353 4 | -11 14 | 2 124 -159 15 | -2 3 | 4 1938 1784 10 | -9 13 | 5 1055-1105 7 | -1 4 7 | 391 375 4 |
| -1 7 | 1 1081-1049 7 | -5 14 | 2 329 357 8 | -1 4 | 4 106 -91 10 | -3 13 | 5 156 -183 11 | -3 5 7 | 592 -526 12 |
| -38 | 1 520 474 17 | -2 14 | 2 197 -200 10 | -35 | 4 237 -140 29
4 816 -887 16 | 0 13
-14 14 | 5 890 -926 18
5 714 -757 5 | -567
-267 | 356-346 4
377 376 4 |
| -89 | 1 1621 1769 9
1 886 1001 6 | ~10 15
-7 15 | 2 106 -129 17 | -56 | 4 308 -197 7
4 64 -2 -26 | -11 14 | 5 429 409 6 | -7777 | 468 512 7 |
| -5 9 | 1 1391 1337 7 | -4 15 | 2 37 -29 -28 | -77 | 4 644 625 8 | -5 14 | 5 912-1000 14 | -1 7 7 | 353 -312 5 |
| -10 10 | 1 467 388 6 | -15 16 | 2 150 -148 12 | -1 7 | 4 1117 1119 6 | -13 15 | 5 382 366 6 | -6 8 7 | 206 - 294 7 |
| -7 10 | 1 678 –704 6
1 140 –184 10 | -12 16
-9 16 | 2 66 21 -37
2 66 -56 -33 | -68 | 4 1267 1255 12
4 273 -173 13 | -10 15
-7 15 | 5 348 307 6
5 574 542 5 | 087
-897 | 127 155 15
61 38 -61 |
| -1 10 | 1 517 541 5 | -6 16 | 2 394 -366 11 | 08 | 4 826 -942 8 | -4 15 | 5 464 455 9 | -597 | 243 -268 7 |
| -6 11 | 1 530 -549 7 | 0 16 | 2 62 16 -31 | -5 9 | 4 1392-1444 19 | -15 16 | 5 456 453 7 | -10 10 7 | 246 239 7 |
| 0 11 | 1 216 - 298 7 | -14 17 | 2 110 122 20 | -10 10 | 4 505 538 7
4 566 -619 8 | -12 16
-9 16 | 5 46 -29 -28
5 200 201 10 | -7 10 7 | 255 -269 7
152 136 10 |
| -11 12
-8 12 | 1 359 - 392 5
1 752 754 5 | -8 17
-5 17 | 2 217 199 8
2 33 16 -23 | -7 10 4 | 4 1056 1086 6 | -6 16 | 5 726 713 5 | -1 10 7 | 75 70 -28 |
| -5 12 | 1 64 62 -41 | -2 17 | 2 76 -53 -29 | -1 10 | 4 817 -842 6 | 0 16 | 5 56 34 -39 | -6 11 7 | 101 66 17 |
| -13 13 | 1 1053 1063 6 | -10 18 | 2 78 -17 -26 | -6 11 | 4 513 499 9 | -11 17 | 5 183 160 17 | 0 11 7 | 46 -11 -26 |
| -713 | 1 163 -176 9 | -7 18 | 2 163 -128 17
2 138 156 13 | -3 11 4 | 4 1082 1108 14
4 552 682 10 | -8 17
-5 17 | 5 768 -760 6
5 388 -393 6 | -11 12 7
-8 12 7 | 70 68 -26
71 -50 -27 |
| -4 13 : | 1 1229 1218 7
1 342 325 6 | -12 19
-9 19 | 2 161 -131 12 | -11 12 | 4 537 551 5 | -2 17 | 5 287 252 7 | -5 12 7 | 127 181 12 |
| -12 14 | 1 346 - 295 8 | 0 0 | 3 2616-2633 28 | -5 12 | 4 69 27 -27 | -10 18 | 5 233 -226 12 | -13 13 7 | 373 - 370 6 |
| -6 14 | 1 31 -12 -22 | -3 3 | 3 98 -90 9 | -13 13 | 4 970 -981 6 | 0 0 | 6 453 432 4 | -7 13 7 | 36 130 -26 |
| 0 14 | 1 382 -371 6 | -24 | 3 55 54 -21
3 728 607 5 | -10 13 4 | 4 296-275 6
4 70 0-24 | -1 2
-3 3 | 6 651 -649 8
6 610 592 6 | -4 13 7
-1 13 7 | 293 -285 7
46 8 -26 |
| -14 15 1
-11 15 1 | 1 101 -108 20
1 263 -233 10 | -4 5
-1 5 | 3 348 297 3
3 545 -558 4 | -4 13 4 | 4 1161-1178 6
4 411 -420 5 | 03 | 6 83 152 15
6 177 -156 15 | -12 14 7 | 32 35 -23 |
| -8 15 | 1 251 -263 7 | -6 6 | 3 76 29 -20 | -12 14 | 4 266 247 7 | -4 5 | 6 1883-1838 19 | -6 14 7 | 126 -123 21 |
| -2 15 | 1 169 -201 10 | 0 6 | 3 87 -39 13 | -6 14 | 4 60 -3 -28 | -1 5 | 6 216 212 7 | -3 14 7
0 14 7 | 38 -36 -28
198 -149 11 |
| -16 16 1
-13 16 1 | 1 34 33 -24
1 68 29 -36 | -5 7 | 3 247 216 17
3 690 698 12 | -3 14 4 | 4 479 480 11
4 253 -277 20 | -36
06 | 6 1222 1279 11
6 539 454 7 | -14 15 7
-11 15 7 | 40 2 -29
159 183 16 |
| -10 16 1 | 1 424 -423 5
1 130 -110 12 | -78
-48 | 3 171 285 7 | -14 15 4 | 4 186 162 10
4 438 383 7 | -5 7 | 6 354 357 5 | -8 15 7 | 180 173 10 |
| -4 16 | 1 239 222 21 | -1 8 | 3 561 626 5 | -8 15 | 4 475 451 5 | -7 8 | 6 138 72 10 | -2 15 7 | 40 82 -30 |
| -15 17 | 1 310 - 328 8 | -6 9 | 3 398 -297 5 | -2 15 4 | 4 203 197 13 | -4 8
-1 8 | 6 1088-1053 9
6 244 -271 6 | -13 16 7
-10 16 7 | 77 57 -32
118 -106 15 |
| -12 17 1
-9 17 1 | 1 428 364 10
1 550 528 5 | -39
09 | 3 268 -262 21
3 1497-1505 9 | -16 16 4 | 4 34 22 -24
4 103 -76 17 | -99
-69 | 6 893 -961 6
6 89 110 -22 | -7 16 7
-4 16 7 | 48 79 -28
102 94 20 |
| -1 16 | 7 93 74 -24 | 0 12 | 9 379 322 7 | -1 9 11 | 229 254 8 | -2 9 1 | 3 258 266 14 | -5 13 15 | 537 -538 6 |
| -9 17 | 7 119 -119 15 | -8 13 | 9 744 736 6 | -6 10 11 | 50 41 -26 | -7 10 1 | 3 319 320 6 | -1 1 16
0 2 16 | 150 -143 11
154 124 11 |
| -6 17 1
-3 17 1 | / 120 -66 22
7 143 -127 19 | -5 13
-2 13 | 9 924 920 6
9 242 -308 8 | -3 10 11
0 10 11 | 1 381 -363 6
1 36 59 -26 | -4 10 1
-1 10 1 | 3 45 59 -27
3 242 -275 17 | -2 3 16
-4 4 16 | 38 1 -28
461 -492 8 |
| -11 18 2 | 7 39 20 -28 | -13 14 | 9 569 488 5 | -11 11 11 | 301 -277 9 | -9 11 1 | 3 112 110 15 | -1 4 16 | 79 -129 -35 |
| 0 1 0 | 8 1486 1570 10 | -7 14 | 9 340 -331 8 | -5 11 11 | 536 -556 5 | -3 11 1 | 3 409 409 7 | -3 5 16 | 534 -535 5 |
| -2 2 8 | 5 554 -511 5
8 1039-1091 18 | -4 14
-1 14 | 9 461 425 5
9 312 314 8 | -2 11 11 | L 385 -365 5
L 336 -325 10 | 0 11 1
-11 12 1 | 3 93 97 -24
3 286 282 10 | -5 616
-2 616 | 110 -102 20
75 123 -33 |
| -3 4 8 | 8 159 127 8
3 1334 1323 17 | -15 15 | 9 151 -128 12
9 467 -437 7 | -7 12 11 | 1 37 -53 -28
1 427 469 5 | -8 12 1 | 3 145 -148 12 | -7 7 16 | 143 135 21
151 142 12 |
| -5 5 8 | 840 846 12 | -9 15 | 9 306 -317 10 | -1 12 11 | 144 -171 13 | -2 12 1 | 3 226 239 16 | -1 7 16 | 105 97 17 |
| -4 6 8 | 3 45 31 -45 | -6 15 | 9 336 -347 14 | -12 13 11
-9 13 11 | L 354 317 6
L 610 576 5 | -13 13 1
-10 13 1 | 3 607 -579 14
3 105 -91 18 | -6 8 16
-3 8 16 | 52 40 -44
38 -35 -28 |
| -1 6 9 | 1 164 - 257 0 | 0 15 | u 317 300 44 | C 13 | | | | | |

A156

| -67 | 8 774 -813 5 | -14 16 9 316 -314 7 | -3 13 11 110 105 16 | -4 13 13 578 -588 13 | -8 9 16 257 -218 10 |
|----------|------------------------------|--|---|--|---|
| -3 / | 8 164 -204 16 | -11 16 9 146 -168 17 | 0 13 11 539 526 11 | -1 13 13 111 -126 19 | -5 9 16 435 -438 9 |
| -8 8 | 8 1255 1254 14 | -5 16 9 329 -304 7 | -11 14 11 432 -422 8 | -12 14 13 158 120 12 | -2 9 16 33 19 -23 |
| -5 8 | 8 420 434 14 | -2 16 9 224 -252 12 | -8 14 11 155 -117 13 | -6 14 13 203 -206 10 | -7 10 16 151 114 15 |
| -28 | 8 537 -481 5 | -10 17 9 83 -43 -29 | -5 14 11 301 288 7 | -3 14 13 164 109 20 | -4 10 16 33 -33 -24 |
| -4 9 | 8 749 806 12 | -1 1 10 936 988 7 | -2 14 11 226 -237 9 | -6 15 13 278 274 8 | -1 10 16 148 -161 16 |
| -19 | 8 648 683 9 | 0 2 10 529 -514 6 | -10 15 11 34 -31 -24 | 0 1 14 652 -601 13 | -6 11 16 173 196 11 |
| -9 10 | 8 265 288 13 | -2 3 10 797 -862 7 | -7 15 11 243 -207 8 | -2 2 14 452 465 5 | -3 11 16 102 72 24 |
| -3 10 | 8 723 -736 6 | | | -1 3 14 546 504 13 | -8 12 16 182 -177 11 |
| 0 10 | 8 259 302 23 | -3 5 10 679 -657 5 | -6 16 11 209 -213 9 | +3 4 14 342 -338 8
0 4 14 1091-1129 7 | -5 12 16 34 2 -24 |
| -11 11 | 8 31 24 -22 | 0 5 10 1521 1508 11 | 0 0 12 232 233 8 | -5 5 14 1195-1193 7 | -2 2 17 148 -142 13 |
| -5 11 | 8 43 -50 -26 | -5 6 10 32 -28 -32 | -1 2 12 200 -234 9 | -2 5 14 371 389 11 | -1 3 17 161 -117 18 |
| -2 11 | 8 263 -302 11 | -7 7 10 356 -384 5 | 0 3 12 600 634 A | -4 6 14 315 347 7 | |
| -10 12 | 8 389 -349 6 | -4 7 10 189 -153 22 | -2 4 12 122 -124 13 | -6 7 14 554 551 5 | -5 5 17 238 237 8 |
| -7 12 | 8 30 16 -22 | -1 7 10 610 -654 7 | -4 5 12 99 -65 17 | -3 7 14 223 208 14 | -2 5 17 107 -86 17 |
| -1 12 | 8 116 -79 18 | -3 8 10 714 776 5 | -1 5 12 /3 -82 -36 | | -4 6 17 70 -4 -31 |
| -12 13 | 8 32 60 -23 | 0 8 10 1326 1370 23 | -3 6 12 151 -118 10 | -5 8 14 176 -157 11 | -1 0 1/ 33 -62 -24
-6 7 17 72 -79 -31 |
| -9 13 | 8 484 470 11 | -8 9 10 772 751 9 | 0 6 12 540 524 7 | -2 8 14 393 412 5 | -3 7 17 156 161 12 |
| -3 13 | 6 111 -69 15
6 86 -56 21 | | -5 7 12 99 -95 16 | -7 9 14 210 199 9 | 0 7 17 99 107 20 |
| 0 13 | 8 387 360 12 | -10 10 10 100 85 18 | -7 8 12 102 66 20 | -6 9 14 998-1005 11 | |
| -14 14 | 8 311 369 10 | -7 10 10 475 -467 5 | -4 8 12 98 116 17 | -9 10 14 408 -402 6 | -2 8 17 102 -89 21 |
| -11 14 | 8 45 0 -27 | -4 10 10 204 -213 9 | -1 8 12 63 35 -29 | -6 10 14 145 -150 12 | -7 9 17 85 -64 -26 |
| -5 14 | 8 379 411 6 | -1 10 10 236 214 14 | -9 9 12 135 -126 20 | -3 10 14 497 528 9 | -4 9 17 170 198 26 |
| -2 14 | 8 32 -70 -23 | -6 11 10 458 -452 5 | -3 9 12 114 135 14 | | |
| -13 15 | 8 173 -172 19 | -3 11 10 275 -341 9 | 0 9 12 127 -119 13 | -8 11 14 366 322 6 | -6 10 17 73 70 -33 |
| -10 15 0 | 8 143 ~162 12 | 0 11 10 75 -34 -33 | -8 10 12 37 -26 -27 | -5 11 14 458 467 9 | -3 10 17 73 -86 -34 |
| -4 15 | 8 95 -87 19 | -8 12 10 718 691 9 | -5 10 12 264 -240 13 | -2 11 14 393 367 8 | -8 11 17 40 0 -30 |
| -1 15 | 8 34 -82 -24 | -5 12 10 133 -120 12 | -10 11 12 110 -78 17 | -7 12 14 116 119 19 | |
| -15 16 4 | 8 210 -188 11 | -2 12 10 492 -495 14 | -7 11 12 79 114 -22 | -4 12 14 283 -332 23 | -1 2 18 373 -347 8 |
| -12 16 4 | 6 40 51 -29
8 156 -128 12 | | -4 11 12 155 140 10 | -1 12 14 263 276 15 | -3 3 18 307 279 7 |
| -6 16 8 | 8 428 -395 8 | -7 13 10 346 -346 8 | -12 12 12 336 301 7 | -12 13 14 355 -348 8 | |
| -3 16 8 | 8 34 31 -24 | -4 13 10 1072 1096 9 | -9 12 12 105 137 20 | -6 13 14 86 55 -25 | -4 5 18 463 426 10 |
| -11 17 8 | 8 197 -148 10
8 407 379 0 | | -6 12 12 37 -12 -26 | -3 13 14 238 -215 16 | -1 5 18 335 312 29 |
| -5 17 8 | 8 223 210 23 | -9 14 10 630 572 5 | -J 12 12 235 252 15
0 12 12 129 159 17 | -8 14 14 46 45 -29 | -6 6 18 34 -12 -24 |
| 0 0 9 | 9 3148 3141 38 | -6 14 10 160 169 11 | -11 13 12 66 -54 -41 | 0 0 15 853 -934 13 | 0 6 18 34 26 -24 |
| -1 2 9 | 9 523 -558 7 | -3 14 10 249 -235 9 | -8 13 12 38 -6 -26 | -1 2 15 377 349 14 | -5 7 18 407 -405 6 |
| 039 | 9 178 -109 24 | -14 15 10 455 429 6 | -5 13 12 49 -73 -27 | | -2 7 18 305 -315 7 |
| -2 4 9 | 9 656 -562 5 | -11 15 10 293 -287 11 | -13 14 12 123 -73 15 | ~2 4 15 541 559 5 | -/ 0 10 134 -119 14 |
| -4 5 9 | 9 1587 1560 8 | -8 15 10 362 -333 6 | -10 14 12 93 -106 21 | -4 5 15 565 -585 13 | -1 8 18 50 -34 -29 |
| -6 6 5 | 9 578 -590 6 | -5 15 10 164 -177 11 | -7 14 12 103 -85 20 | -1 5 15 465 -471 5 | -6 9 18 34 40 -24 |
| -3 6 9 | 9 1057-1129 8 | -13 16 10 42 -44 -29 | -1 14 12 34 -25 -24 | -3 6 15 698 671 8 | |
| 0 6 9 | 887 -890 9 | -10 16 10 313 -317 8 | -12 15 12 121 98 22 | 0 6 15 166 -184 12 | -1 1 19 440 395 7 |
| -2 7 9 | 9 494 -570 5 | | -9 15 12 160 122 16 | -5 7 15 546 521 7 | 0 2 19 402 -353 6 |
| -7 8 5 | 30 32 - 30 | -9 17 10 578 549 5 | -3 15 12 70 66 -38 | -2 7 15 452 422 13 | -2 3 19 397 -376 8 |
| -4 8 9 | 1814 1803 11 | 0 1 11 130 144 16 | -1 1 13 521 -541 15 | -4 8 15 549 -558 5 | -1 4 19 220 225 10 |
| -1 0 5 | 213 230 24 | -2 2 11 584 -538 7 | 0 2 13 199 223 18 | -1 8 15 164 170 11 | -3 5 19 359 -355 28 |
| -6 9 9 | 648 -614 5 | -3 4 11 502 494 7 | -2 3 13 438 452 5 | -9 9 15 848 -842 17 | |
| -3 9 9 | 396 -436 5 | 0 4 11 1451 1537 11 | -1 4 13 84 -33 -23 | -3 9 15 128 -119 14 | -2 6 19 293 -314 68 |
| -810 9 | 1345 1425 11 | -5 5 11 854 854 10 | -3 5 13 80 33 -21 | 0 9 15 814 -842 6 | -7 7 19 135 -139 14 |
| -5 10 9 | 595 580 5 | -2 3 11 619 -6/8 14 | U 5 13 688 -636 5 | | -4 7 19 101 -74 22 |
| -2 10 9 | 499 - 495 5 | -1 6 11 188 -186 15 | -2 6 13 175 180 33 | -2 10 15 222 287 10 | -4 / 19 300 -318 14 |
| -10 11 9 | 363 - 383 5 | -6 7 11 514 -490 13 | -7 7 13 435 433 7 | -10 11 15 402 375 6 | -3 8 19 157 187 24 |
| -4 11 9 | 384 - 374 5 | -3 / 11 137 -170 16
D 7 11 79 138 -23 | -4 7 13 271 254 14 | -7 11 15 382 337 7 | 0 1 20 300 300 8 |
| -1 11 9 | 198 -285 19 | -8 8 11 459 442 7 | -6 8 13 395 418 6 | -1 11 15 342 325 13 | -2 2 20 221 -182 10
-1 3 20 291 -301 P |
| -12 12 9 | 245 245 7 | -5 8 11 86 94 -37 | -3 8 13 357 -361 8 | -9 12 15 230 -206 10 | -3 4 20 219 244 37 |
| -9 12 9 | 126 116 13 | -2 8 11 422 -432 11 | 0 8 13 431 -505 6 | -6 12 15 415 398 8 | 0 4 20 812 783 11 |
| -3 12 9 | 31 -16 -22 | -1 7 11 200 -207 8 | -0 9 13 603 -418 6
-5 9 13 733 -720 5 | | -5 5 20 570 544 10 |
| -4 6 20 | 258 -241 9 | 0 0 31 307 350 3 | | -0 10 10 307 -402 0 | -2 3 20 201 -235 17 |